87
Views
12
CrossRef citations to date
0
Altmetric
Review

Bone signaling pathways and treatment of osteoporosis

, , &
Pages 639-650 | Published online: 10 Jan 2014

References

  • Kanis JA; on behalf of the World Health Organization Scientific Group. Assessment of osteoporosis at the primary health-care level: technical report. World Health Organization Collaborating Centre for Metabolic Bone Diseases. University of Sheffield, Sheffield, UK (2007).
  • Sambrook P, Cooper C. Osteoporosis. Lancet367(9527), 2010–2018 (2006).
  • Lewiecki ME. Emerging drugs for postmenopausal osteoporosis. Expert Opin. Emerg. Drugs14(1), 129–144 (2009).
  • Seeman E, Delmas PD. Bone Quality – the material and structural basis of bone strength and fragility. N. Engl. J. Med.354, 2250–2261 (2006).
  • Cotté FE, Fardellone P, Mercier F, Gaudin AF, Roux C. Adherence to monthly and weekly oral bisphosphonates in women with osteoporosis. Osteoporos Int. DOI: 10.1007/s00198-009-0930-1 (2009) (Epub ahead of print.
  • Bonewald LF, Johnson ML. Osteocytes, mechanosensing and Wnt signaling. Bone42, 606–615 (2008).
  • Bilezikian JP, Matsumoto T, Bellido T et al. Targeting bone remodeling for the treatment of osteoporosis: summary of the proceedings of an ASBMR workshop. J. Bone Miner. Res.24(3), 373–385 (2009).
  • Han Y, Cowin SC, Schaffler MB, Weinbaum S. Mechanotransduction and strain amplification in osteocyte cell processes. Proc. Natl Acad. Sci. USA101, 16689–16694 (2004).
  • Vaananen HK, Zhao H, Mulari M, Halleen JM. The cell biology of osteoclast function. J. Cell. Sci.113, 377–381 (2000).
  • Tolar J, Teitelbaum SL, Orchard PJ. Osteopetrosis. N. Engl. J. Med.351, 2839–2849 (2004).
  • Martin TJ, Sims NA, Ng KW. Regulatory pathways revealing new approaches to the development of anabolic drugs for osteoporosis. Osteoporos. Int.19, 1125–1138 (2008).
  • Koshla S, Westendorf JJ, Ousler MJ. Building bone to reverse osteoporosis and repair fractures. J. Clin. Invest.118, 421–428 (2008).
  • Canalis E, Giustina A, Bilezikian JP. Mechanisms of anabolic therapies for osteoporosis. N. Engl. J. Med.357, 905–916 (2007).
  • Kearns AE et al. Receptor activator of nuclear factor kB ligand and osteoprotegerin regulation of bone remodeling in health and disease. Endocr. Rev.29, 155–192 (2008).
  • Yasuda H, Shima N, Nakagawa N et al. Osteoclast differentiation factor is a ligandfor osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc. Natl Acad. Sci. USA95, 3597–3602 (1998).
  • Burgess TL, Qian Y, Kaufman S et al. The ligand for osteoprotegerin (OPGL) directly activates mature osteoclasts. J. Cell. Biol.145, 527–538 (1999).
  • Lee ZH, Kim HH. Signal transduction by receptor activator of nuclear factor kB in osteoclasts. Biochem. Biophys. Res. Commun.305, 211–214 (2003).
  • Lacey DL, Timms E, Tan HL et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell93, 165–176 (1998).
  • Teitelbaum SL, Ross FP. Genetic regulation of osteoclast development and function. Nat. Rev. Genet.4, 638–649 (2003).
  • Baron R, Rawadi G. Minireview: targeting the Wnt/β-catenin pathway to regulate bone formation in the adult skeleton. Endocrinology148(6), 2635–2643 (2007).
  • Sobacchi C, Frattini A, Guerrini MM et al. Osteoclast-poor human osteopetrosis due to mutations in the gene encoding RANKL. Nat. Genet.39(8), 960–962 (2007).
