108
Views
90
CrossRef citations to date
0
Altmetric
Review

Mitochondrial stress and the pathogenesis of diabetic neuropathy

, &
Pages 39-49 | Published online: 10 Jan 2014

References

  • Malik RA, Tesfaye S, Newrick PG et al. Sural nerve pathology in diabetic patients with minimal but progressive neuropathy. Diabetologia48(3), 578–585 (2005).
  • Sima AA. Diabetic neuropathy in Type 1 and Type 2 diabetes and the effects of C-peptide. J. Neurol. Sci.220(1–2), 133–136 (2004).
  • Yagihashi S. Pathogenetic mechanisms of diabetic neuropathy: lessons from animal models. J. Peripher. Nerv. Syst.2(2), 113–132 (1997).
  • Toth C, Brussee V, Cheng C, Zochodne DW. Diabetes mellitus and the sensory neuron. J. Neuropathol. Exp. Neurol.63(6), 561–573 (2004).
  • Vinik AI, Maser RE, Mitchell BD, Freeman R. Diabetic autonomic neuropathy. Diabetes Care26(5), 1553–1579 (2003).
  • Polydefkis M, Hauer P, Sheth S, Sirdofsky M, Griffin JW, McArthur JC. The time course of epidermal nerve fibre regeneration: studies in normal controls and in people with diabetes, with and without neuropathy. Brain127(Pt 7), 1606–1615 (2004).
  • Burnand RC, Price SA, McElhaney M, Barker D, Tomlinson DR. Expression of axotomy-inducible and apoptosis-related genes in sensory nerves of rats with experimental diabetes. Brain Res. Mol. Brain Res.132(2), 235–240 (2004).
  • Cheng C, Zochodne DW. Sensory neurons with activated caspase-3 survive long-term experimental diabetes. Diabetes52(9), 2363–2371 (2003).
  • Kamiya H, Zhang W, Sima AA. Degeneration of the Golgi and neuronal loss in dorsal root ganglia in diabetic BioBreeding/Worcester rats. Diabetologia49(11), 2763–2774 (2006).
  • Schmidt RE, Dorsey D, Parvin CA, Beaudet LN, Plurad SB, Roth KA. Dystrophic axonal swellings develop as a function of age and diabetes in human dorsal root ganglia. J. Neuropathol. Exp. Neurol.56(9), 1028–1043 (1997).
  • Sidenius P, Jakobsen J. Reduced perikaryal volume of lower motor and primary sensory neurons in early experimental diabetes. Diabetes29(3), 182–186 (1980).
  • Kennedy JM, Zochodne DW. Experimental diabetic neuropathy with spontaneous recovery: is there irreparable damage? Diabetes54(3), 830–837 (2005).
  • Kennedy WR, Wendelschafer-Crabb G, Johnson T. Quantitation of epidermal nerves in diabetic neuropathy. Neurology47(4), 1042–1048 (1996).
  • Ebenezer GJ, McArthur JC, Thomas D et al. Denervation of skin in neuropathies: the sequence of axonal and Schwann cell changes in skin biopsies. Brain130(Pt 10), 2703–2714 (2007).
  • Lauria G, Morbin M, Lombardi R et al. Axonal swellings predict the degeneration of epidermal nerve fibers in painful neuropathies. Neurology61(5), 631–636 (2003).
  • Schmidt RE. Neuropathology and pathogenesis of diabetic autonomic neuropathy. Int. Rev. Neurobiol.50, 257–292 (2002).
  • Schmidt RE, Nelson JS, Johnson EM Jr. Experimental diabetic autonomic neuropathy. Am. J. Pathol.103(2), 210–225 (1981).
  • Nja A, Purves D. The effects of nerve growth factor and its antiserum on synapses in the superior cervical ganglion of the guinea-pig. J. Physiol.277, 53–75 (1978).
  • Vincent AM, Russell JW, Low P, Feldman EL. Oxidative stress in the pathogenesis of diabetic neuropathy. Endocr. Rev.25(4), 612–628 (2004).
  • Obrosova IG. How does glucose generate oxidative stress in peripheral nerve? Int. Rev. Neurobiol.50, 3–35 (2002).
  • Cameron NE, Eaton SE, Cotter MA, Tesfaye S. Vascular factors and metabolic interactions in the pathogenesis of diabetic neuropathy. Diabetologia44(11), 1973–1988 (2001).
