105
Views
7
CrossRef citations to date
0
Altmetric
Review

Linking diabetes and atherosclerosis

, &
Pages 603-624 | Published online: 10 Jan 2014

References

  • Garcia MJ, McNamara PM, Gordon T, Kannel WB. Morbidity and mortality in diabetics in the Framingham population. Sixteen year follow-up study. Diabetes23(2), 105–111 (1974).
  • Haffner SM, Lehto S, Ronnemaa T, Pyorala K, Laakso M. Mortality from coronary heart disease in subjects with Type-2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N. Engl. J. Med.339(4), 229–234 (1998).
  • Granger CB, Califf RM, Young S et al. Outcome of patients with diabetes mellitus and acute myocardial infarction treated with thrombolytic agents. The Thrombolysis and Angioplasty in Myocardial Infarction (TAMI) study group. J. Am. Coll. Cardiol.21(4), 920–925 (1993).
  • Beckman JA, Creager MA, Libby P. Diabetes and atherosclerosis: epidemiology, pathophysiology, and management. JAMA287(19), 2570–2581 (2002).
  • Cooper ME. Pathogenesis, prevention, and treatment of diabetic nephropathy. Lancet352(9123), 213–219 (1998).
  • Zimmet P, Alberti KG, Shaw J. Global and societal implications of the diabetes epidemic. Nature414(6865), 782–787 (2001).
  • Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030 global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care27(5), 1047–1053 (2004).
  • Gu K, Cowie CC, Harris MI. Diabetes and decline in heart disease mortality in US adults. JAMA281(14), 1291–1297 (1999).
  • Pyorala K, Laakso M, Uusitupa M. Diabetes and atherosclerosis: an epidemiologic view. Diabetes Metab. Rev.3(2), 463–524 (1987).
  • Malmberg K, Yusuf S, Gerstein HC et al. Impact of diabetes on long-term prognosis in patients with unstable angina and non-Q-wave myocardial infarction: results of the OASIS (Organization to Assess Strategies for Ischemic Syndromes) Registry. Circulation102(9), 1014–1019 (2000).
  • Krolewski AS, Kosinski EJ, Warram JH et al. Magnitude and determinants of coronary artery disease in juvenile-onset, insulin-dependent diabetes mellitus. Am. J. Cardiol.59(8), 750–755 (1987).
  • Laing SP, Swerdlow AJ, Slater SD et al. Mortality from heart disease in a cohort of 23,000 patients with insulin-treated diabetes. Diabetologia46(6), 760–765 (2003).
  • Deedwania P, Srikanth S. Diabetes and vascular disease. Expert Rev. Cardiovasc. Ther.6(1), 127–138 (2008).
  • Sandbaek A, Griffin SJ, Rutten G et al. Stepwise screening for diabetes identifies people with high but modifiable coronary heart disease risk. The ADDITION study. Diabetologia51(7), 1127–1134 (2008).
  • Haffner SM. Diabetes, hyperlipidemia, and coronary artery disease. Am. J. Cardiol.83(9B), 17F–21F (1999).
  • Schramm TK, Gislason GH, Kober L et al. Diabetes patients requiring glucose-lowering therapy and nondiabetics with a prior myocardial infarction carry the same cardiovascular risk: a population study of 3.3 million people. Circulation117(15), 1945–1954 (2008).
  • The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus: the Diabetes Control and Complications trial research group. N. Engl. J. Med.329(14), 977–986 (1993).
  • UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with Type-2 diabetes (UKPDS 33). Lancet352(9131), 837–853. (1998).
  • Nathan DM, Cleary PA, Backlund JY et al. Intensive diabetes treatment and cardiovascular disease in patients with Type-1 diabetes. N. Engl. J. Med.353(25), 2643–2653 (2005).
  • Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HA. 10-year follow-up of intensive glucose control in Type-2 diabetes. N. Engl. J. Med.359(15), 1577–1589 (2008).
  • Patel A, MacMahon S, Chalmers J et al. Intensive blood glucose control and vascular outcomes in patients with Type-2 diabetes. N. Engl. J. Med.358(24), 2560–2572 (2008).
  • Gerstein HC, Miller ME, Byington RP et al. Effects of intensive glucose lowering in Type-2 diabetes. N. Engl. J. Med.358(24), 2545–2559 (2008).
  • Duckworth W, Abraira C, Moritz T et al. Glucose control and vascular complications in veterans with Type-2 diabetes. N. Engl. J. Med.360(2), 129–139 (2009).
  • Renard CB, Kramer F, Johansson F et al. Diabetes and diabetes-associated lipid abnormalities have distinct effects on initiation and progression of atherosclerotic lesions. J. Clin. Invest.114(5), 659–668 (2004).
  • Gabbay KH. The sorbitol pathway and the complications of diabetes. N. Engl. J. Med.288(16), 831–836 (1973).
  • Nishikawa T, Edelstein D, Du XL et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycemic damage. Nature404(6779), 787–790 (2000).
  • Lambeth JD. Nox enzymes, ROS, and chronic disease: an example of antagonistic pleiotropy. Free Radic. Biol. Med.43(3), 332–347 (2007).
  • Wautier MP, Chappey O, Corda S, Stern DM, Schmidt AM, Wautier JL. Activation of NADPH oxidase by AGE links oxidant stress to altered gene expression via RAGE. Am. J. Physiol. Endocrinol. Metab.280(5), E685–E694 (2001).
  • Ceriello A, Davidson J, Hanefeld M et al. Postprandial hyperglycemia and cardiovascular complications of diabetes: an update. Nutr. Metab. Cardiovasc. Dis.16(7), 453–456 (2006).
  • Davi G, Ciabattoni G, Consoli A et al.In vivo formation of 8-iso-prostaglandin f2α and platelet activation in diabetes mellitus: effects of improved metabolic control and vitamin E supplementation. Circulation99(2), 224–229 (1999).
  • Mita T, Otsuka A, Azuma K et al. Swings in blood glucose levels accelerate atherogenesis in apolipoprotein E-deficient mice. Biochem. Biophys. Res. Commun.358(3), 679–685 (2007).
  • Balkau B, Hu G, Qiao Q, Tuomilehto J, Borch-Johnsen K, Pyorala K. Prediction of the risk of cardiovascular mortality using a score that includes glucose as a risk factor. The DECODE study. Diabetologia47(12), 2118–2128 (2004).
  • Piga R, Naito Y, Kokura S, Handa O, Yoshikawa T. Short-term high glucose exposure induces monocyte–endothelial cells adhesion and transmigration by increasing VCAM-1 and MCP-1 expression in human aortic endothelial cells. Atherosclerosis193(2), 328–334 (2007).
  • Yan SD, Schmidt AM, Anderson GM et al. Enhanced cellular oxidant stress by the interaction of advanced glycation end products with their receptors/binding proteins. J. Biol. Chem.269(13), 9889–9897 (1994).
  • Brownlee M, Cerami A, Vlassara H. Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications. N. Engl. J. Med.318(20), 1315–1321 (1988).
  • Herold K, Moser B, Chen Y et al. Receptor for advanced glycation end products (RAGE) in a dash to the rescue: inflammatory signals gone awry in the primal response to stress. J. Leukoc. Biol.82(2), 204–212 (2007).
  • Kiuchi K, Nejima J, Takano T, Ohta M, Hashimoto H. Increased serum concentrations of advanced glycation end products: a marker of coronary artery disease activity in Type-2 diabetic patients. Heart85(1), 87–91 (2001).
  • Lapolla A, Piarulli F, Sartore G et al. Advanced glycation end products and antioxidant status in Type-2 diabetic patients with and without peripheral artery disease. Diabetes Care30(3), 670–676 (2007).
  • Meerwaldt R, Lutgers HL, Links TP et al. Skin autofluorescence is a strong predictor of cardiac mortality in diabetes. Diabetes Care30(1), 107–112 (2007).
  • Kilhovd BK, Juutilainen A, Lehto S et al. Increased serum levels of advanced glycation endproducts predict total, cardiovascular and coronary mortality in women with Type-2 diabetes: a population-based 18 year follow-up study. Diabetologia50(7), 1409–1417 (2007).
  • Vlassara H, Fuh H, Donnelly T, Cybulsky M. Advanced glycation endproducts promote adhesion molecule (VCAM-1, ICAM-1) expression and atheroma formation in normal rabbits. Mol. Med.1(4), 447–456 (1995).
  • Forbes JM, Yee LT, Thallas V et al. Advanced glycation end product interventions reduce diabetes-accelerated atherosclerosis. Diabetes53(7), 1813–1823 (2004).
  • Candido R, Forbes JM, Thomas MC et al. A breaker of advanced glycation end products attenuates diabetes-induced myocardial structural changes. Circ. Res.92(7), 785–792 (2003).
  • Vlassara H, Bucala R, Striker L. Pathogenic effects of advanced glycosylation: biochemical, biologic, and clinical implications for diabetes and aging. Lab. Invest.70(2), 138–151 (1994).
  • Menzel EJ, Sobal G, Staudinger A. The role of oxidative stress in the long-term glycation of LDL. Biofactors6(2), 111–124 (1997).
  • Klein RL, Laimins M, Lopes-Virella MF. Isolation, characterization, and metabolism of the glycated and nonglycated subfractions of low-density lipoproteins isolated from type I diabetic patients and nondiabetic subjects. Diabetes44(9), 1093–1098 (1995).
  • Goldin A, Beckman JA, Schmidt AM, Creager MA. Advanced glycation end products: sparking the development of diabetic vascular injury. Circulation114(6), 597–605 (2006).
  • Basta G, Schmidt AM, De Caterina R. Advanced glycation end products and vascular inflammation: implications for accelerated atherosclerosis in diabetes. Cardiovasc. Res.63(4), 582–592 (2004).
  • Park L, Raman KG, Lee KJ et al. Suppression of accelerated diabetic atherosclerosis by the soluble receptor for advanced glycation endproducts. Nat. Med.4(9), 1025–1031 (1998).
  • El-Osta A, Brasacchio D, Yao D et al. Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. J. Exp. Med.205(10), 2409–2417 (2008).
  • Villeneuve LM, Reddy MA, Lanting LL, Wang M, Meng L, Natarajan R. Epigenetic histone H3 lysine 9 methylation in metabolic memory and inflammatory phenotype of vascular smooth muscle cells in diabetes. Proc. Natl Acad. Sci.105(26), 9047–9052 (2008).
  • Halcox JP, Schenke WH, Zalos G et al. Prognostic value of coronary vascular endothelial dysfunction. Circulation106(6), 653–658 (2002).
  • Perticone F, Ceravolo R, Pujia A et al. Prognostic significance of endothelial dysfunction in hypertensive patients. Circulation104(2), 191–196 (2001).
  • Gokce N, Keaney JF Jr, Hunter LM, Watkins MT, Menzoian JO, Vita JA. Risk stratification for postoperative cardiovascular events via noninvasive assessment of endothelial function: a prospective study. Circulation105(13), 1567–1572 (2002).
  • Jansson PA. Endothelial dysfunction in insulin resistance and Type-2 diabetes. J. Intern. Med.262(2), 173–183 (2007).
  • Pechanova O, Simko F. The role of nitric oxide in the maintenance of vasoactive balance. Physiol. Res.56(Suppl. 2), S7–S16 (2007).
  • De Caterina R. Endothelial dysfunctions: common denominators in vascular disease. Curr. Opin. Lipidol.11(1), 9–23 (2000).
  • Baumgartner-Parzer SM, Wagner L, Pettermann M, Grillari J, Gessl A, Waldhausl W. High-glucose-triggered apoptosis in cultured endothelial cells. Diabetes44(11), 1323–1327 (1995).
  • Morigi M, Angioletti S, Imberti B et al. Leukocyte-endothelial interaction is augmented by high glucose concentrations and hyperglycemia in a NF-κB-dependent fashion. J. Clin. Invest.101(9), 1905–1915 (1998).
  • Omi H, Okayama N, Shimizu M et al. Participation of high glucose concentrations in neutrophil adhesion and surface expression of adhesion molecules on cultured human endothelial cells: effect of antidiabetic medicines. J. Diabetes Complications16(3), 201–208 (2002).
  • Kouroedov A, Eto M, Joch H, Volpe M, Luscher TF, Cosentino F. Selective inhibition of protein kinase Cβ2 prevents acute effects of high glucose on vascular cell adhesion molecule-1 expression in human endothelial cells. Circulation110(1), 91–96 (2004).
  • Cohen RA. Role of nitric oxide in diabetic complications. Am. J. Ther.12(6), 499–502 (2005).
  • Bucala R, Tracey KJ, Cerami A. Advanced glycosylation products quench nitric oxide and mediate defective endothelium-dependent vasodilatation in experimental diabetes. J. Clin. Invest.87(2), 432–438 (1991).
  • Camici GG, Schiavoni M, Francia P et al. Genetic deletion of p66(Shc) adaptor protein prevents hyperglycemia-induced endothelial dysfunction and oxidative stress. Proc. Natl Acad. Sci.104(12), 5217–5222 (2007).
  • Quagliaro L, Piconi L, Assaloni R et al. Intermittent high glucose enhances ICAM-1, VCAM-1 and E-selectin expression in human umbilical vein endothelial cells in culture: the distinct role of protein kinase C and mitochondrial superoxide production. Atherosclerosis183(2), 259–267 (2005).
  • Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes54(6), 1615–1625 (2005).
  • Dasu MR, Devaraj S, Jialal I. High glucose induces IL-1β expression in human monocytes: mechanistic insights. Am. J. Physiol. Endocrinol. Metab.293(1), E337–E346 (2007).
  • Devaraj S, Glaser N, Griffen S, Wang-Polagruto J, Miguelino E, Jialal I. Increased monocytic activity and biomarkers of inflammation in patients with Type-1 diabetes. Diabetes55(3), 774–779 (2006).
  • Burke AP, Kolodgie FD, Zieske A et al. Morphologic findings of coronary atherosclerotic plaques in diabetics: a postmortem study. Arterioscler. Thromb. Vasc. Biol.24(7), 1266–1271 (2004).
  • Carmody BJ, Arora S, Wakefield MC, Weber M, Fox CJ, Sidawy AN. Progesterone inhibits human infragenicular arterial smooth muscle cell proliferation induced by high glucose and insulin concentrations. J. Vasc. Surg.36(4), 833–838 (2002).
  • Seki N, Hashimoto N, Sano H et al. Mechanisms involved in the stimulatory effect of advanced glycation end products on growth of rat aortic smooth muscle cells. Metabolism52(12), 1558–1563 (2003).
  • Pfeifle B, Ditschuneit H. The effect of insulin and insulin-like growth factors on cell proliferation of human smooth muscle cells. Artery8(4), 336–341 (1980).
  • Stamler J, Vaccaro O, Neaton JD, Wentworth D. Diabetes, other risk factors, and 12-yr cardiovascular mortality for men screened in the Multiple Risk Factor Intervention Trial. Diabetes Care16(2), 434–444 (1993).
  • Rosengren A, Welin L, Tsipogianni A, Wilhelmsen L. Impact of cardiovascular risk factors on coronary heart disease and mortality among middle aged diabetic men: a general population study. BMJ299(6708), 1127–1131 (1989).
  • Chen Z, Peto R, Collins R, MacMahon S, Lu J, Li W. Serum cholesterol concentration and coronary heart disease in population with low cholesterol concentrations. BMJ303(6797), 276–282 (1991).
  • Armitage J, Collins R. Need for large scale randomized evidence about lowering LDL cholesterol in people with diabetes mellitus: MRC/BHF heart protection study and other major trials. Heart84(4), 357–360 (2000).
  • Baigent C, Keech A, Kearney PM et al. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomized trials of statins. Lancet366(9493), 1267–1278 (2005).
  • Turner RC, Millns H, Neil HA et al. Risk factors for coronary artery disease in non-insulin dependent diabetes mellitus: United Kingdom Prospective Diabetes study (UKPDS: 23). BMJ316(7134), 823–828 (1998).
  • Garvey WT, Kwon S, Zheng D et al. Effects of insulin resistance and Type-2 diabetes on lipoprotein subclass particle size and concentration determined by nuclear magnetic resonance. Diabetes52(2), 453–462 (2003).
  • O’Brien T, Nguyen TT, Zimmerman BR. Hyperlipidemia and diabetes mellitus. Mayo Clin. Proc.73(10), 969–976 (1998).
  • Mansfield MW, Heywood DM, Grant PJ. Circulating levels of factor VII, fibrinogen, and von Willebrand factor and features of insulin resistance in first-degree relatives of patients with NIDDM. Circulation94(9), 2171–2176 (1996).
  • Collins R, Armitage J, Parish S, Sleigh P, Peto R. MRC/BHF Heart Protection Study of cholesterol-lowering with simvastatin in 5963 people with diabetes: a randomized placebo-controlled trial. Lancet361(9374), 2005–2016 (2003).
  • Colhoun HM, Betteridge DJ, Durrington PN et al. Primary prevention of cardiovascular disease with atorvastatin in Type-2 diabetes in the Collaborative Atorvastatin Diabetes Study (CARDS): multicentre randomized placebo-controlled trial. Lancet364(9435), 685–696 (2004).
  • Costa J, Borges M, David C, Vaz Carneiro A. Efficacy of lipid lowering drug treatment for diabetic and non-diabetic patients: meta-analysis of randomized controlled trials. BMJ332(7550), 1115–1124 (2006).
  • Goldberg IJ. Clinical review 124: diabetic dyslipidemia: causes and consequences. J. Clin. Endocrinol. Metab.86(3), 965–971 (2001).
  • Jiang R, Schulze MB, Li T et al. Non-HDL cholesterol and apolipoprotein B predict cardiovascular disease events among men with Type-2 diabetes. Diabetes Care27(8), 1991–1997 (2004).
  • El Harchaoui K, van der Steeg WA, Stroes ES et al. Value of low-density lipoprotein particle number and size as predictors of coronary artery disease in apparently healthy men and women: the EPIC-Norfolk Prospective Population Study. J. Am. Coll. Cardiol.49(5), 547–553 (2007).
  • Sniderman AD, Scantlebury T, Cianflone K. Hypertriglyceridemic hyperapob: the unappreciated atherogenic dyslipoproteinemia in Type-2 diabetes mellitus. Ann. Intern. Med.135(6), 447–459 (2001).
  • Rudel LL, Johnson FL, Sawyer JK, Wilson MS, Parks JS. Dietary polyunsaturated fat modifies low-density lipoproteins and reduces atherosclerosis of nonhuman primates with high and low diet responsiveness. Am. J. Clin. Nutr.62(2), 463S–470S (1995).
  • Mora S, Szklo M, Otvos JD et al. LDL particle subclasses, LDL particle size, and carotid atherosclerosis in the Multi-Ethnic Study of Atherosclerosis (MESA). Atherosclerosis192(1), 211–217 (2007).
  • Otvos JD, Collins D, Freedman DS et al. Low-density lipoprotein and high-density lipoprotein particle subclasses predict coronary events and are favorably changed by gemfibrozil therapy in the Veterans Affairs High-Density Lipoprotein Intervention Trial. Circulation113(12), 1556–1563 (2006).
  • Mooradian AD, Haas MJ, Wong NC. Transcriptional control of apolipoprotein A-I gene expression in diabetes. Diabetes53(3), 513–520 (2004).
  • Cuchel M, Rader DJ. Macrophage reverse cholesterol transport: key to the regression of atherosclerosis? Circulation113(21), 2548–2555 (2006).
  • Isoda K, Folco EJ, Shimizu K, Libby P. AGE-BSA decreases ABCG1 expression and reduces macrophage cholesterol efflux to HDL. Atherosclerosis192(2), 298–304 (2007).
  • Hoang A, Murphy AJ, Coughlan MT et al. Advanced glycation of apolipoprotein A-I impairs its anti-atherogenic properties. Diabetologia50(8), 1770–1779 (2007).
  • Tso C, Martinic G, Fan WH, Rogers C, Rye KA, Barter PJ. High-density lipoproteins enhance progenitor-mediated endothelium repair in mice. Arterioscler. Thromb. Vasc. Biol.26(5), 1144–1149 (2006).
  • Gharavi NM, Gargalovic PS, Chang I et al. High-density lipoprotein modulates oxidized phospholipid signaling in human endothelial cells from proinflammatory to anti-inflammatory. Arterioscler. Thromb. Vasc. Biol.27(6), 1346–1353 (2007).
  • Sarov-Blat L, Kiss RS, Haidar B et al. Predominance of a proinflammatory phenotype in monocyte-derived macrophages from subjects with low plasma HDL-cholesterol. Arterioscler. Thromb. Vasc. Biol.27(5), 1115–1122 (2007).
  • Davidson M, Meyer PM, Haffner S et al. Increased high-density lipoprotein cholesterol predicts the pioglitazone-mediated reduction of carotid intima-media thickness progression in patients with Type-2 diabetes mellitus. Circulation117(16), 2123–2130 (2008).
  • Gowri MS, Van der Westhuyzen DR, Bridges SR, Anderson JW. Decreased protection by HDL from poorly controlled Type-2 diabetic subjects against LDL oxidation may be due to the abnormal composition of HDL. Arterioscler. Thromb. Vasc. Biol.19(9), 2226–2233 (1999).
  • Dagher Z, Ruderman N, Tornheim K, Ido Y. The effect of AMP-activated protein kinase and its activator AICAR on the metabolism of human umbilical vein endothelial cells. Biochem. Biophys. Res. Commun.265(1), 112–115 (1999).
  • Egan BM, Lu G, Greene EL. Vascular effects of non-esterified fatty acids: implications for the cardiovascular risk factor cluster. Prostaglandins Leukot. Essent. Fatty Acids60(5–6), 411–420 (1999).
  • Toft I, Bonaa KH, Ingebretsen OC, Nordoy A, Jenssen T. Fibrinolytic function after dietary supplementation with omega3 polyunsaturated fatty acids. Arterioscler. Thromb. Vasc. Biol.17(5), 814–819 (1997).
  • Rodriguez-Lee M, Bondjers G, Camejo G. Fatty acid-induced atherogenic changes in extracellular matrix proteoglycans. Curr. Opin. Lipidol.18(5), 546–553 (2007).
  • Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS. TLR4 links innate immunity and fatty acid-induced insulin resistance. J. Clin. Invest.116(11), 3015–3025 (2006).
  • Teno S, Uto Y, Nagashima H et al. Association of postprandial hypertriglyceridemia and carotid intima-media thickness in patients with Type-2 diabetes. Diabetes Care23(9), 1401–1406 (2000).
  • Bansal S, Buring JE, Rifai N, Mora S, Sacks FM, Ridker PM. Fasting compared with nonfasting triglycerides and risk of cardiovascular events in women. JAMA298(3), 309–316 (2007).
  • Shin HK, Kim YK, Kim KY, Lee JH, Hong KW. Remnant lipoprotein particles induce apoptosis in endothelial cells by NAD(P)H oxidase-mediated production of superoxide and cytokines via lectin-like oxidized low-density lipoprotein receptor-1 activation: prevention by cilostazol. Circulation109(8), 1022–1028 (2004).
  • Ting HJ, Stice JP, Schaff UY et al. Triglyceride-rich lipoproteins prime aortic endothelium for an enhanced inflammatory response to tumor necrosis factor-α. Circ. Res.100(3), 381–390 (2007).
  • Kawakami A, Yoshida M. Apolipoprotein CIII links dyslipidemia with atherosclerosis. J. Atheroscler. Thromb.16(1), 6–11 (2009).
  • Johansson F, Kramer F, Barnhart S et al. Type-1 diabetes promotes disruption of advanced atherosclerotic lesions in LDL receptor-deficient mice. Proc. Natl Acad. Sci. USA105(6), 2082–2087 (2008).
  • Nestel PJ, Shige H, Pomeroy S, Cehun M, Chin-Dusting J. Post-prandial remnant lipids impair arterial compliance. J. Am. Coll. Cardiol.37(7), 1929–1935 (2001).
  • Grossman E, Messerli FH. Hypertension and diabetes. Adv. Cardiol.45, 82–106 (2008).
  • Adler AI, Stratton IM, Neil HA et al. Association of systolic blood pressure with macrovascular and microvascular complications of Type-2 diabetes (UKPDS 36): prospective observational study. BMJ321(7258), 412–419 (2000).
  • Agmon Y, Khandheria BK, Meissner I et al. Independent association of high blood pressure and aortic atherosclerosis: a population-based study. Circulation102(17), 2087–2093 (2000).
  • Assmann G, Schulte H. The Prospective Cardiovascular Münster (PROCAM) study: prevalence of hyperlipidemia in persons with hypertension and/or diabetes mellitus and the relationship to coronary heart disease. Am. Heart J.116(6 Pt 2), 1713–1724 (1988).
  • Bella JN, Devereux RB, Roman MJ et al. Separate and joint effects of systemic hypertension and diabetes mellitus on left ventricular structure and function in American Indians (the Strong Heart Study). Am. J. Cardiol.87(11), 1260–1265 (2001).
  • Weidmann P, Ferrari P. Central role of sodium in hypertension in diabetic subjects. Diabetes Care14(3), 220–232 (1991).
  • DeFronzo RA. The effect of insulin on renal sodium metabolism. Diabetologia31, 165–171 (1981).
  • Feldt-Rasmussen B, Mathiesen ER, Deckert T et al. Central role for sodium in the pathogenesis of blood pressure changes independent of angiotensin, aldosterone and catecholamines in Type-1 (insulin-dependent) diabetes mellitus. Diabetologia30(8), 610–617 (1987).
  • Luft FC, Miller JZ, Grim CE et al. Salt sensitivity and resistance of blood pressure. Age and race as factors in physiological responses. Hypertension17, I102–I108 (1991).
  • Isomaa B, Almgren P, Tuomi T et al. Cardiovascular morbidity and mortality associated with the metabolic syndrome. Diabetes Care24(4), 683–689 (2001).
  • El-Atat F, McFarlane SI, Sowers JR. Diabetes, hypertension, and cardiovascular derangements: pathophysiology and management. Curr. Hypertens. Rep.6(3), 215–223 (2004).
  • Ganne S, Arora SK, Dotsenko O, McFarlane SI, Whaley-Connell A. Hypertension in people with diabetes and the metabolic syndrome: pathophysiologic insights and therapeutic update. Curr. Diab. Rep.7(3), 208–217 (2007).
  • Lastra-Gonzalez G, Manrique-Acevedo C, Sowers JR. The role of aldosterone in cardiovascular disease in people with diabetes and hypertension: an update. Curr. Diab. Rep.8(3), 203–207 (2008).
  • McFarlane SI, Sowers JR. Cardiovascular endocrinology 1: aldosterone function in diabetes mellitus: effects on cardiovascular and renal disease. J. Clin. Endocrinol. Metab.88(2), 516–523 (2003).
  • Marcelo LG, Correia KR. Role of leptin in the cardiovascular and endocrine complications of metabolic syndrome. Diabetes Obes. Metab.8, 603–610 (2006).
  • Warram JH, Martin BC, Krolewski AS, Soeldner JS, Kahn CR. Slow glucose removal rate and hyperinsulinemia precede the development of type II diabetes in the offspring of diabetic parents. Ann. Intern. Med.113(12), 909–915 (1990).
  • Yip J, Facchini FS, Reaven GM. Resistance to insulin-mediated glucose disposal as a predictor of cardiovascular disease. J. Clin. Endocrinol. Metab.83(8), 2773–2776 (1998).
  • Hanley AJ, Williams K, Stern MP, Haffner SM. Homeostasis model assessment of insulin resistance in relation to the incidence of cardiovascular disease: the San Antonio Heart Study. Diabetes Care25(7), 1177–1184 (2002).
  • Kim JA, Montagnani M, Koh KK, Quon MJ. Reciprocal relationships between insulin resistance and endothelial dysfunction: molecular and pathophysiological mechanisms. Circulation113(15), 1888–1904 (2006).
  • King GL, Brownlee M. The cellular and molecular mechanisms of diabetic complications. Endocrinol. Metab. Clin. North Am.25(2), 255–270 (1996).
  • Cusi K, Maezono K, Osman A et al. Insulin resistance differentially affects the PI 3-kinase- and MAP kinase-mediated signaling in human muscle. J. Clin. Invest.105(3), 311–320 (2000).
  • Montagnani M, Golovchenko I, Kim I et al. Inhibition of phosphatidylinositol 3-kinase enhances mitogenic actions of insulin in endothelial cells. J. Biol. Chem.277(3), 1794–1799 (2002).
  • Admiraal PJ, Derkx FH, Danser AH, Pieterman H, Schalekamp MA. Metabolism and production of angiotensin I in different vascular beds in subjects with hypertension. Hypertension15(1), 44–55 (1990).
  • Danser AH. Local renin–angiotensin systems. Mol. Cell. Biochem.157(1–2), 211–216 (1996).
  • Weiss D, Sorescu D, Taylor WR. Angiotensin II and atherosclerosis. Am. J. Cardiol.87(8A), 25C–32C (2001).
  • Diet F, Pratt RE, Berry GJ, Momose N, Gibbons GH, Dzau VJ. Increased accumulation of tissue ACE in human atherosclerotic coronary artery disease. Circulation94(11), 2756–2767 (1996).
  • Schieffer B, Schieffer E, Hilfiker-Kleiner D et al. Expression of angiotensin II and interleukin 6 in human coronary atherosclerotic plaques: potential implications for inflammation and plaque instability. Circulation101(12), 1372–1378 (2000).
  • Gross CM, Gerbaulet S, Quensel C et al. Angiotensin II Type-1 receptor expression in human coronary arteries with variable degrees of atherosclerosis. Basic Res. Cardiol.97(4), 327–333 (2002).
  • Yusuf S, Pepine CJ, Garces C et al. Effect of enalapril on myocardial infarction and unstable angina in patients with low ejection fractions. Lancet340(8829), 1173–1178 (1992).
  • Yusuf S, Sleight P, Pogue J, Bosch J, Davies R, Dagenais G. Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. N. Engl. J. Med.342(3). 145–153 (2000).
  • Sechi LA, Griffin CA, Schambelan M. The cardiac renin–angiotensin system in STZ-induced diabetes. Diabetes43(10), 1180–1184 (1994).
  • Candido R, Jandeleit-Dahm KA, Cao Z et al. Prevention of accelerated atherosclerosis by angiotensin-converting enzyme inhibition in diabetic apolipoprotein E-deficient mice. Circulation106(2), 246–253, (2002).
  • Candido R, Allen TJ, Lassila M et al. Irbesartan but not amlodipine suppresses diabetes-associated atherosclerosis. Circulation109(12), 1536–1542 (2004).
  • Griendling KK, Alexander RW. Oxidative stress and cardiovascular disease. Circulation96(10), 3264–3265 (1997).
  • Dzau VJ, Bernstein K, Celermajer D et al. The relevance of tissue angiotensin-converting enzyme: manifestations in mechanistic and end point data. Am. J. Cardiol.88(9A), 1L–20L (2001).
  • Schmieder RE, Hilgers KF, Schlaich MP, Schmidt BM. Renin–angiotensin system and cardiovascular risk. Lancet369(9568), 1208–1219 (2007).
  • Pueyo ME, Arnal JF, Rami J, Michel JB. Angiotensin II stimulates the production of NO and peroxynitrite in endothelial cells. Am. J. Physiol.274(1 Pt 1), C214–C220 (1998).
  • Mollnau H, Wendt M, Szocs K et al. Effects of angiotensin II infusion on the expression and function of NAD(P)H oxidase and components of nitric oxide/cGMP signaling. Circ. Res.90(4), E58–E65 (2002).
  • Bahlmann FH, de Groot K, Mueller O, Hertel B, Haller H, Fliser D. Stimulation of endothelial progenitor cells: a new putative therapeutic effect of angiotensin II receptor antagonists. Hypertension45(4), 526–529 (2005).
  • Werner N, Kosiol S, Schiegl T et al. Circulating endothelial progenitor cells and cardiovascular outcomes. N. Engl. J. Med.353(10), 999–1007 (2005).
  • Nickenig G, Sachinidis A, Seewald S, Bohm M, Vetter H. Influence of oxidized low-density lipoprotein on vascular angiotensin II receptor expression. J Hypertens. Suppl.15(6), S27–S30 (1997).
  • Morawietz H, Rueckschloss U, Niemann B et al. Angiotensin II induces LOX-1, the human endothelial receptor for oxidized low-density lipoprotein. Circulation100(9), 899–902 (1999).
  • Rabbani R, Topol EJ. Strategies to achieve coronary arterial plaque stabilization. Cardiovasc. Res.41(2), 402–417 (1999).
  • Donoghue M, Hsieh F, Baronas E et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1–9. Circ. Res.87(5), E1–E9 (2000).
  • Tipnis SR, Hooper NM, Hyde R, Karran E, Christie G, Turner AJ. A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J. Biol. Chem.275(43), 33238–33243 (2000).
  • Ferrario CM, Chappell MC, Tallant EA, Brosnihan KB, Diz DI. Counterregulatory actions of angiotensin-(1–7). Hypertension30(3 Pt 2), 535–541 (1997).
  • Turner AJ. Exploring the structure and function of zinc metallopeptidases: old enzymes and new discoveries. Biochem. Soc. Trans.31(Pt 3), 723–727 (2003).
  • Oudit GY, Crackower MA, Backx PH, Penninger JM. The role of ACE2 in cardiovascular physiology. Trends Cardiovasc. Med.13(3), 93–101 (2003).
  • Kostenis E, Milligan G, Christopoulos A et al. G-protein-coupled receptor Mas is a physiological antagonist of the angiotensin II Type-1 receptor. Circulation111(14), 1806–1813 (2005).
  • Heitsch H, Brovkovych S, Malinski T, Wiemer G. Angiotensin-(1–7)-stimulated nitric oxide and superoxide release from endothelial cells. Hypertension37(1), 72–76 (2001).
  • Sampaio WO, Henrique de Castro C, Santos RA, Schiffrin EL, Touyz RM. Angiotensin-(1–7) counterregulates angiotensin II signaling in human endothelial cells. Hypertension50(6), 1093–1098 (2007).
  • Lovren F, Pan Y, Quan A et al. Angiotensin converting enzyme-2 confers endothelial protection and attenuates atherosclerosis. Am. J. Physiol. Heart Circ. Physiol.295(4), H1377–H1384 (2008).
  • Thomas MC, Tikellis C, Burns WM et al. Interactions between renin angiotensin system and advanced glycation in the kidney. J. Am. Soc. Nephrol.16(10), 2976–2984 (2005).
  • Allen TJ, Jandeleit-Dahm KA. Preventing atherosclerosis with angiotensin-converting enzyme inhibitors: emphasis on diabetic atherosclerosis. Curr. Drug Targets Cardiovasc. Haematol. Disord.5(6), 503–512 (2005).
  • Ross R. Atherosclerosis – an inflammatory disease. N. Engl. J. Med.340(2), 115–126 (1999).
  • Hansson GK, Libby P, Schonbeck U, Yan ZQ. Innate and adaptive immunity in the pathogenesis of atherosclerosis. Circ. Res.91(4), 281–291 (2002).
  • Smith JD, Trogan E, Ginsberg M, Grigaux C, Tian J, Miyata M. Decreased atherosclerosis in mice deficient in both macrophage colony-stimulating factor (op) and apolipoprotein E. Proc. Natl Acad. Sci.92(18), 8264–8268 (1995).
  • van Puijvelde GH, Hauer AD, de Vos P et al. Induction of oral tolerance to oxidized low-density lipoprotein ameliorates atherosclerosis. Circulation114(18), 1968–1976 (2006).
  • van Puijvelde GH, van Es T, van Wanrooij EJ et al. Induction of oral tolerance to HSP60 or an HSP60-peptide activates T cell regulation and reduces atherosclerosis. Arterioscler. Thromb. Vasc. Biol.27(12), 2677–2683 (2007).
  • Steffens S, Burger F, Pelli G et al. Short-term treatment with anti-CD3 antibody reduces the development and progression of atherosclerosis in mice. Circulation114(18), 1977–1984 (2006).
  • Saini A, Liu YJ, Cohen DJ, Ooi BS. Hyperglycemia augments macrophage growth responses to colony-stimulating factor-1. Metabolism45(9), 1125–1129 (1996).
  • Lamharzi N, Renard CB, Kramer F et al. Hyperlipidemia in concert with hyperglycemia stimulates the proliferation of macrophages in atherosclerotic lesions: potential role of glucose-oxidized LDL. Diabetes53(12), 3217–3225 (2004).
  • Loomans CJ, van Haperen R, Duijs JM et al. Differentiation of bone marrow derived endothelial progenitor cells is shifted into a pro-inflammatory phenotype by hyperglycemia. Mol. Med.15(5–6), 152–159 (2009).
  • Secchiero P, Candido R, Corallini F et al. Systemic tumor necrosis factor-related apoptosis-inducing ligand delivery shows antiatherosclerotic activity in apolipoprotein E-null diabetic mice. Circulation114(14), 1522–1530 (2006).
  • Candido R, Toffoli B, Corallini F et al. Human full-length osteoprotegerin (OPG) induces proliferation of rodent vascular smooth muscle cells both in vitro and in vivo. J. Vasc. Res.114(14), 1522–1530 (2009).
  • Schoppet M, Sattler AM, Schaefer JR, Hofbauer LC. Osteoprotegerin (OPG) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) levels in atherosclerosis. Atherosclerosis184(2), 446–447 (2006).
  • Michowitz Y, Goldstein E, Roth A et al. The involvement of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in atherosclerosis. J. Am. Coll. Cardiol.45(7), 1018–1024 (2005).
  • Mizuno A, Amizuka N, Irie K et al. Severe osteoporosis in mice lacking osteoclastogenesis inhibitory factor/osteoprotegerin. Biochem. Biophys. Res. Commun.247(3), 610–615 (1998).
  • Bucay N, Sarosi I, Dunstan CR et al. Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev.12(9), 1260–1268 (1998).
  • Bennett BJ, Scatena M, Kirk EA et al. Osteoprotegerin inactivation accelerates advanced atherosclerotic lesion progression and calcification in older ApoE-/- mice. Arterioscler. Thromb. Vasc. Biol.26(9), 2117–2124 (2006).
  • Kavurma MM, Bennett MR. Expression, regulation and function of TRAIL in atherosclerosis. Biochem. Pharmacol.75(7), 1441–1450 (2008).
  • Browner WS, Lui LY, Cummings SR. Associations of serum osteoprotegerin levels with diabetes, stroke, bone density, fractures, and mortality in elderly women. J. Clin. Endocrinol. Metab.86(2), 631–637 (2001).
  • Corallini F, Rimondi E, Secchiero P. TRAIL and osteoprotegerin: a role in endothelial physiopathology? Front. Biosci.13, 135–147 (2008).
  • Knudsen ST, Foss CH, Poulsen PL, Andersen NH, Mogensen CE, Rasmussen LM. Increased plasma concentrations of osteoprotegerin in Type-2 diabetic patients with microvascular complications. Eur. J. Endocrinol.149(1), 39–42 (2003).
  • Hofbauer LC, Schoppet M. Osteoprotegerin: a link between osteoporosis and arterial calcification? Lancet358(9278), 257–259 (2001).
  • Ostergaard J, Hansen TK, Thiel S, Flyvbjerg A. Complement activation and diabetic vascular complications. Clin. Chim. Acta.361(1–2), 10–19 (2005).
  • Saraheimo M, Forsblom C, Hansen TK et al. Increased levels of mannan-binding lectin in Type-1 diabetic patients with incipient and overt nephropathy. Diabetologia48(1), 198–202 (2005).
  • Hansen TK, Tarnow L, Thiel S et al. Association between mannose-binding lectin and vascular complications in Type-1 diabetes. Diabetes53(6), 1570–1576 (2004).
  • Acosta J, Hettinga J, Fluckiger R et al. Molecular basis for a link between complement and the vascular complications of diabetes. Proc. Natl Acad. Sci. USA97(10), 5450–5455 (2000).
  • Uesugi N, Sakata N, Nangaku M et al. Possible mechanism for medial smooth muscle cell injury in diabetic nephropathy: glycoxidation-mediated local complement activation. Am. J. Kidney Dis.44(2), 224–238 (2004).
  • Qin X, Goldfine A, Krumrei N et al. Glycation inactivation of the complement regulatory protein CD59: a possible role in the pathogenesis of the vascular complications of human diabetes. Diabetes53(10), 2653–2661 (2004).
  • Grundy SM, Cleeman JI, Daniels SR et al. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation112(17), 2735–2752 (2005).
  • Pi-Sunyer X, Blackburn G, Brancati FL et al. Reduction in weight and cardiovascular disease risk factors in individuals with Type-2 diabetes: one-year results of the look AHEAD trial. Diabetes Care30(6), 1374–1383 (2007).
  • Buse JB, Ginsberg HN, Bakris GL et al. Primary prevention of cardiovascular diseases in people with diabetes mellitus: a scientific statement from the American Heart Association and the American Diabetes Association. Circulation115(1), 114–126 (2007).
  • Kawachi I, Colditz GA, Stampfer MJ et al. Smoking cessation and time course of decreased risks of coronary heart disease in middle-aged women. Arch. Intern. Med.154(2), 169–175 (1994).
  • Kuller LH, Ockene JK, Meilahn E, Wentworth DN, Svendsen KH, Neaton JD. Cigarette smoking and mortality. MRFIT Research Group. Prev. Med.20(5), 638–654 (1991).
  • Kearney PM, Blackwell L, Collins R et al. Efficacy of cholesterol-lowering therapy in 18,686 people with diabetes in 14 randomized trials of statins: a meta-analysis. Lancet371(9607), 117–125 (2008).
  • Shepherd J, Barter P, Carmena R et al. Effect of lowering LDL cholesterol substantially below currently recommended levels in patients with coronary heart disease and diabetes: the Treating to New Targets (TNT) study. Diabetes Care29(6), 1220–1226 (2006).
  • Cannon CP, Braunwald E, McCabe CH et al. Intensive versus moderate lipid lowering with statins after acute coronary syndromes. N. Engl. J. Med.350(15), 1495–1504 (2004).
  • Management of dyslipidemia in adults with diabetes. Diabetes Care23(Suppl. 1), S57–S60 (2000).
  • Calkin AC, Cooper ME, Jandeleit-Dahm KA, Allen TJ. Gemfibrozil decreases atherosclerosis in experimental diabetes in association with a reduction in oxidative stress and inflammation. Diabetologia49(4), 766–774 (2006).
  • Marx N, Duez H, Fruchart JC, Staels B. Peroxisome proliferator-activated receptors and atherogenesis: regulators of gene expression in vascular cells. Circ. Res.94(9), 1168–1178 (2004).
  • Effect of fenofibrate on progression of coronary-artery disease in Type-2 diabetes: the Diabetes Atherosclerosis Intervention Study, a randomized study. Lancet357(9260), 905–910 (2001).
  • Rubins HB, Robins SJ, Collins D et al. Gemfibrozil for the secondary prevention of coronary heart disease in men with low levels of high-density lipoprotein cholesterol. Veterans Affairs High-Density Lipoprotein Cholesterol Intervention Trial Study Group. N. Engl. J. Med.341(6), 410–418 (1999).
  • Tenkanen L, Manttari M, Kovanen PT, Virkkunen H, Manninen V. Gemfibrozil in the treatment of dyslipidemia: an 18-year mortality follow-up of the Helsinki Heart Study. Arch. Intern. Med.166(7), 743–748 (2006).
  • Keech A, Simes RJ, Barter P et al. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with Type-2 diabetes mellitus (the FIELD study): randomized controlled trial. Lancet366(9500), 1849–1861 (2005).
  • Sowers JR, Epstein M, Frohlich ED. Diabetes, hypertension, and cardiovascular disease: an update. Hypertension37(4), 1053–1059 (2001).
  • Mancia G, De Backer G, Dominiczak A et al. 2007 Guidelines for the Management of Arterial Hypertension: The Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J. Hypertens.25(6), 1105–1187 (2007).
  • Chobanian AV, Bakris GL, Black HR et al. The seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure: the JNC 7 report. JAMA289(19), 2560–2572 (2003).
  • Sowers JR, Reed J. 1999 Clinical advisory treatment of hypertension and diabetes. J. Clin. Hypertens.2(2), 132–133 (2000).
  • Tight blood pressure control and risk of macrovascular and microvascular complications in Type-2 diabetes: UKPDS 38. UK Prospective Diabetes study group. BMJ317(7160), 703–713 (1998).
  • Hansson L, Zanchetti A, Carruthers SG et al. Effects of intensive blood pressure lowering and low-dose aspirin in patients with hypertension: principal results of the Hypertension Optimal Treatment (HOT) randomized trial. HOT study group. Lancet351(9118), 1755–1762 (1998).
  • Tuomilehto J, Rastenyte D, Birkenhager WH et al. Effects of calcium-channel blockade in older patients with diabetes and systolic hypertension. Systolic hypertension in Europe trial investigators. N. Engl. J. Med.340(9), 677–684 (1999).
  • Holman RR, Paul SK, Bethel MA, Neil HA, Matthews DR. Long-term follow-up after tight control of blood pressure in Type-2 diabetes. N. Engl. J. Med.359(15), 1565–1576 (2008).
  • Niskanen L, Hedner T, Hansson L, Lanke J, Niklason A. Reduced cardiovascular morbidity and mortality in hypertensive diabetic patients on first-line therapy with an ACE inhibitor compared with a diuretic/β-blocker-based treatment regimen: a subanalysis of the Captopril Prevention project. Diabetes Care24(12), 2091–2096 (2001).
  • Effects of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus: results of the HOPE study and MICRO-HOPE substudy. Heart Outcomes Prevention Evaluation study investigators. Lancet355(9200), 253–259 (2000).
  • Brenner BM, Cooper ME, de Zeeuw D et al. Effects of losartan on renal and cardiovascular outcomes in patients with Type-2 diabetes and nephropathy. N. Engl. J. Med.345(12), 861–869 (2001).
  • Lindholm LH, Ibsen H, Dahlof B et al. Cardiovascular morbidity and mortality in patients with diabetes in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomized trial against atenolol. Lancet359(9311), 1004–1010 (2002).
  • UK Prospective Diabetes Study Group. Efficacy of atenolol and captopril in reducing risk of macrovascular and microvascular complications in Type-2 diabetes: UKPDS 39. BMJ317(7160), 713–720. (1998).
  • Patel A, MacMahon S, Chalmers J et al. Effects of a fixed combination of perindopril and indapamide on macrovascular and microvascular outcomes in patients with Type-2 diabetes mellitus (the ADVANCE trial): a randomized controlled trial. Lancet370(9590), 829–840 (2007).
  • Boner G, Cooper ME, McCarroll K et al. Adverse effects of left ventricular hypertrophy in the reduction of end points in NIDDM with the angiotensin II antagonist losartan (RENAAL) study. Diabetologia48(10), 1980–1987 (2005).
  • Yusuf S, Teo KK, Pogue J et al. Telmisartan, ramipril, or both in patients at high risk for vascular events. N. Engl. J. Med.358(15), 1547–1559 (2008).
  • Calkin AC, Forbes JM, Smith CM et al. Rosiglitazone attenuates atherosclerosis in a model of insulin insufficiency independent of its metabolic effects. Arterioscler. Thromb. Vasc. Biol.25(9), 1903–1909 (2005).
  • Yki-Jarvinen H. Thiazolidinediones. N. Engl. J. Med.351(11), 1106–1118 (2004).
  • Dormandy JA, Charbonnel B, Eckland DJ et al. Secondary prevention of macrovascular events in patients with Type 2 diabetes in the PROactive study (PROspective pioglitAzone clinical trial in macrovascular events): a randomized controlled trial. Lancet366(9493), 1279–1289 (2005).
  • Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N. Engl. J. Med.356(24), 2457–2471 (2007).
  • Home PD, Pocock SJ, Beck-Nielsen H et al. Rosiglitazone evaluated for cardiovascular outcomes in oral agent combination therapy for Type-2 diabetes (RECORD): a multicentre, randomized, open-label trial. Lancet373(9681), 2125–2135 (2009).
  • Jackson SP, Calkin AC. The clot thickens – oxidized lipids and thrombosis. Nat. Med.13(9). 1015–1016 (2007).
  • Bhatt DL. What makes platelets angry: diabetes, fibrinogen, obesity, and impaired response to antiplatelet therapy? J. Am. Coll. Cardiol.52(13), 1060–1061 (2008).
  • Berry C, Tardif JC, Bourassa MG. Coronary heart disease in patients with diabetes: part II: recent advances in coronary revascularization. J. Am. Coll. Cardiol.49(6), 643–656 (2007).
  • Gaede P, Vedel P, Larsen N, Jensen GV, Parving HH, Pedersen O. Multifactorial intervention and cardiovascular disease in patients with Type-2 diabetes. N. Engl. J. Med.348(5), 383–393 (2003).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.