  • Styrkarsdottir U, Halldorsson BV, Gretarsdottir S et al. Multiple genetic loci for bone mineral density and fractures. N. Engl. J. Med.358(22), 2355–2365 (2008).
  • Whyte MP, Obrecht SE, Finnegan PM et al. Osteoprotegerin deficiency and juvenile Paget’s disease. N. Engl. J. Med.347(3), 175–184 (2002).
  • Cundy T, Hegde M, Naot D et al. A mutation in the gene TNFRSF11B encoding osteoprotegerin causes an idiopathic hyperphosphatasia phenotype. Hum. Mol. Genet.11(18), 2119–2127 (2002).
  • Arko B, Prezelj J, Komel R, Kocijancic A, Hudler P, Marc J. Sequence variations in the osteoprotegerin gene promoter in patients with postmenopausal osteoporosis. J. Clin. Endocrinol. Metab.87(9), 4080–4084 (2002).
  • Venta PJ, Welty RJ, Johnson TM, Sly WS, Tashian RE. Carbonic anhydrase II deficiency syndrome in a Belgian family is caused by a point mutation at an invariant histidine residue (107 His–Tyr): complete structure of the normal human CA II gene. Am. J. Hum. Genet.49(5), 1082–1090 (1991).
  • Kornak U, Kasper D, Bösl MR et al. Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man. Cell104(2), 205–215 (2001).
  • Cleiren E, Bénichou O, Van Hul E et al. Albers-Schönberg disease (autosomal dominant osteopetrosis, type II) results from mutations in the ClCN7 chloride channel gene. Hum. Mol. Genet.10(25), 2861–2867 (2001).
  • Chalhoub N, Benachenhou N, Rajapurohitam V et al. Grey-lethal mutation induces severe malignant autosomal recessive osteopetrosis in mouse and human. Nat. Med.9(4), 399–406 (2003).
  • Frattini A, Orchard PJ, Sobacchi C et al. Defects in TCIRG1 subunit of the vacuolar proton pump are responsible for a subset of human autosomal recessive osteopetrosis. Nat. Genet.25(3), 343–346 (2000).
  • Kornak U, Schulz A, Friedrich W et al. Mutations in the a3 subunit of the vacuolar H(+)-ATPase cause infantile malignant osteopetrosis. Hum. Mol. Genet.9(13), 2059–2063 (2000).
  • Van Wesenbeeck L, Odgren PR, Coxon FP et al. Involvement of PLEKHM1 in osteoclastic vesicular transport and osteopetrosis in incisors absent rats and humans. J. Clin. Invest.117(4), 919–930 (2007).
  • Del Fattore A, Fornari R, Van Wesenbeeck L et al. A new heterozygous mutation (R714C) of the osteopetrosis gene, pleckstrin homolog domain containing family M (with run domain) member 1 (PLEKHM1), impairs vesicular acidification and increases TRACP secretion in osteoclasts. J. Bone Miner. Res.23(3), 380–391 (2008).
  • Gong Y, Slee RB, Fukai N et al. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell107(4), 513–523 (2001).
  • Boyden LM, Mao J, Belsky J et al. High bone density due to a mutation in LDL-receptor-related protein 5. N. Engl. J. Med.346, 1513–1521 (2002).
  • Little RD, Carulli JP, Del Mastro RG et al. A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am. J. Hum. Genet.70, 11–19 (2002).
  • Zhang Y, Wang Y, Li X et al. The LRP5 high-bone-mass G171V mutation disrupts LRP5 interaction with Mesd. Mol. Cell. Biol.24(11), 4677–4684 (2004).
  • Ellies DL, Viviano B, McCarthy J et al. Bone density ligand, sclerostin, directly interacts with LRP5 but not LRP5G171V to modulate Wnt activity. J. Bone Miner. Res.21(11), 1738–1749 (2006).
  • Ferrari SL, Deutsch S, Choudhury U et al. Polymorphisms in the low-density lipoprotein receptor-related protein 5 (LRP5) gene are associated with variation in vertebral bone mass, vertebral bone size, and stature in whites. Am. J. Hum. Genet.74(5), 866–875 (2004).
  • Richards JB, Rivadeneira F, Inouye M et al. Bone mineral density, osteoporosis, and osteoporotic fractures: a genome-wide association study. Lancet371(9623), 1505–1512 (2008).
  • Brunkow ME, Gardner JC, Van Ness J et al. Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot-containing protein. Am. J. Hum. Genet.68(3), 577–589 (2001).
  • Balemans W, Patel N, Ebeling M et al. Identification of a 52 kb deletion downstream of the SOST gene in patients with van Buchem disease. J. Med. Genet.39(2), 91–97 (2002).
  • Uitterlinden AG, Arp PP, Paeper BW et al. Polymorphisms in the sclerosteosis/van Buchem disease gene (SOST) region are associated with bone-mineral density in elderly whites. Am. J. Hum. Genet.75(6), 1032–1045 (2004).
  • McClung MR. Bisphosphonates. Endocrinol. Metab. Clin. North Am.32, 253–271 (2003).
  • Russell RG, Xia Z, Dunford JE et al. Bisphosphonates: an update on mechanisms of action and how these relate to clinical efficacy. Ann. NY Acad. Sci.1117, 209–257 (2007).
  • Black DM, Schwartz AV, Ensrud KE et al. Effects of continuing or stopping alendronate after 5 years of treatment: the Fracture Intervention Trial Long-term Extension (FLEX): a randomized trial. JAMA296(24), 2927–2938 (2006).
  • Goh SK, Yang KY, Koh JS et al. Subtrochanteric insufficiency fractures in patients on alendronate therapy: a caution. J. Bone Joint Surg. Br.89(3), 394–353 (2007).
  • Kwek EB, Goh SK, Koh JS, Png MA, Howe TS. An emerging pattern of subtrochanteric stress fractures: a long-term complication of alendronate therapy? Injury39(2), 224–231 (2008).
  • Khosla S, Burr D, Cauley J et al. Bisphosphonate-associated osteonecrosis of the jaw: report of a task force of the American society for bone and mineral research. J. Bone Miner. Res.22(10), 1479–1491 (2007).
  • Wells GA, Cranney A, Peterson J et al. Alendronate for the primary and secondary prevention of osteoporotic fractures in postmenopausal women. Cochrane Database Syst. Rev.23(1), CD001155 (2008).
  • Wells G, Cranney A, Peterson J et al. Risedronate for the primary and secondary prevention of osteoporotic fractures in postmenopausal women. Cochrane Database Syst. Rev.23(1), CD004523 (2008).
  • Zallone A. Direct and indirect estrogen actions on osteoblasts and osteoclasts. Ann NY Acad. Sci.1068, 173–179 (2006).
  • Nakamura T, Imai Y, Matsumoto T et al. Estrogen prevents bone loss via estrogen receptor alpha and induction of fas ligand in osteoclasts. Cell130, 811–823 (2007).
  • Charatcharoenwitthaya N, Khosla S.Atkinson EJ et al. Effect of blockade of TNF-α and interleukin-1 action on bone resorptionin early postmenopausal women. J. Bone Miner. Res.22, 724–729 (2007).
  • Chlebowski RT, Hendrix SL, Langer RD et al. Influence of estrogen plus progestin on breast cancer and mammography in healthy postmenopausal women: the Women’s Health Initiative randomized trial. JAMA289(24), 3243–3253 (2003).
  • Cauley JA, Robbins J, Chen Z et al. Effects of estrogen plus progestin on risk of fracture and bone mineral density: the Women’s Health Initiative randomized trial. JAMA290(13), 1729–1738 (2003).
  • Rossouw JE, Anderson GL, Prentice RL et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women’s Health Initiative randomized controlled trial. JAMA288(3), 321–333 (2002).