  • Yorek MA. The role of oxidative stress in diabetic vascular and neural disease. Free Radic. Res.37(5), 471–480 (2003).
  • Nishikawa T, Edelstein D, Du XL et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature404(6779), 787–790 (2000).
  • Russell JW, Golovoy D, Vincent AM et al. High glucose-induced oxidative stress and mitochondrial dysfunction in neurons. FASEB J.16(13), 1738–1748 (2002).
  • Coppey LJ, Gellett JS, Davidson EP, Dunlap JA, Lund DD, Yorek MA. Effect of antioxidant treatment of streptozotocin-induced diabetic rats on endoneurial blood flow, motor nerve conduction velocity, and vascular reactivity of epineurial arterioles of the sciatic nerve. Diabetes50(8), 1927–1937 (2001).
  • Coppey LJ, Gellett JS, Davidson EP, Dunlap JA, Yorek MA. Changes in endoneurial blood flow, motor nerve conduction velocity and vascular relaxation of epineurial arterioles of the sciatic nerve in ZDF-obese diabetic rats. Diabetes Metab. Res. Rev.18(1), 49–56 (2002).
  • Coppey LJ, Gellett JS, Davidson EP, Yorek MA. Preventing superoxide formation in epineurial arterioles of the sciatic nerve from diabetic rats restores endothelium-dependent vasodilation. Free Radic. Res.37(1), 33–40 (2003).
  • Obrosova IG, Van Huysen C, Fathallah L, Cao XC, Greene DA, Stevens MJ. An aldose reductase inhibitor reverses early diabetes-induced changes in peripheral nerve function, metabolism, and antioxidative defense. FASEB J.16(1), 123–125 (2002).
  • Drel VR, Mashtalir N, Ilnytska O et al. The leptin-deficient (ob/ob) mouse: a new animal model of peripheral neuropathy of Type 2 diabetes and obesity. Diabetes55(12), 3335–3343 (2006).
  • Obrosova IG, Ilnytska O, Lyzogubov VV et al. High-fat diet induced neuropathy of pre-diabetes and obesity: effects of “healthy” diet and aldose reductase inhibition. Diabetes56(10), 2598–2608 (2007).
  • Obrosova IG, Drel VR, Pacher P et al. Oxidative-nitrosative stress and poly(ADP-Ribose) polymerase (PARP) activation in experimental diabetic neuropathy: the relation is revisited. Diabetes54(12), 3435–3441 (2005).
  • Obrosova IG, Pacher P, Szabo C et al. Aldose reductase inhibition counteracts oxidative-nitrosative stress and poly(ADP-ribose) polymerase activation in tissue sites for diabetes complications. Diabetes54(1), 234–242 (2005).
  • Ho EC, Lam KS, Chen YS et al. Aldose reductase-deficient mice are protected from delayed motor nerve conduction velocity, increased c-Jun NH2-terminal kinase activation, depletion of reduced glutathione, increased superoxide accumulation, and DNA damage. Diabetes55(7), 1946–1953 (2006).
  • Price SA, Gardiner NJ, Duran-Jimenez B, Zeef LA, Obrosova IG, Tomlinson DR. Thioredoxin interacting protein is increased in sensory neurons in experimental diabetes. Brain Res.1116(1), 206–214 (2006).
  • Zherebitskaya E, Akude E, Smith DR, Fernyhough P. Development of selective axonopathy in adult sensory neurons isolated from diabetic rats: role of glucose-induced oxidative stress. Diabetes58(6), 1356–1364 (2009).
  • Obrosova IG. Diabetes and the peripheral nerve. Biochim. Biophys. Acta1792(10), 931–940 (2009).
  • Fernyhough P, Schmidt RE. Neurofilaments in diabetic neuropathy. Int. Rev. Neurobiol.50, 115–144 (2002).
  • Hall KE, Sima AA, Wiley JW. Voltage-dependent calcium currents are enhanced in dorsal root ganglion neurones from the Bio Bred/Worchester diabetic rat. J. Physiol.486(Pt 2), 313–322 (1995).
  • Huang TJ, Sayers NM, Fernyhough P, Verkhratsky A. Diabetes-induced alterations in calcium homeostasis in sensory neurones of streptozotocin-diabetic rats are restricted to lumbar ganglia and are prevented by neurotrophin-3. Diabetologia45(4), 560–570 (2002).
  • Kruglikov I, Gryshchenko O, Shutov L, Kostyuk E, Kostyuk P, Voitenko N. Diabetes-induced abnormalities in ER calcium mobilization in primary and secondary nociceptive neurons. Pflugers Arch.448(4), 395–401 (2004).
  • Verkhratsky A, Fernyhough P. Mitochondrial malfunction and Ca2+ dyshomeostasis drive neuronal pathology in diabetes. Cell Calcium44(1), 112–122 (2008).
  • Nishikawa T, Edelstein D, Brownlee M. The missing link: a single unifying mechanism for diabetic complications. Kidney Int.58(Suppl. 77), S26–S30 (2000).
  • Kalichman MW, Powell HC, Mizisin AP. Reactive, degenerative, and proliferative Schwann cell responses in experimental galactose and human diabetic neuropathy. Acta Neuropathol.95(1), 47–56 (1998).
  • Kamiya H, Zhangm W, Sima AA. Apoptotic stress is counterbalanced by survival elements preventing programmed cell death of dorsal root ganglions in subacute Type 1 diabetic BB/Wor rats. Diabetes54(11), 3288–3295 (2005).
  • Schmidt RE, Beaudet LN, Plurad SB, Dorsey DA. Axonal cytoskeletal pathology in aged and diabetic human sympathetic autonomic ganglia. Brain Res.769(2), 375–383 (1997).
  • Price SA, Agthong S, Middlemas AB, Tomlinson DR. Mitogen-activated protein kinase p38 mediates reduced nerve conduction velocity in experimental diabetic neuropathy: interactions with aldose reductase. Diabetes53(7), 1851–1856 (2004).
  • Tomlinson DR, Gardiner NJ. Glucose neurotoxicity. Nat. Rev. Neurosci.9(1), 36–45 (2008).
  • Huang TJ, Price SA, Chilton L et al. Insulin prevents depolarization of the mitochondrial inner membrane in sensory neurons of Type 1 diabetic rats in the presence of sustained hyperglycemia. Diabetes52(8), 2129–2136 (2003).
  • Huang TJ, Sayers NM, Verkhratsky A, Fernyhough P. Neurotrophin-3 prevents mitochondrial dysfunction in sensory neurons of streptozotocin-diabetic rats. Exp. Neurol.194(1), 279–283 (2005).
  • Srinivasan S, Stevens M, Wiley JW. Diabetic peripheral neuropathy: evidence for apoptosis and associated mitochondrial dysfunction. Diabetes49(11), 1932–1938 (2000).
  • Huang TJ, Verkhratsky A, Fernyhough P. Insulin enhances mitochondrial inner membrane potential and increases ATP levels through phosphoinositide 3-kinase in adult sensory neurons. Mol. Cell. Neurosci.28(1), 42–54 (2005).
  • Purves T, Middlemas A, Agthong S et al. A role for mitogen-activated protein kinases in the etiology of diabetic neuropathy. FASEB J.15(13), 2508–2514 (2001).
  • Gumy LF, Bampton ET, Tolkovsky AM. Hyperglycaemia inhibits Schwann cell proliferation and migration and restricts regeneration of axons and Schwann cells from adult murine DRG. Mol. Cell. Neurosci.37(2), 298–311 (2008).
  • Yu C, Rouen S, Dobrowsky RT. Hyperglycemia and downregulation of caveolin-1 enhance neuregulin-induced demyelination. Glia56(8), 877–887 (2008).
  • Hall KE, Liu J, Sima AA, Wiley JW. Impaired inhibitory G-protein function contributes to increased calcium currents in rats with diabetic neuropathy. J. Neurophysiol.86(2), 760–770 (2001).
  • Kostyuk E, Pronchuk N, Shmigol A. Calcium signal prolongation in sensory neurones of mice with experimental diabetes. Neuroreport6(7), 1010–1012 (1995).
  • Kostyuk E, Voitenko N, Kruglikov I et al. Diabetes-induced changes in calcium homeostasis and the effects of calcium channel blockers in rat and mice nociceptive neurons. Diabetologia44(10), 1302–1309 (2001).
  • Voitenko NV, Kostyuk EP, Kruglikov IA, Kostyuk PG. Changes in calcium signalling in dorsal horn neurons in rats with streptozotocin-induced diabetes. Neuroscience94(3), 887–890 (1999).
  • Voitenko NV, Kruglikov IA, Kostyuk EP, Kostyuk PG. Effect of streptozotocin-induced diabetes on the activity of calcium channels in rat dorsal horn neurons. Neuroscience95(2), 519–524 (2000).
  • Kostyuk E, Svichar N, Shishkin V, Kostyuk P. Role of mitochondrial dysfunction in calcium signalling alterations in dorsal root ganglion neurons of mice with experimentally-induced diabetes. Neuroscience90(2), 535–541 (1999).
  • Tahara M, Omatsu-Kanbe M, Sanada M et al. Effect of protein kinase Cβ inhibitor on Ca2+ homeostasis in diabetic sensory neurons. Neuroreport17(6), 683–688 (2006).
  • Li F, Obrosova IG, Abatan O et al. Taurine replacement attenuates hyperalgesia and abnormal calcium signaling in sensory neurons of STZ-D rats. Am. J. Physiol. Endocrinol. Metab.288(1), E29–E36 (2005).
  • David G, Barrett EF. Stimulation-evoked increases in cytosolic [Ca2+] in mouse motor nerve terminals are limited by mitochondrial uptake and are temperature-dependent. J. Neurosci.20(19), 7290–7296 (2000).
  • David G, Barrett JN, Barrett EF. Evidence that mitochondria buffer physiological Ca2+ loads in lizard motor nerve terminals. J. Physiol.509(Pt 1), 59–65 (1998).
  • Brookes PS, Yoon Y, Robotham JL, Anders MW, Sheu SS. Calcium, ATP, and ROS: a mitochondrial love–hate triangle. Am. J. Physiol. Cell Physiol.287(4), C817–C833 (2004).
  • Coatesworth W, Bolsover S. Spatially organised mitochondrial calcium uptake through a novel pathway in chick neurones. Cell Calcium39(3), 217–225 (2006).
  • Kirichok Y, Krapivinsky G, Clapham DE. The mitochondrial calcium uniporter is a highly selective ion channel. Nature427(6972), 360–364 (2004).
  • Nicholls DG, Budd SL. Mitochondria and neuronal survival. Physiol. Rev.80(1), 315–360 (2000).
  • Nicholls DG. Mitochondrial dysfunction and glutamate excitotoxicity studied in primary neuronal cultures. Curr. Mol. Med.4(2), 149–177 (2004).
  • Nicholls DG. Mitochondria and calcium signaling. Cell Calcium38(3–4), 311–317 (2005).
  • Camello-Almaraz C, Gomez-Pinilla PJ, Pozo MJ, Camello PJ. Mitochondrial reactive oxygen species and Ca2+ signaling. Am. J. Physiol. Cell Physiol.291(5), C1082–C1088 (2006).
  • Gunter TE, Yule DI, Gunter KK, Eliseev RA, Salter JD. Calcium and mitochondria. FEBS Lett.567(1), 96–102 (2004).
  • McCormack JG, Halestrap AP, Denton RM. Role of calcium ions in regulation of mammalian intramitochondrial metabolism. Physiol. Rev.70(2), 391–425 (1990).
  • Territo PR, French SA, Dunleavy MC, Evans FJ, Balaban RS. Calcium activation of heart mitochondrial oxidative phosphorylation: rapid kinetics of mVO2, NADH, AND light scattering. J. Biol. Chem.276(4), 2586–2599 (2001).
  • Gunter TE, Buntinas L, Sparagna G, Eliseev R, Gunter K. Mitochondrial calcium transport: mechanisms and functions. Cell Calcium28(5–6), 285–296 (2000).
  • Perez-Campo R, Lopez-Torres M, Cadenas S, Rojas C, Barja G. The rate of free radical production as a determinant of the rate of aging: evidence from the comparative approach. J. Comp. Physiol. B168(3), 149–158 (1998).
  • Balaban RS, Nemoto S, Finkel T. Mitochondria, oxidants, and aging. Cell120(4), 483–495 (2005).
  • Yan Y, Wei CL, Zhang WR, Cheng HP, Liu J. Cross-talk between calcium and reactive oxygen species signaling. Acta Pharmacol. Sin.27(7), 821–826 (2006).
  • Bugger H, Chen D, Riehle C et al. Tissue-specific remodeling of the mitochondrial proteome in Type 1 diabetic Akita mice. Diabetes58(9), 1986–1997 (2009).
  • