52
Views
2
CrossRef citations to date
0
Altmetric
Review

PI3K signaling: a crossroads of metabolic regulation

, , , &
Pages 349-357 | Published online: 10 Jan 2014

References

  • Foukas LC, Claret M, Pearce W et al. Critical role for the p110α phosphoinositide-3-OH kinase in growth and metabolic regulation. Nature441(7091), 366–370 (2006).
  • Knight ZA, Gonzalez B, Feldman ME et al. A pharmacological map of the PI3-K family defines a role for p110[α] in insulin signaling. Cell125(4), 733–747 (2006).
  • Pirola L, Zvelebil MJ, Bulgarelli-Leva G et al. Activation loop sequences confer substrate specificity to phosphoinositide 3-kinase α (PI3Kα ). Functions of lipid kinase-deficient PI3Kα in signaling. J. Biol. Chem.276(24), 21544–21554 (2001).
  • Ciraolo E, Iezzi M, Marone R et al. Phosphoinositide 3-kinase p110{β} activity: key role in metabolism and mammary gland cancer but not development. Sci. Signal.1(36), RA3 (2008).
  • Guillermet-Guibert J, Bjorklof K, Salpekar A et al. The p110β isoform of phosphoinositide 3-kinase signals downstream of G protein-coupled receptors and is functionally redundant with p110γ. Proc. Natl Acad. Sci. USA105(24), 8292–8297 (2008).
  • Braccini L, Morello F, Perino A, Hirsch E. Post-wortmannin era: novel phosphoinositide 3-kinase inhibitors with potential therapeutic applications. Curr. Enzyme Inhibition (2009) (In Press).
  • Iida S, Ono A, Sayama K et al. Accelerated decline of blood glucose after intravenous glucose injection in a patient with Cowden disease having a heterozygous germline mutation of the PTEN/MMAC1 gene. Anticancer Res.20(3B), 1901–1904 (2000).
  • Ooms LM, Horan KA, Rahman P et al. The role of the inositol polyphosphate 5-phosphatases in cellular function and human disease. Biochem. J.419(1), 29–49 (2009).
  • Kaisaki PJ, Delepine M, Woon PY et al. Polymorphisms in type II SH2 domain-containing inositol 5-phosphatase (INPPL1, SHIP2) are associated with physiological abnormalities of the metabolic syndrome. Diabetes53(7), 1900–1904 (2004).
  • Cai D, Dhe-Paganon S, Melendez PA, Lee J, Shoelson SE. Two new substrates in insulin signaling IRS5/DOK4 and IRS6/DOK5. J. Biol. Chem.278(28), 25323–25330 (2003).
  • Sun XJ, Pons S, Wang LM et al. The IRS-2 gene on murine chromosome 8 encodes a unique signaling adapter for insulin and cytokine action. Mol. Endocrinol.11(2), 251–262 (1997).
  • Araki E, Sun XJ, Haag BL 3rd et al. Human skeletal muscle insulin receptor substrate-1. Characterization of the cDNA, gene, and chromosomal localization. Diabetes42(7), 1041–1054 (1993).
  • Sciacchitano S, Taylor SI. Cloning, tissue expression, and chromosomal localization of the mouse IRS-3 gene. Endocrinology138(11), 4931–4940 (1997).
  • Schreyer S, Ledwig D, Rakatzi I, Kloting I, Eckel J. Insulin receptor substrate-4 is expressed in muscle tissue without acting as a substrate for the insulin receptor. Endocrinology144(4), 1211–1218 (2003).
  • Alessi DR, Downes CP The role of PI 3-kinase in insulin action. Biochim. Biophys. Acta1436(1–2), 151–164 (1998).
  • Asano T, Kanda A, Katagiri H et al. p110β is up-regulated during differentiation of 3T3-L1 cells and contributes to the highly insulin-responsive glucose transport activity. J. Biol. Chem.275(23), 17671–17676 (2000).
  • Beeson M, Sajan MP, Dizon M et al. Activation of protein kinase C-ζ by insulin and phosphatidylinositol-3,4,5-(PO4)3 is defective in muscle in type 2 diabetes and impaired glucose tolerance: amelioration by rosiglitazone and exercise. Diabetes52(8), 1926–1934 (2003).
  • Sakamoto K, Holman GD. Emerging role for AS160/TBC1D4 and TBC1D1 in the regulation of GLUT4 traffic. Am. J. Physiol. Endocrinol. Metab.295(1), E29–E37 (2008).
  • Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature378(6559), 785–789 (1995).
  • McManus EJ, Sakamoto K, Armit LJ et al. Role that phosphorylation of GSK3 plays in insulin and Wnt signalling defined by knockin analysis. EMBO J.24(8), 1571–1583 (2005).
  • Lee AD, Hansen PA, Holloszy JO. Wortmannin inhibits insulin-stimulated but not contraction-stimulated glucose transport activity in skeletal muscle. FEBS Lett.361(1), 51–54 (1995).
  • Shepherd PR, Nave BT, Siddle K. Insulin stimulation of glycogen synthesis and glycogen synthase activity is blocked by wortmannin and rapamycin in 3T3-L1 adipocytes: evidence for the involvement of phosphoinositide 3-kinase and p70 ribosomal protein-S6 kinase. Biochem. J.305(Pt 1), 25–28 (1995).
  • Bi L, Okabe I, Bernard DJ, Nussbaum RL. Early embryonic lethality in mice deficient in the p110β catalytic subunit of PI 3-kinase. Mamm. Genome13(3), 169–172 (2002).
  • Bi L, Okabe I, Bernard DJ, Wynshaw-Boris A, Nussbaum RL. Proliferative defect and embryonic lethality in mice homozygous for a deletion in the p110α subunit of phosphoinositide 3-kinase. J. Biol. Chem.274(16), 10963–10968 (1999).
  • Wang Q, Bilan PJ, Tsakiridis T, Hinek A, Klip A. Actin filaments participate in the relocalization of phosphatidylinositol3-kinase to glucose transporter-containing compartments and in the stimulation of glucose uptake in 3T3–L1 adipocytes. Biochem. J.331(Pt 3), 917–928 (1998).
  • Jia S, Liu Z, Zhang S et al. Essential roles of PI(3)K-p110β in cell growth, metabolism and tumorigenesis. Nature454(7205), 776–779 (2008).
  • Maffucci T, Brancaccio A, Piccolo E, Stein RC, Falasca M. Insulin induces phosphatidylinositol-3-phosphate formation through TC10 activation. EMBO J.22(16), 4178–4189 (2003).
  • Chaussade C, Pirola L, Bonnafous S et al. Expression of myotubularin by an adenoviral vector demonstrates its function as a phosphatidylinositol 3-phosphate [PtdIns(3)P] phosphatase in muscle cell lines: involvement of PtdIns(3)P in insulin-stimulated glucose transport. Mol. Endocrinol.17(12), 2448–2460 (2003).
  • Domin J, Pages F, Volinia S et al. Cloning of a human phosphoinositide 3-kinase with a C2 domain that displays reduced sensitivity to the inhibitor wortmannin. Biochem. J.326(Pt 1), 139–147 (1997).
  • Arcaro A, Volinia S, Zvelebil MJ et al. Human phosphoinositide 3-kinase C2β, the role of calcium and the C2 domain in enzyme activity. J. Biol. Chem.273(49), 33082–33090 (1998).
  • Ono F, Nakagawa T, Saito S et al. A novel class II phosphoinositide 3-kinase predominantly expressed in the liver and its enhanced expression during liver regeneration. J. Biol. Chem.273(13), 7731–7736 (1998).
  • Brown RA, Domin J, Arcaro A, Waterfield MD, Shepherd PR. Insulin activates the a isoform of class II phosphoinositide 3-kinase. J. Biol. Chem.274(21), 14529–14532 (1999).
  • Brown RA, Shepherd PR. Growth factor regulation of the novel class II phosphoinositide 3-kinases. Biochem. Soc. Trans.29(Pt 4), 535–537 (2001).
  • Arcaro A, Zvelebil MJ, Wallasch C et al. Class II phosphoinositide 3-kinases are downstream targets of activated polypeptide growth factor receptors. Mol. Cell. Biol.20(11), 3817–3830 (2000).
  • Falasca M, Hughes WE, Dominguez V et al. The role of phosphoinositide 3-kinase C2α in insulin signaling. J. Biol. Chem.282(38), 28226–28236 (2007).
  • Christoforidis S, Miaczynska M, Ashman K et al. Phosphatidylinositol-3-OH kinases are Rab5 effectors. Nat. Cell Biol.1(4), 249–252 (1999).
  • Soos MA, Jensen J, Brown RA et al. Class II phosphoinositide 3-kinase is activated by insulin but not by contraction in skeletal muscle. Arch. Biochem. Biophys.396(2), 244–248 (2001).
  • Daimon M, Sato H, Oizumi T et al. Association of the PIK3C2G gene polymorphisms with type 2 DM in a Japanese population. Biochem. Biophys. Res. Commun.365(3), 466–471 (2008).
  • Berwick DC, Dell GC, Welsh GI et al. Protein kinase B phosphorylation of PIKfyve regulates the trafficking of GLUT4 vesicles. J. Cell Sci.117(Pt 25), 5985–5993 (2004).
  • Ikonomov OC, Sbrissa D, Shisheva A. YM201636, an inhibitor of retroviral budding and PIKfyve-catalyzed PtdIns (3,5)P2 synthesis, halts glucose entry by insulin in adipocytes. Biochem. Biophys. Res. Commun.382(3), 566–570 (2009).
  • Chang-Chen KJ, Mullur R, Bernal-Mizrachi E. β-cell failure as a complication of diabetes. Rev. Endocr. Metab. Disord.9(4), 329–343 (2008).
  • Fruman DA, Mauvais-Jarvis F, Pollard DA et al. Hypoglycaemia, liver necrosis and perinatal death in mice lacking all isoforms of phosphoinositide 3-kinase p85 α. Nat. Genet.26(3), 379–382 (2000).
  • Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of Akt/PKB by the rictor–mTOR complex. Science307(5712), 1098–1101 (2005).
  • Pende M, Kozma SC, Jaquet M et al. Hypoinsulinaemia, glucose intolerance and diminished β-cell size in S6K1-deficient mice. Nature408(6815), 994–997 (2000).
  • Mayo LD, Donner DB. A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc. Natl Acad. Sci. USA98(20), 11598–11603 (2001).
  • Dickson LM, Rhodes CJ. Pancreatic β-cell growth and survival in the onset of type 2 diabetes: a role for protein kinase B in the Akt? Am. J. Physiol. Endocrinol. Metab.287(2), E192–E198 (2004).
  • Withers DJ, Gutierrez JS, Towery H et al. Disruption of IRS-2 causes Type 2 diabetes in mice. Nature391(6670), 900–904 (1998).
  • Tamemoto H, Kadowaki T, Tobe K et al. Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1. Nature372(6502), 182–186 (1994).
  • Araki E, Lipes MA, Patti ME et al. Alternative pathway of insulin signalling in mice with targeted disruption of the IRS-1 gene. Nature372(6502), 186–190 (1994).
  • Laustsen PG, Michael MD, Crute BE et al. Lipoatrophic diabetes in Irs1-/-/Irs3-/- double knockout mice. Genes Dev.16(24), 3213–3222 (2002).
  • Almind K, Inoue G, Pedersen O, Kahn CR. A common amino acid polymorphism in insulin receptor substrate-1 causes impaired insulin signaling. Evidence from transfection studies. J. Clin. Invest.97(11), 2569–2575 (1996).
  • Um SH, D’Alessio D, Thomas G. Nutrient overload, insulin resistance, and ribosomal protein S6 kinase 1, S6K1. Cell Metab.3(6), 393–402 (2006).
  • Brachmann SM, Ueki K, Engelman JA, Kahn RC, Cantley LC. Phosphoinositide 3-kinase catalytic subunit deletion and regulatory subunit deletion have opposite effects on insulin sensitivity in mice. Mol. Cell. Biol.25(5), 1596–1607 (2005).
  • Chaussade C, Rewcastle GW, Kendall JD et al. Evidence for functional redundancy of class IA PI3K isoforms in insulin signalling. Biochem. J.404(3), 449–458 (2007).
  • Le Stunff C, Dechartres A, Mariot V et al. Association analysis indicates that a variant GATA-binding site in the PIK3CB promoter is a cis-acting expression quantitative trait locus for this gene and attenuates insulin resistance in obese children. Diabetes57(2), 494–502 (2008).
  • Ozanne SE, Jensen CB, Tingey KJ et al. Low birthweight is associated with specific changes in muscle insulin-signalling protein expression. Diabetologia48(3), 547–552 (2005).
  • Terauchi Y, Tsuji Y, Satoh S et al. Increased insulin sensitivity and hypoglycaemia in mice lacking the p85 α subunit of phosphoinositide 3-kinase. Nat. Genet.21(2), 230–235 (1999).
  • Mauvais-Jarvis F, Ueki K, Fruman DA et al. Reduced expression of the murine p85α subunit of phosphoinositide 3-kinase improves insulin signaling and ameliorates diabetes. J. Clin. Invest.109(1), 141–149 (2002).
  • Chen D, Mauvais-Jarvis F, Bluher M et al. p50α/p55α phosphoinositide 3-kinase knockout mice exhibit enhanced insulin sensitivity. Mol. Cell. Biol.24(1), 320–329 (2004).
  • Ueki K, Fruman DA, Yballe CM et al. Positive and negative roles of p85 α and p85 β regulatory subunits of phosphoinositide 3-kinase in insulin signaling. J. Biol. Chem.278(48), 48453–48466 (2003).
  • Ueki K, Yballe CM, Brachmann SM et al. Increased insulin sensitivity in mice lacking p85β subunit of phosphoinositide 3-kinase. Proc. Natl Acad. Sci. USA99(1), 419–424 (2002).
  • Taniguchi CM, Tran TT, Kondo T et al. Phosphoinositide 3-kinase regulatory subunit p85α suppresses insulin action via positive regulation of PTEN. Proc. Natl Acad. Sci. USA103(32), 12093–12097 (2006).
  • Taniguchi CM, Kondo T, Sajan M et al. Divergent regulation of hepatic glucose and lipid metabolism by phosphoinositide 3-kinase via Akt and PKCl/z. Cell Metab.3(5), 343–353 (2006).
  • Kurlawalla-Martinez C, Stiles B, Wang Y et al. Insulin hypersensitivity and resistance to streptozotocin-induced diabetes in mice lacking PTEN in adipose tissue. Mol. Cell. Biol.25(6), 2498–2510 (2005).
  • Ueki K, Fruman DA, Brachmann SM et al. Molecular balance between the regulatory and catalytic subunits of phosphoinositide 3-kinase regulates cell signaling and survival. Mol. Cell. Biol.22(3), 965–977 (2002).
  • Bandyopadhyay GK, Yu JG, Ofrecio J, Olefsky JM. Increased p85/55/50 expression and decreased phosphotidylinositol 3-kinase activity in insulin-resistant human skeletal muscle. Diabetes54(8), 2351–2359 (2005).
  • Baynes KC, Beeton CA, Panayotou G et al. Natural variants of human p85 α phosphoinositide 3-kinase in severe insulin resistance: a novel variant with impaired insulin-stimulated lipid kinase activity. Diabetologia43(3), 321–331 (2000).
  • George S, Rochford JJ, Wolfrum C et al. A family with severe insulin resistance and diabetes due to a mutation in AKT2. Science304(5675), 1325–1328 (2004).
  • Cho H, Mu J, Kim JK et al. Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKBβ). Science292(5522), 1728–1731 (2001).
  • Garofalo RS, Orena SJ, Rafidi K et al. Severe diabetes, age-dependent loss of adipose tissue, and mild growth deficiency in mice lacking Akt2/PKB β. J. Clin. Invest.112(2), 197–208 (2003).
  • Sun S-Y, Rosenberg LM, Wang X et al. Activation of Akt and eIF4E survival pathways by rapamycin-mediated mammalian target of rapamycin inhibition. Cancer Res.65(16), 7052–7058 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.