  • Anderson GL, Limacher M, Assaf AR et al. Effects of conjugated equine estrogen in postmenopausal women with hysterectomy: the Women’s Health Initiative randomized controlled trial. JAMA291(14), 1701–1712 (2004).
  • Barrett-Conno E, Mosca L, Collins P et al. Effects of raloxifene on cardiovascular events and breast cancer in postmenopausal women. N. Engl. J. Med.355(2), 125–137 (2006).
  • Vasiljeva O, Reinheckel T, Peters C, Turk D, Turk V, Turk B. Emerging roles of cysteine cathepsins in disease and their potential as drug targets. Curr. Pharm. Des.13, 387–403 (2007).
  • Adami S, Supronik J, Hala T et al. Effect of one year treatment with the cathepsin-K inhibitor, balicatib, on bone mineral density (BMD) in postmenopausal women with osteopenia/osteoporosis. J. Bone Miner. Res.21, S24 (2006).
  • Deal C. Potential new drug targets for osteoporosis. Nat. Clin. Pract. Rheumatol.5(1), 20–27 (2009).
  • Bekker PJ, Holloway D, Nakanishi A, Arrighi M, Leese PT, Dunstan CR. The effect of a single dose of osteoprotegerin in postmenopausal women. J. Bone Miner. Res.16(2), 348–360 (2001).
  • Body JJ, Greipp P, Coleman RE et al. A Phase I study of AMGN-0007, a recombinant osteoprotegerin construct, in patients with multiple myeloma or breast carcinoma related bone metastases. Cancer97(3 Suppl.), 887–892 (2003).
  • Boyce BF, Xing L,. Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch. Biochem. Biophys.473(2), 139–146 (2008).
  • Hamdy NA. Denosumab: RANKL inhibition in the management of bone loss. Drugs Today (Barc.)44, 7–21 (2008).
  • Lewiecki EM, Miller PD, McClung MR et al. Two-year treatment with denosumab (AMG 162) in a randomized Phase 2 study of postmenopausal women with low BMD. J. Bone Miner. Res.22(12), 1832–1841 (2007).
  • McClung MR, Lewiecki EM, Cohen SB et al. Denosumab in postmenopausal women with low bone mineral density. N. Engl. J. Med.354(8), 821–831 (2006).
  • Brown JP, Prince RL, Deal C et al. Comparison of the effect of denosumab and alendronate on BMD and biochemical markers of bone turnover in postmenopausal women with low bone mass: a randomized, blinded, Phase 3 trial. J. Bone Miner. Res.24(1), 153–161 (2009).
  • Miller PD, Bolognese MA, Lewiecki EM et al. Effect of denosumab on bone density and turnover in postmenopausal women with low bone mass after long-term continued, discontinued, and restarting of therapy: a randomized blinded Phase 2 clinical trial. Bone43(2), 222–229 (2008).
  • Kendler DL, Benhamou CL, Brown JP et al. Effects of denosumab vs alendronate on bone mineral density (BMD), bone turnover markers (BTM), and safety in women previously treated with alendronate. J. Bone Miner. Res.23(Suppl.), S473 (2008).
  • Cummings S, McClung MR, Christiansen C et al. A Phase III study of the effects of denosumab on vertebral, nonvertebral, and hip fracture in women with osteoporosis: results from the FREEDOM trial. J. Bone Miner. Res.23, (2008) (Abstract 1286).
  • Whyte MP. The long and the short of bone therapy. N. Engl. J. Med.354(8), 860–863 (2006).
  • Kim H, Choi HK, Shin JH et al. Selective inhibition of RANK blocks osteoclast maturation and function and prevents bone loss in mice. J. Clin. Invest.119(4), 813–825 (2009).
  • Missbach M, Jeschke M, Feyen J et al. A novel inhibitor of the tyrosine kinase Src suppresses phosphorylation of its major cellular substrates and reduces bone resorption in vitro and in rodent models in vivo. Bone24(5), 437–449 (1999).
  • Lark MW, Stroup GB, Hwang SM et al. Design and characterization of orally active Arg–Gly–Asp peptidomimetic vitronectin receptor antagonist SB 265123 for prevention of bone loss in osteoporosis. J. Pharmacol. Exp. Ther.291(2), 612–617 (1999).
  • Murphy MG, Cerchio K, Stoch SA et al. Effect of L-000845704, an αvβ3 integrin antagonist, on markers of bone turnover and bone mineral density in postmenopausal osteoporotic women. J. Clin. Endocrinol. Metab.90(4), 2022–2028 (2005).
  • Jilka RL. Molecular and cellular mechanisms of the anabolic effect of intermittent PTH. Bone40(6), 1434–1446 (2007).
  • McClung MR, San Martin J, Miller PD et al. Opposite bone remodeling effects of teriparatide and alendronate in increasing bone mass. Arch. Intern. Med.165(15), 1762–1768 (2005).
  • Neer RM, Arnaud CD, Zanchetta JR et al. Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N. Engl. J. Med.344(19), 1434–1441 (2001).
  • Greenspan SL, Bone HG, Ettinger MP et al. Effect of recombinant human parathyroid hormone (1–84) on vertebral fracture and bone mineral density in postmenopausal women with osteoporosis: a randomized trial. Ann. Intern. Med.146(5), 326–339 (2007).
  • Harper KD, Krege JH, Marcus R, Mitlak BH. Osteosarcoma and teriparatide? J. Bone Miner. Res.22(2), 334 (2007).
  • Brown M. The calcium-sensing receptor: physiology, pathophysiology and CaR-based therapeutics. Subcell. Biochem.45, 139–167 (2007).
  • Balan G, Bauman J, Bhattacharya S et al. The discovery of novel calcium sensing receptor negative allosteric modulators. Bioorg. Med. Chem. Lett.19(12), 3328–3332 (2009).
  • Kulkarni NH, Onyia JE, Zeng Q et al. Orally bioavailable GSK-3α/β dual inhibitor increases markers of cellular differentiation in vitro and bone mass in vivo. J. Bone Miner. Res.21, 910–920 (2006).
  • Clement-Lacroix P, Ai M, Morvan F et al. Lrp5-independent activation of Wnt signaling by lithium chloride increases bone formation and bone mass in mice. Proc. Natl Acad. Sci. USA102, 17406–17411 (2005).
  • Vestergaard P, Rejnmark L, Mosekilde L. Reduced relative risk of fractures among users of lithium. Calcif. Tissue Int.77, 1–8 (2005).
  • Wilting I, de Vries F, Thio BM et al. Lithium use and the risk of fractures. Bone40, 1252–1258 (2007).
  • Morvan F, Boulukos K, Clement-Lacroix P et al. Deletion of a single allele of the Dkk1 gene leads to an increase in bone formation and bone mass. J. Bone Miner. Res.21, 934–945 (2006).
  • Li J, Sarosi I, Cattley RC et al. Dkk1-mediated inhibition of Wnt signaling in bone results in osteopenia. Bone39, 754–766 (2006).
  • Wang FS, Ko JY, Lin CL, Wu HL, Ke HJ, Tai PJ. Knocking down dickkopf-1 alleviates estrogen deficiency induction of bone loss. A histomorphological study in ovariectomized rats. Bone40(2), 485–492 (2007).
  • Tian E, Zhan F, Walker R et al. The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N. Engl. J. Med.349, 2483–2494 (2003).
  • Heider U, Kaiser M, Mieth M et al. Serum concentrations of DKK-1 decrease in patients with multiple myeloma responding to anti-myeloma treatment. Eur. J. Haematol.82(1) 31–38 (2009).
  • Yaccoby S, Ling W, Zhan F, Walker R, Barlogie B, Shaughnessy JD Jr. Antibody-based inhibition of DKK1 suppresses tumor-induced bone resorption and multiple myeloma growth in vivo. Blood109(5), 2106–2111 (2007).
  • Fulciniti M, Tassone P, Hideshima T et al. Anti-DKK1 mAb (BHQ880) as a potential therapeutic agent for multiple myeloma. Blood114(2), 371–379 (2009).
  • Robling AG, Bellido T, Turner CH. Mechanical stimulation in vivo reduces osteocyte expression of sclerostin. J. Musculoskelet. Neuronal Interact.6, 354 (2006).
  • Ominsky M, Warmongton KS, Asuncion FJ et al. Sclerostin monoclonal antibody treatment increases bone strength in aged osteopenic ovariectomized rats. J. Bone Miner. Res.21, S44 (2006).
  • Poole KE, van Bezooijen RL, Loveridge N et al. Sclerostin is a delayed secreted product of osteocytes that inhibits bone formation. FASEB J.19, 1842–1844 (2005).
  • Li X, Ominsky MS, Warmington KS et al. Sclerostin antibody treatment increases bone formation, bone mass and bone strength in a rat model of postmenopausal osteoporosis. J. Bone Miner. Res.24(4), 578–588 (2009).
  • Reginster JY, Sarlet N, Lejeune E, Leonori L. Strontium ranelate: a new treatment for postmenopausal osteoporosis with a dual mode of action. Curr. Osteoporos. Rep.3(1), 30–34 (2005).
  • Meunier PJ, Roux C, Seeman E et al. The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N. Engl. J. Med.350(5), 459–468 (2004).
  • Reginster JY, Seeman E, De Vernejoul MC et al. Strontium ranelate reduces the risk of nonvertebral fractures in postmenopausal women with osteoporosis: Treatment of Peripheral Osteoporosis (TROPOS) study. J. Clin. Endocrinol. Metab.90(5), 2816–2822 (2005).
  • Stevenson M, Davis S, Lloyd-Jones M, Beverley C. The clinical effectiveness and cost-effectiveness of strontium ranelate for the prevention of osteoporotic fragility fractures in postmenopausal women. Health Technol. Assess.11(4), 1–134 (2007).
  • Blake GM, Lewiecki EM, Kendler DL et al. A review of strontium ranelate and its effect on DXA scans. J. Clin. Densitom.10(2), 113–119 (2007).
  • Spiegelman BM, Flier JS. Obesity and the regulation of energy balance. Cell104(4), 531–543 (2001).
  • Ducy P, Amling M, Takeda S et al. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell100(2) 197–207 (2000).
  • Karsenty G. Convergence between bone and energy homeostases: leptin regulation of bone mass. Cell Metab.4(5), 341–348 (2006).
  • Fu L, Patel MS, Bradley A, Wagner EF, Karsenty G. The molecular clock mediates leptin-regulated bone formation. Cell122(5), 803–815 (2005).
  • Rosen CJ. Bone remodeling, energy metabolism, and the molecular clock. Cell Metab.7(1), 7–10 (2008).
  • Sato S, Hanada R, Kimura A et al. Central control of bone remodeling by neuromedin U. Nat. Med.13(10), 1234–1240 (2007).
  • Elefteriou F, Ahn JD, Takeda S et al. Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature434(7032), 514–520 (2005).
  • Ahn JD, Dubern B, Lubrano-Berthelier C, Clement K, Karsenty G. Cart overexpression is the only identifiable cause of high bone mass in melanocortin 4 receptor deficiency. Endocrinology147(7), 3196–3202 (2006).
  • Lee NK, Sowa H, Hinoi E et al. Endocrine regulation of energy metabolism by the skeleton. Cell130(3), 456–469 (2007).
  • Yadav VK, Ryu JH, Suda N et al. Lrp5 controls bone formation by inhibiting serotonin synthesis in the duodenum. Cell135(5), 825–837 (2008).
  • Collet C, Schiltz C, Geoffroy V, Maroteaux L, Launay JM, de Vernejoul MC. The serotonin 5-HT2B receptor controls bone mass via osteoblast recruitment and proliferation. FASEB J.22, 418–427 (2008).
  • Rosen CJ. Serotonin rising – the bone, brain, bowel connection. N. Engl. J. Med.360(10), 957–959 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.