31
Views
1
CrossRef citations to date
0
Altmetric
Review

Multiple endocrine neoplasia type 2

, , &
Pages 443-465 | Published online: 10 Jan 2014

References

  • Hazard JB, Hawk WA, Crile G Jr. Medullary (solid) carcinoma of the thyroid; a clinicopathologic entity. J. Clin. Endocrinol. Metab.19, 152–161 (1959).
  • Sipple JH. The association of pheochromocytoma with carcinoma of the thyroid gland. Am. J. Med.31, 163–166 (1961).
  • Copp DH, Cameron EC, Cheny BA, Davidson AG, Henze KG. Evidence for calcitonin – a new hormone from the parathyroid that lowers blood calcium. Endocrinology70, 638–649 (1962).
  • Williams ED. A review of 17 cases of carcinoma of the thyroid and of phaeochromocytoma. J. Clin. Pathol.18, 288–292 (1965).
  • Mathew CG, Chin KS, Easton DF et al. A linked genetic marker for multiple endocrine neoplasia syndrome type 2A on chromosome 10. Nature328, 527–528 (1987).
  • Mulligan LM, Kwok JB, Healey CS et al. Germ-line mutations of the RET proto-oncogene in multiple endocrine neoplasia type 2A. Nature363, 458–460 (1993).
  • Hofstra RM, Landsvater RM, Ceccherini I et al. A mutation in the RET proto-oncogene associated with multiple endocrine neoplasia type 2B and sporadic medullary thyroid carcinoma. Nature367, 375–376 (1994).
  • Donis-Keller H, Dou S, Chi D et al. Mutations in the RET proto-oncogene are associated with MEN 2A and FMTC. Hum. Mol. Genet.2, 851–856 (1993).
  • Raue F, Frank-Raue K, Grauer A. Multiple endocrine neoplasia type 2: clinical features and screening. Endocrinol. Metab. Clin. North. Am.23, 137–156 (1994).
  • Wolfe HJ, Delellis RA. Familial medullary thyroid carcinoma and C-cell hyperplasia. Clin. Endocrinol. Metab.10, 351–365 (1981).
  • Hoff AO, Catala-Lehnen P, Thomas PM et al. Increased bone mass is an unexpected phenotype associated with deletion of the calcitonin gene. J. Clin. Invest.110, 1849–1857 (2002).
  • Tiegs RD, Body JJ, Barta JM, Heath H 3rd. Plasma calcitonin in primary hyperparathyroidism: failure of C-cell response to sustained hypercalcemia. J. Clin. Endocrinol. Metab.63, 785–788 (1986).
  • Garrett JE, Tamir H, Kifor O et al. Calcitonin-secreting cells of the thyroid express an extracellular calcium receptor gene. Endocrinology.136, 5202–5211 (1995).
  • Donovan DT, Levy ML, Furst EJ et al. Familial cutaneous lichen amyloidosis in association with multiple endocrine neoplasia type 2A: a new variant. Henry Ford Hosp. Med. J.37, 147–150 (1989).
  • O’Riordain DS, O’Brien T, Crotty TB, Gharib H, Grant CS, van Heerden JA. Multiple endocrine neoplasia type 2B: more than an endocrine disorder. Surgery118, 936–942 (1995).
  • Brandi ML, Gagel RF, Angeli A et al. Guidelines for diagnosis and therapy of MEN type 1 and type 2. J. Clin. Endocrinol. Metab.86, 5658–5671 (2001).
  • Mulligan LM, Ponder BA. Genetic basis of endocrine disease: multiple endocrine neoplasia type 2. J. Clin. Endocrinol. Metab.80, 1989–1995 (1995).
  • Edery P, Lyonnet S, Mulligan LM et al. Mutations of the RET proto-oncogene in Hirschsprung’s disease. Nature367, 378–380 (1994).
  • Moers AM, Landsvater RM, Schaap C et al. Familial medullary thyroid carcinoma: not a distinct entity? Genotype–phenotype correlation in a large family. Am. J. Med.101, 635–641 (1996).
  • Trupp M, Arenas E, Fainzilber M et al. Functional receptor for GDNF encoded by the C-RET proto-oncogene. Nature381785–789 (1996).
  • Durbec P, Marcos-Gutierrez CV, Kilkenny C et al. GDNF signaling through the RET receptor tyrosine kinase. Nature381, 789–793 (1996).
  • Kotzbauer PT, Lampe PA, Heuckeroth RO et al. Neurturin, a relative of glial-cell-line-derived neurotrophic factor. Nature384, 467–470 (1996).
  • Treanor JJS, Goodman L, de Sauvage F et al. Characterization of a multicomponent receptor for GDNF. Nature382, 80 (1996).
  • Hansford JR, Mulligan LM, Multiple endocrine neoplasia type 2 and RET: from neoplasia to neurogenesis. J. Med. Genet.37, 817–827 (2000).
  • Schuchardt A, D’Agati V, Larsson-Blomberg L, Costantini F, Pachnis V. Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor RET. Nature367, 380–383 (1994).
  • Sanchez M, Silos-Santiago I, Frisen J, He B, Lira SA, Barbacid M. Renal agenesis and the absence of enteric neurons in mice lacking GDNF. Nature382, 70–73 (1996).
  • Pichel JG, Shen L, Sheng HZ et al. Defects in enteric innervation and kidney development in mice lacking GDNF. Nature382, 73–76 (1996).
  • Moore MW, Klein RD, Farinas I et al. Renal and neuronal abnormalities in mice lacking GDNF. Nature382, 76–79 (1996).
  • Santoro M, Carlomagno F, Romano A et al. Activation of RET as a dominant transforming gene by germline mutations of MEN 2A and MEN 2B. Science267, 381–383 (1995).
  • Mulligan LM, Eng C, Healey CS et al. Specific mutations of the RET proto-oncogene are related to disease phenotype in MEN-2A and FMTC. Nat. Genet.6, 70–74 (1994).
  • Eng C, Clayton D, Schuffenecker I et al. The relationship between specific RET proto-oncogene mutations and disease phenotype in multiple endocrine neoplasia type 2. International RET Mutation Consortium analysis. JAMA276, 1575–1579 (1996).
  • Bolino A, Schuffenecker I, Luo Y et al. RET mutations in exons 13 and 14 of FMTC patients. Oncogene10, 2415–2419 (1995).
  • Gimm O, Marsh DJ, Andrew SD et al. Germline dinucleotide mutation in codon 883 of the RET proto-oncogene in multiple endocrine neoplasia type 2B without codon 918 mutation. J. Clin. Endocrinol. Metab.82, 3902–3904 (1997).
  • Schuffenecker I, Virally-Monod M, Brohet R et al. Risk and penetrance of primary hyperparathyroidism in multiple endocrine neoplasia type 2A families with mutations at codon 634 of the RET proto-oncogene. J. Clin. Endocrinol. Metab.83, 487–491 (1998).
  • Aiello A, Cioni K, Gobbo M et al. The familial medullary thyroid carcinoma-associated RET E768D mutation in a multiple endocrine neoplasia type 2A case. Surgery137, 574–576 (2005).
  • Berndt I, Reuter M, Saller B et al. A new hot spot for mutations in the ret protooncogene causing familial medullary thyroid carcinoma and multiple endocrine neoplasia type 2A. J. Clin. Endocrinol. Metab.83, 770–774 (1998).
  • Pinna G, Orgiana G, Riola A et al. RET proto-oncogene in Sardinia: V804M is the most frequent mutation and may be associated with FMTC/MEN-2A phenotype. Thyroid17, 101–104 (2007).
  • Jimenez C, Habra MA, Huang SC et al. Pheochromocytoma and medullary thyroid carcinoma: a new genotype-phenotype correlation of the RET protooncogene 891 germline mutation. J. Clin. Endocrinol. Metab.89, 4142–4145 (2004).
  • Carlson KM, Bracamontes J, Jackson CE et al. Parent-of-origin effects in multiple endocrine neoplasia type 2B. Am. J. Hum. Genet.55, 1076–1082 (1994).
  • Cranston AN, Carniti C, Oakhill K et al. RET is constitutively activated by novel tandem mutations that alter the active site resulting in multiple endocrine neoplasia type 2B. Cancer Res.66, 10179–10187 (2006).
  • Miyauchi A, Futami H, Hai N et al. Two germline missense mutations at codons 804 and 806 of the RET proto-oncogene in the same allele in a patient with multiple endocrine neoplasia type 2B without codon 918 mutation. Jpn J. Cancer Res.90, 1–5. (1999).
  • Kameyama K, Okinaga H, Takami H. RET oncogene mutations in 75 cases of familial medullary thyroid carcinoma in Japan. Biomed. Pharmacother.58, 345–347 (2004).
  • Iwashita T, Murakami H, Kurokawa K et al. A two-hit model for development of multiple endocrine neoplasia type 2B by RET mutations. Biochem. Biophys. Res. Commun.268, 804–808 (2000).
  • Menko FH, van der Luijt RB, de Valk IA et al. MEN type 2B associated with two germline RET mutations on the same allele not involving codon 918. J. Clin. Endocrinol. Metab.87, 393–397 (2002).
  • Amiel J, Lyonnet S. Hirschsprung disease, associated syndromes, and genetics: a review. J. Med. Genet.38, 729–739 (2001).
  • Brooks AS, Oostra BA, Hofstra RM. Studying the genetics of Hirschsprung’s disease: unraveling an oligogenic disorder. Clin. Genet.67, 6–14 (2005).
  • Hansford JR, Mulligan LM. Multiple endocrine neoplasia type 2 and RET: from neoplasia to neurogenesis. J. Med. Genet.37, 817–827 (2000).
  • Lore F, Di Cairano G, Talidis F. Unilateral renal agenesis in a family with medullary thyroid carcinoma [letter]. N. Engl J. Med.342, 1218–1219 (2000).
  • Rekhi B, Badhe RR, Desouza MA et al. A unique RET EXON 11 (G691S) polymorphism in an Indian patient with a collision tumor of the thyroid. Diagn. Pathol.2, 39 (2007).
  • Cardot-Bauters C, Leteurtre E, Leclerc L et al. Groupe d’Etude des Tumeurs Endocrines (GTE). Does the RET variant G691S influence the features of sporadic medullary thyroid carcinoma. Clin. Endocrinol. (Oxf.)69, 506–510 (2008).
  • Raue F, Frank-Raue K. Genotype-phenotype relationship in multiple endocrine neoplasia type 2. Implications for clinical management. Hormones (Athens)8, 23–28 (2009).
  • Yip L, Cote GJ, Shapiro SE et al. Multiple endocrine neoplasia type 2: evaluation of the genotype-phenotype relationship. Arch. Surg.138, 409–416 (2003).
  • Lips CJ, Landsvater RM, Hoppener JW et al. Clinical screening as compared with DNA analysis in families with multiple endocrine neoplasia type 2A. N. Engl. J. Med.331, 828–835 (1994).
  • Frank-Raue K, Buhr H, Dralle H et al. Long-term outcome in 46 gene carriers of hereditary medullary thyroid carcinoma after prophylactic thyroidectomy: impact of individual RET genotype. Eur. J. Endocrinol.155, 229–236 (2006).
  • Mograbi B, Bocciardi R, Bourget I et al. The sensitivity of activated Cys RET mutants to glial cell line-derived neurotrophic factor is mandatory to rescue neuroectodermic cells from apoptosis. Mol. Cell Biol.21, 6719–6730 (2001).
  • Plaza Menacho I, Koster R, van der Sloot AM et al. RET-familial medullary thyroid carcinoma mutants Y791F and S891A activate a Src/JAK/STAT3 pathway, independent of glial cell line-derived neurotrophic factor. Cancer Res.65, 1729–1737 (2005).
  • Gagel RF, Levy ML, Donovan DT, Alford BR, Wheeler T, Tschen JA. Multiple endocrine neoplasia type 2a associated with cutaneous lichen amyloidosis. Ann. Intern. Med.111, 802–806 (1989).
  • Ceccherini I, Romei C, Barone V et al. Identification of the Cys634–Tyr mutation of the RET proto-oncogene in a pedigree with multiple endocrine neoplasia type 2A and localized cutaneous lichen amyloidosis. J. Endocrinol. Invest.17, 201–204 (1994).
  • Verga U, Fugazzola L, Cambiaghi S et al. Frequent association between MEN 2A and cutaneous lichen amyloidosis. Clin. Endocrinol. (Oxf.)59, 156–161 (2003).
  • Elisei R, Cosci B, Romei C et al. Prognostic significance of somatic RET oncogene mutations in sporadic medullary thyroid cancer: a 10-year follow-up study. J. Clin. Endocrinol. Metab.93, 682–687 (2008).
  • Dvorakova S, Vaclavikova E, Sykorova V et al. Somatic mutations in the RET proto-oncogene in sporadic medullary thyroid carcinomas. Mol. Cell Endocrinol.284, 21–27 (2008).
  • Zedenius J. Is somatic RET mutation a prognostic factor for sporadic medullary thyroid carcinoma? Nat. Clin. Pract. Endocrinol. Metab.4, 432–433 (2008).
  • Jhiang SM, Mazzaferri EL. The RET/PTC oncogene in papillary thyroid carcinoma. J. Lab. Clin. Med.123, 331–337 (1994).
  • Lee CH, Hsu LS, Chi CW, Chen GD, Yang AH, Chen JY. High frequency of rearrangement of the RET protooncogene (RET/PTC) in Chinese papillary thyroid carcinomas. J. Clin. Endocrinol. Metab.83, 1629–1632 (1998).
  • Xing M. BRAF mutation in thyroid cancer. Endocr. Relat. Cancer12, 245–262 (2005).
  • Ouyang B, Knauf JA, Smith EP et al. Inhibitors of Raf kinase activity block growth of thyroid cancer cells with RET/PTC or BRAF mutations in vitro and in vivo. Clin. Cancer Res.12, 1785–1793 (2006).
  • Soares P, Trovisco V, Rocha AS et al. BRAF mutations and RET/PTC rearrangements are alternative events in the etiopathogenesis of PTC. Oncogene22, 4578–4580 (2003).
  • Nikiforova MN, Lynch RA, Biddinger PW et al. RAS point mutations and PAX8-PPARγ rearrangement in thyroid tumors: evidence for distinct molecular pathways in thyroid follicular carcinoma. J. Clin. Endocrinol. Metab.88, 2318–2326 (2003).
  • Biscolla RP, Ugolini C, Sculli M et al. Medullary and papillary tumors are frequently associated in the same thyroid gland without evidence of reciprocal influence in their biologic behavior. Thyroid14, 946–952 (2004)
  • Orlandi F, Chiefari E, Caraci P et al. RET proto-oncogene mutation in a mixed medullary-follicular thyroid carcinoma. J. Endocrinol. Invest.24, 51–55 (2001).
  • Melillo RM, Cirafici AM, De Falco V et al. The oncogenic activity of RET point mutants for follicular thyroid cells may account for the occurrence of papillary thyroid carcinoma in patients affected by familial medullary thyroid carcinoma. Am. J. Pathol.165, 511–521 (2004).
  • Greene FL, Fleming ID, Fritz A et al. Thyroid gland. AJCC Cancer Staging Manual (6th Edition). Page DL (Ed.). Springer, NY, USA 89–98 (2002).
  • Kloos RT, Eng C, Evans DB et al. American Thyroid Association Guidelines Task Force, Medullary thyroid cancer: management guidelines of the American Thyroid Association. Thyroid19, 565–612 (2009).
  • Parthemore JG, Bronzert, D, Roberts, G, Deftos, LJ. A short calcium infusion in the diagnosis of medullary thyroid carcinoma. J. Clin. Endocrinol. Metab.39, 108–111 (1974).
  • Wang TS, Ocal IT, Sosa JA, Cox H, Roman S. Medullary thyroid carcinoma without marked elevation of calcitonin: a diagnostic and surveillance dilemma. Thyroid18, 889–894 (2008).
  • Dora JM, Canalli MH, Capp C, Punales MK, Vieira JG, Maia AL. Normal perioperative serum calcitonin levels in patients with advanced medullary thyroid carcinoma: case report and review of the literature. Thyroid18, 895–899 (2008).
  • Albores-Saavedra J, Monforte H, Nadji M, Morales AR. C-cell hyperplasia in thyroid tissue adjacent to follicular cell tumors. Hum. Pathol.19, 795–799 (1988).
  • Libbey NP, Nowakowski KJ, Tucci JR. C-cell hyperplasia of the thyroid in a patient with goitrous hypothyroidism and Hashimoto’s thyroiditis. Am. J. Surg. Pathol.13, 71–77 (1989).
  • Machens A, Hauptmann S, Dralle H. Medullary thyroid cancer responsiveness to pentagastrin stimulation: an early surrogate parameter of tumor dissemination? J. Clin. Endocrinol. Metab.93, 2234–2238 (2008).
  • Bütter A, Gagné J, Al-Jazaeri A, Emran MA, Deal C, St-Vil D. Prophylactic thyroidectomy in pediatric carriers of multiple endocrine neoplasia type 2A or familial medullary thyroid carcinoma: mutation in C620 is associated with Hirschsprung’s disease. J. Pediatr. Surg.42, 203–206 (2007).
  • Kebebew E, Greenspan FS, Clark OH, Woeber KA, Grunwell J. Extent of disease and practice patterns for medullary thyroid cancer. J. Am. Coll. Surg.200, 890–896 (2005).
  • Roman S, Lin R, Sosa JA. Prognosis of medullary thyroid carcinoma: demographic, clinical, and pathologic predictors of survival in 1252 cases. Cancer107, 2134–2142 (2006).
  • Cupisti K, Wolf A, Raffel A et al. Long-term clinical and biochemical follow-up in medullary thyroid carcinoma: a single institution’s experience over 20 years. Ann. Surg.246, 815–821 (2007).
  • Eng C, Mulligan LM, Smith DP et al. Low frequency of germline mutations in the RET proto-oncogene in patients with apparently sporadic medullary thyroid carcinoma. Clin. Endocrinol.43, 123–127 (1995).
  • Zedenius J, Wallin G, Hamberger B et al. Somatic and MEN 2A de novo mutations identified in the RET proto-oncogene by screening of sporadic MTCs. Hum. Mol. Genet.3, 1259–1262 (1994).
  • Wohllk N, Cote GJ, Bugalho MM et al. Relevance of RET proto-oncogene mutations in sporadic medullary thyroid carcinoma. J. Clin. Endocrinol. Metab.81, 3740–3745 (1996).
  • Decker RA, Peacock ML, Borst MJ, Sweet JD, Thompson NW. Progress in genetic screening of multiple endocrine neoplasia type 2A: is calcitonin testing obsolete? Surgery118, 257–263 (1995).
  • Gagel RF, Robinson MF, Donovan DT, Alford BR. Clinical review 44: medullary thyroid carcinoma: recent progress. J. Clin. Endocrinol. Metab.76, 809–814 (1993).
  • Wells SA Jr, Dilley WG, Farndon JA, Leight GS, Baylin SB. Early diagnosis and treatment of medullary thyroid carcinoma. Arch. Intern. Med.145, 1248–1252 (1985).
  • O’Riordain DS, O’Brien T, Crotty TB, Gharib H, Grant CS, van Heerden JA. Multiple endocrine neoplasia type 2B: more than an endocrine disorder. Surgery118, 936–942 (1995).
  • Moley JF, Fialkowski EA. Evidence-based approach to the management of sporadic medullary thyroid carcinoma. World J. Surg.31, 946–956, (2007).
  • Marini F, Falchetti A, Del Monte F et al. Multiple endocrine neoplasia type 2. Orphanet J. Rare Dis.1, 45 (2006).
  • Machens A, Dralle H. Genotype–phenotype based surgical concept of hereditary medullary thyroid carcinoma. World J. Surg.31, 957–968 (2007).
  • Gimm O, Marsh DJ, Andrew SD et al. Germline dinucleotide mutation in codon 883 of the RET proto-oncogene in MN 2B without codon 918 mutation. J. Clin. Endocrinol. Metab.82, 3902–3904 (1997).
  • Smith DP, Houghton C, Ponder BA. Germline mut of RET proto-oncogene 883 in two cases of de novo MEN 2B. Oncogene15, 1213–1217 (1997).
  • Van Heurn LW, Schaap C, Sie G et al. Predictive DNA testing for multiple endocrine neoplasia 2: a therapeutic challenge of prophylactic thyroidectomy in very young children. J. Pediatr. Surg.34, 568–571 (1999).
  • Lips CJ, Hoppener JW, Van Nesselrooij BP, van der Luijt RB. Counselling in multiple endocrine neoplasia syndromes: from individual experience to general guidelines. J. Intern. Med.257, 69–77 (2005).
  • Yip L, Cote, GJ Shapiro SE et al. Multiple endocrine neoplasia type 2: evaluation of the genotype–phenotype relationship. Arch. Surg.138, 409–416 (2003).
  • Duh QY, Sancho JJ, Greenspan FS et al. Medullary thyroid carcinoma: the need for early diagnosis and total thyroidectomy. Arch. Surg.124, 1206–1210 (1989).
  • Machens A, Ukkat J, Brauckhoff M, Gimm O, Dralle H. Advances in the management of hereditary medullary thyroid cancer. J. Intern. Med.257, 50–59 (2005).
  • Machens A, Niccoli-Sire P, Hoegel J et al. Early malignant progression of hereditary medullary thyroid cancer. N. Engl J. Med.349, 1517–1525 (2003).
  • Cote GJ, Gagel RF. Lessons learned from the management of a rare genetic cancer. N. Engl J. Med.349, 1566–1568 (2003).
  • Kasprzak L, Nolet S, Gaboury L et al. Familial medullary thyroid carcinoma and prominent corneal nerves associated with the germline V804M and V778I mutations on the same allele of RET. J. Med. Genet.38, 784–787 (2001).
  • Lesueur F, Cebrian A, Cranston A et al. Germline homozygous mutations at codon 804 in the RET protooncogene in medullary thyroid carcinoma/multiple endocrine neoplasia type 2A patients. J. Clin. Endocrinol. Metab.90, 3454–3457 (2005).
  • Learoyd DL, Gosnell J, Elston MS et al. Experience of prophylactic thyroidectomy in multiple endocrine neoplasia type 2A kindreds with RET codon 804 mutations. Clin. Endocrinol. (Oxf.)63, 636–641 (2005).
  • Lombardo F, Baudin E, Chiefari E et al. Familial medullary thyroid carcinoma: clinical variability and low aggressiveness associated with RET mutation at codon 804. J. Clin. Endocrinol. Metab.87, 1674–1680 (2002).
  • Recasens M, Oriola J, Fernández-Real JM et al. Asymptomatic bilateral adrenal pheochromocytoma in a patient with a germline V804M mutation in the RET proto-oncogene. Clin. Endocrinol. (Oxf.)67, 29–33 (2007); discussion: Clin. Endocrinol. (Oxf.)68, 836 (2008).
  • Lips CJ, Höppener JW, Thijssen JH. Medullary thyroid carcinoma: role of genetic testing and calcitonin measurement. Ann. Clin. Biochem.38, 168–179 (2001).
  • Cohen R, Campos JM, Salaün C et al. Preoperative calcitonin levels are predictive of tumor size and postoperative calcitonin normalization in medullary thyroid carcinoma. Groupe d’Etudes des Tumeurs a Calcitonine (GETC). J. Clin. Endocrinol. Metab.85, 919–922 (2000).
  • Modigliani E, Cohen R, Campos JM et al. Prognostic factors for survival and for biochemical cure in medullary thyroid carcinoma: results in 899 patients. The GETC Study Group. Groupe d’étude des tumeurs à calcitonine. Clin. Endocrinol. (Oxf.)48, 265–273 (1998).
  • Fugazzola L, Pinchera A, Luchetti F et al. Disappearance rate of serum calcitonin after total thyroidectomy for medullary thyroid carcinoma. Int. J. Biol. Markers9, 21–24 (1994).
  • Franc S, Niccoli-Sire P, Cohen R et al. Complete surgical lymph node resection does not prevent authentic recurrences of medullary thyroid carcinoma. Clin. Endocrinol. (Oxf.)55, 403–409 (2001).
  • Kebebew E, Ituarte PH, Siperstein AE, Duh QY, Clark OH. Medullary thyroid carcinoma: clinical characteristics, treatment, prognostic factors, and a comparison of staging systems. Cancer88, 1139–1148 (2000).
  • Pelizzo MR, Boschin IM, Bernante P et al. Natural history, diagnosis, treatment and outcome of medullary thyroid cancer: 37 years experience on 157 patients. Eur. J. Surg. Oncol.33, 493–497 (2007).
  • de Groot JW, Plukker JT, Wolffenbuttel BH, Wiggers T, Sluiter WJ, Links TP. Determinants of life expectancy in medullary thyroid cancer: age does not matter. Clin. Endocrinol. (Oxf.)65, 729–736 (2006).
  • Pellegriti G, Leboulleux S, Baudin E et al. Long-term outcome of medullary thyroid carcinoma in patients with normal postoperative medical imaging. Br. J. Cancer88, 1537–1542 (2003).
  • Scollo C, Baudin E, Travagli JP et al. Rationale for central and bilateral lymph node dissection in sporadic and hereditary medullary thyroid cancer. J. Clin. Endocrinol. Metab.88, 2070–2075 (2003).
  • Van Veelen W. Molecular genetics of medullary thyroid carcinoma: multistep tumorigenesis. (Chapter 3) Thesis, ISBN: 978–990–8559–8369–360 (2008).
  • Fialkowski E, DeBenedetti M, Moley J. Long-term outcome of reoperations for medullary thyroid carcinoma. World J. Surg.32, 754–765 (2008).
  • Miyauchi A, Onishi T, Morimoto S et al. Relation of doubling time of plasma calcitonin levels to prognosis and recurrence of medullary thyroid carcinoma. Ann. Surg.199, 461–466 (1984).
  • Barbet J, Campion L, Kraeber-Bodere F, Chatal JF. GTE Study Group. Prognostic impact of serum calcitonin and carcinoembryonic antigen doubling-times in patients with medullary thyroid carcinoma. J. Clin. Endocrinol. Metab.90, 6077–6084 (2005).
  • Machens A, Ukkat J, Hauptmann S, Dralle H. Abnormal carcinoembryonic antigen levels and medullary thyroid cancer progression: a multivariate analysis. Arch. Surg.142, 289–293, discussion 94 (2007).
  • Laure Giraudet A, Al Ghulzan A, Auperin A et al. Progression of medullary thyroid carcinoma: assessment with calcitonin and carcinoembryonic antigen doubling times. Eur. J. Endocrinol.158, 239–246 (2008).
  • van Veelen W, de Groot JW, Acton DS et al. Medullary thyroid carcinoma and biomarkers: past, present and future. J. Intern. Med.266, 126–140. (2009).
  • Schott M, Willenberg HS, Sagert C et al. Identification of occult metastases of medullary thyroid carcinoma by pentagastrin-stimulated intravenous calcitonin sampling followed by targeted surgery. Clin. Endocrinol. (Oxf.)66, 405–409 (2007).
  • Giraudet AL, Vanel D, Leboulleux S et al. Imaging medullary thyroid carcinoma with persistent elevated calcitonin levels. J. Clin. Endocrinol. Metab.92, 4185–4190 (2007).
  • Iagaru A, Masamed R, Singer PA, Conti PS. Detection of occult medullary thyroid cancer recurrence with 2-deoxy-2-[F-18]fluoro-D-glucose-PET and PET/CT. Mol. Imaging Biol.9, 72–77 (2007).
  • Oudoux A, Salaun PY, Bournaud C et al. Sensitivity and prognostic value of positron emission tomography with F-18-fluorodeoxyglucose and sensitivity of immunoscintigraphy in patients with medullary thyroid carcinoma treated with anticarcinoembryonic antigen-targeted radioimmunotherapy. J. Clin. Endocrinol. Metab.92, 4590–4597 (2007).
  • Beuthien-Baumann B, Strumpf A, Zessin J, Bredow J, Kotzerke J. Diagnostic impact of PET with 18F-FDG, 18-F-DOPA and 3-O-methyl-6-[18F]fluoro-DOPA in recurrent or metastatic medullary thyroid carcinoma. Eur. J. Nucl. Med. Mol. Imaging34, 1604–1609 (2007).
  • Koopmans KP, de Groot JW, Plukker JT et al. 18F-dihydroxyphenylalanine PET in patients with biochemical evidence of medullary thyroid cancer: relation to tumor differentiation. J. Nucl. Med.49, 524–531 (2008).
  • Ong SC, Schoder H, Patel SG et al. Diagnostic accuracy of 18F-FDG PET in restaging patients with medullary thyroid carcinoma and elevated calcitonin levels. J. Nucl. Med.48, 501–507 (2007).
  • Gao Z, Biersack HJ, Ezziddin S, Logvinski T, An R. The role of combined imaging in metastatic medullary thyroid carcinoma: 111In-DTPA-octreotide and 131I/123I-MIBG as predictors for radionuclide therapy. J. Cancer Res. Clin. Oncol.130, 649–656 (2004).
  • Czepczynski R, Parisella MG, Kosowicz J et al. Somatostatin receptor scintigraphy using 99mTc-EDDA/HYNIC-TOC in patients with medullary thyroid carcinoma. Eur. J. Nucl. Med. Mol. Imaging34, 1635–1645 (2007).
  • Behr TM, Behe MP. Cholecystokinin-B/Gastrin receptor-targeting peptides for staging and therapy of medullary thyroid cancer and other cholecystokinin-B receptor-expressing malignancies. Semin. Nucl. Med.32, 97–109 (2002).
  • Gotthardt M, Béhé MP, Beuter D et al. Improved tumour detection by gastrin receptor scintigraphy in patients with metastasised medullary thyroid carcinoma. Eur. J. Nucl. Med. Mol. Imaging33, 1273–1279 (2006).
  • Enokido Y, de Sauvage F, Hongo JA et al. GFR α-4 and the tyrosine kinase RET form a functional receptor complex for persephin. Curr. Biol.8, 1019–1022 (1998).
  • Lindahl M, Poteryaev D, Yu L et al. Human glial cell line-derived neurotrophic factor receptor α 4 is the receptor for persephin and is predominantly expressed in normal and malignant thyroid medullary cells. J. Biol. Chem.276, 9344–9351 (2001).
  • de Labriolle-Vaylet C, Cattan P, Sarfati E et al. Successful surgical removal of occult metastases of medullary thyroid carcinoma recurrences with the help of immunoscintigraphy and radioimmunoguided surgery. Clin. Cancer Res.6, 363–371 (2000).
  • Koperek O, Scheuba C, Cherenko M et al. Desmoplasia in medullary thyroid carcinoma: a reliable indicator of metastatic potential. Histopathology52, 623–630 (2008).
  • Cavalheiro BG, Junqueira CR, Brandao LG. Expression of matrix metalloproteinase 2 (MMP-2) and tissue inhibitor of metalloproteinase 2 (TIMP-2) in medullary thyroid carcinoma: prognostic implications. Thyroid18, 865–871 (2008).
  • Franklin DS, Godfrey VL, O’Brien DA, Deng C, Xiong Y. Functional collaboration between different cyclin-dependent kinase inhibitors suppresses tumor growth with distinct tissue specificity. Mol. Cell Biol.20, 6147–6158 (2000).
  • Joshi PP, Kulkarni MV, Yu BK et al. Simultaneous downregulation of CDK inhibitors p18(Ink4c) and p27(Kip1) is required for MEN 2A-RET-mediated mitogenesis. Oncogene26, 554–570 (2007).
  • van Veelen W, van Gasteren CJ, Acton DS et al. Synergistic effect of oncogenic RET and loss of p18 on medullary thyroid carcinoma development. Cancer Res.68, 1329–1337 (2008).
  • van Veelen W, Klompmaker R, Gloerich M et al. P18 is a tumor suppressor gene involved in human medullary thyroid carcinoma and pheochromocytoma development. Int. J. Cancer124, 339–345 (2009).
  • Fialkowski EA, Moley JF. Current approaches to medullary thyroid carcinoma, sporadic and familial. J. Surg. Oncol.94, 737–747 (2006).
  • de Groot JW, Links TP, Plukker JT, Lips CJ, Hofstra RM. RET as a diagnostic and therapeutic target in sporadic and hereditary endocrine tumors. Endocr. Rev.27, 535–560 (2006).
  • Ball DW. Medullary thyroid cancer: therapeutic targets and molecular markers. Curr. Opin. Oncol.19, 18–23 (2007).
  • Schlumberger M, Carlomagno F, Baudin E, Bidart JM, Santoro M. New therapeutic approaches to treat medullary thyroid carcinoma. Nat. Clin. Pract. Endocrinol. Metab.4, 22–32 (2008).
  • Fassnacht M, Kreissl MC, Weismann D, Allolio B. New targets and therapeutic approaches for endocrine malignancies. Pharmacol. Ther.123, 117–141 (2009).
  • Wells S, You YN, Lakhani V et al. A Phase II trial of ZD6474 in patients with hereditary metastatic medullary thyroid cancer. J. Clin. Oncol. (Meeting Abstracts) 24, 5553 (2006).
  • Carlomagno F, Anaganti S, Guida T et al. BAY 43–9006 inhibition of oncogenic RET mutants. J. Natl Cancer Inst.98, 326–334 (2006).
  • Plaza-Menacho I, Mologni L, Sala E et al. Sorafenib functions to potently suppress RET tyrosine kinase activity by direct enzymatic inhibition and promoting RET lysosomal degradation independent of proteasomal targeting. J. Biol. Chem.282, 29230–29240 (2007).
  • Gupta-Abramson V, Troxel AB, Nellore A et al. Phase II trial of sorafenib in advanced thyroid cancer. J. Clin. Oncol.26, 4714–4719 (2008).
  • Carlomagno F, Guida T, Anaganti S et al. Disease associated mutations at valine 804 in the RET receptor tyrosine kinase confer resistance to selective kinase inhibitors. Oncogene23, 6056–6063 (2004).
  • Zatelli MC, Piccin D, Tagliati F, Bottoni A, Luchin A, degli Uberti EC. SRC homology-2-containing protein tyrosine phosphatase-1 restrains cell proliferation in human medullary thyroid carcinoma. Endocrinology146, 2692–2698 (2005).
  • Carnero A, Blanco-Aparicio C, Renner O, Link W, Leal JF. The PTEN/PI3K/AKT signalling pathway in cancer, therapeutic implications. Curr. Cancer Drug Targets.8, 187–198 (2008).
  • Dancey J, Sausville EA. Issues and progress with protein kinase inhibitors for cancer treatment. Review. Nat. Rev. Drug Discov.2, 296–313 (2003).
  • Teresi RE, Shaiu CW, Chen CS, Chatterjee VK, Waite KA, Eng C. Increased PTEN expression due to transcriptional activation of PPARγ by lovastatin and rosiglitazone. Int. J. Cancer118, 2390–2398 (2006).
  • Gujral TS, van Veelen W, Richardson DS et al. A novel RET kinase-β-catenin signaling pathway contributes to tumorigenesis in thyroid carcinoma. Cancer Res.68, 1338–1346 (2008).
  • Tomoda C, Moatamed F, Naeim F, Hershman JM, Sugawara M. Indomethacin inhibits cell growth of medullary thyroid carcinoma by reducing cell cycle progression into S phase. Exp. Biol. Med. (Maywood)233, 1433–1440 (2008).
  • Drosten M, Stiewe T, Putzer BM. Antitumor capacity of a dominant-negative RET proto-oncogene mutant in a medullary thyroid carcinoma model. Hum. Gene Ther.14, 971–982 (2003).
  • Borkhardt A. Blocking oncogenes in malignant cells by RNA interference – new hope for a highly specific cancer treatment? Cancer Cell2, 167–168 (2002).
  • Fuchs U, Borkhardt A. The application of siRNA technology to cancer biology discovery. Review. Adv. Cancer Res.96, 75–102 (2007).
  • Chatal JF, Campion L, Kraeber-Bodere F et al. Survival improvement in patients with medullary thyroid carcinoma who undergo pretargeted anti-carcinoembryonic-antigen radioimmunotherapy: a collaborative study with the French Endocrine Tumor Group. J. Clin. Oncol.24, 1705–1711 (2006).
  • Vainas I, Koussis C, Pazaitou-Panayiotou K et al. Somatostatin receptor expression in vivo and response to somatostatin analog therapy with or without other antineoplastic treatments in advanced medullary thyroid carcinoma. J. Exp. Clin. Cancer Res.23, 549–559 (2004).
  • Bodei L, Handkiewicz-Junak D, Grana C et al. Receptor radionuclide therapy with 90Y-DOTATOC in patients with medullary thyroid carcinomas. Cancer Biother. Radiopharm.19, 65–71 (2004).
  • Neumann HP, Bausch B, McWhinney SR et al. Germ-line mutations in nonsyndromic pheochromocytoma. N. Engl J. Med.346, 1459–1466 (2002).
  • Maher ER, Yates JR, Harries R et al. Clinical features and natural history of von Hippel-Lindau disease. Q. J. Med.77, 1151–1163 (1990).
  • Walther MM, Herring J, Enquist E, Keiser HR, Linehan WM. von Recklinghausen’s disease and pheochromocytomas. J. Urol.162, 1582–1586 (1999).
  • Pacak K, Eisenhofer G, Ahlman H et al. International Symposium on Pheochromocytoma. Pheochromocytoma: recommendations for clinical practice from the First International Symposium. October 2005. Nat. Clin. Pract. Endocrinol. Metab.3, 92–102 (2007).
  • Evans DB, Lee JE, Merrel RC, Hickey RC. Adrenal medullary disease in multiple endocrine neoplasia type 2: appropriate management. Endocrinol. Metab. Clin. North. Am.23, 167–176 (1994).
  • Utiger RD. Medullary thyroid carcinoma, genes, and the prevention of cancer. N. Engl J. Med.331, 870–871 (1994).
  • Quayle FJ, Fialkowski EA, Benveniste R, Moley JF. Pheochromocytoma penetrance varies by RET mutation in MEN 2A. Surgery142, 800–805 (2007); discussion 805. Erratum in: Surgery143, 301 (2008). Comment in: Surgery143, 696; author reply 143, 697 (2008).
  • Peppa M, Boutati E, Kamakari S et al. Multiple endocrine neoplasia type 2A in two families with the familial medullary thyroid carcinoma associated G533C mutation of the RET proto-oncogene. Eur. J. Endocrinol.159, 767–771 (2008).
  • Bethanis S, Koutsodontis G, Palouka T et al. A newly detected mutation of the RET protooncogene in exon 8 as a cause of multiple endocrine neoplasia type 2A. Hormones (Athens)6, 152–156 (2007).
  • Mian C, Barollo S, Zambonin L et al. Characterization of the largest kindred with MEN 2A due to a Cys609Ser RET mutation. Fam. Cancer DOI: 10.1007/s10689-009-9250-z (2009) (Epub ahead of print).
  • Pinna G, Ghiani M, Mariotti S. Asymptomatic bilateral adrenal pheochromocytoma in a patient with a germline V804M mutation in the RET proto-oncogene. Clin. Endocrinol. (Oxf)68, 836 (2008).
  • Neumann HP, Berger DP, Sigmund G et al. Pheochromocytomas, multiple endocrine neoplasia type 2, and von Hippel-Lindau disease. N. Engl J. Med.329, 1531–1538 (1993). Erratum in: N. Engl J. Med.331, 1535 (1994). Comment: N. Engl J. Med.330, 1090–1091 (1994).
  • Webb TA, Sheps SG, Carney JA. Differences between sporadic pheochromocytoma and pheochromocytoma in multiple endocrine neoplasia type 2. Am. J. Surg. Pathol.4, 121–126 (1980).
  • Pomares FJ, Cañas R, Rodriguez JM, Hernandez AM, Parilla P, Tebar FJ. Differences between sporadic and multiple endocrine neoplasia type 2A phaeochromocytoma. Clin. Endocrinol.48, 195–200 (1998).
  • Lips KJ, Van der Sluys Veer J, Struyvenberg A et al. Bilateral occurrence of pheochromocytoma in patients with the multiple endocrine neoplasia syndrome type 2A (Sipple’s syndrome). Am. J. Med.70, 1051–1060 (1981).
  • Arnold A. RET mutation screening in sporadic pheochromocytoma. J. Clin. Endocrinol. Metab.81, 430 (1996).
  • Brauch H, Hoeppner W, Jahnig H et al. Sporadic pheochromocytomas are rarely associated with germline mutations in the vHL tumor suppressor gene or the RET protooncogene. J. Clin. Endocrinol. Metab.82, 4101–4104 (1997).
  • Bar M, Friedman E, Jakobovitz O et al. Sporadic phaeochromocytomas are rarely associated with germline mutations in the von Hippel-Lindau and RET genes. Clin. Endocrinol. (Oxf)47, 707–712 (1997).
  • Jiménez C, Cote G, Arnold A, Gagel RF. Review: should patients with apparently sporadic pheochromocytomas or paragangliomas be screened for hereditary syndromes? J. Clin. Endocrinol. Metab.91, 2851–2858 (2006).
  • Cascón A, López-Jiménez E, Landa I et al. Rationalization of genetic testing in patients with apparently sporadic pheochromocytoma/paraganglioma. Horm. Metab. Res. (2009).
  • Mannelli M, Castellano M, Schiavi F et al. Italian Pheochromocytoma/Paraganglioma Network. Clinically guided genetic screening in a large cohort of italian patients with pheochromocytomas and/or functional or nonfunctional paragangliomas. J. Clin. Endocrinol. Metab.94, 1541–1547 (2009).
  • Pigny P, Cardot-Bauters C, Do Cao C et al. Should genetic testing be performed in each patient with sporadic pheochromocytoma at presentation? Eur. J. Endocrinol.160, 227–231 (2009).
  • Eisenhofer G, Walther MM, Huynh TT et al. Pheochromocytomas in von Hippel-Lindau syndrome and multiple endocrine neoplasia type 2 display distinct biochemical and clinical phenotypes. J. Clin. Endocrinol. Metab.86, 1999–2008 (2001).
  • Eisenhofer G, Goldstein DS, Walther MM et al. Biochemical diagnosis of pheochromocytoma: how to distinguish true- from false-positive test results. J. Clin. Endocrinol. Metab.88, 2656–2666 (2003).
  • Unger N, Pitt C, Schmidt IL et al. Diagnostic value of various biochemical parameters for the diagnosis of pheochromocytoma in patients with adrenal mass. Eur. J. Endocrinol.154, 409–417 (2006).
  • Brouwers FM, Gläsker S, Nave AF et al. Proteomic profiling of von Hippel-Lindau syndrome and multiple endocrine neoplasia type 2 pheochromocytomas reveals different expression of chromogranin B. Endocr. Relat. Cancer14, 463–467 (2007).
  • Sawka AM, Jaeschke R, Singh RJ, Young WF. A comparison of biochemical tests for pheochromocytoma: measurement of fractionated plasma metanephrines compared with the combination of 24-hour urinary metanephrines and catecholamines. J. Clin. Endocrinol. Metab.88, 553–558 (2003).
  • Eisenhofer G, Lenders JW, Pacak K. Biochemical diagnosis of pheochromocytoma. Front Horm. Res.31, 76–106 (2004).
  • Grossman A, Pacak K, Sawka A et al. Biochemical diagnosis and localization of pheochromocytoma: can we reach a consensus? Ann. NY Acad. Sci.1073, 332–347 (2006).
  • Pacak K, Lenders JWM, Eisenhofer G. Catecholamines and adrenergic receptors. In: Pheochromocytoma: Diagnosis, Localization and Treatment. Blackwell, Malden, MA, USA (2007).
  • Van Der Horst-Schrivers AN, Jager PL, Boezen HM, Schouten JP, Kema IP, Links TP. Iodine-123 metaiodobenzylguanidine scintigraphy in localising phaeochromocytomas – experience and meta-analysis. Anticancer Res.26, 1599–1604 (2006).
  • Machens A, Brauckhoff M, Gimm O, Dralle H. Risk-oriented approach to hereditary adrenal pheochromocytoma. Ann. NY Acad. Sci.1073, 417–428 (2006).
  • Pausova Z, Soliman E, Amizuka N et al. Role of the RET proto-oncogene in sporadic hyperparathyroidism and in hyperparathyroidism of multiple endocrine neoplasia type 2. J. Clin. Endocrinol. Metab.81, 2711–2718 (1996).
  • Vierhapper H, Rondot S, Schulze E et al. Primary hyperparathyroidism as the leading symptom in a patient with a Y791F RET mutation. Thyroid15, 1303–1308 (2005).
  • Heath H 3rd, Sizemore GW, Carney JA. Preoperative diagnosis of occult parathyroid hyperplasia by calcium infusion in patients with multiple endocrine neoplasia, type 2a. J. Clin. Endocrinol. Metab.43, 428–435 (1976).
  • Bilezikian JP, Khan AA, Potts JT Jr. Guidelines for the management of asymptomatic primary hyperparathyroidism: summary statement from the third international workshop; Third International Workshop on the Management of Asymptomatic Primary Hyperthyroidism. J. Clin. Endocrinol. Metab.94, 335–339 (2009).
  • Herfarth KKF, Bartsch D, Doherty GM et al. Surgical management of hyperparathyroidism in patients with multiple endocrine neoplasia type 2A. Surgery120, 966–973 (1996).
  • Höppener JWM, Lips CJM. RET receptor tyrosine kinase gene mutations: molecular biological, physiological and clinical aspects. Eur. J. Clin. Invest.26, 613–624 (1996).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.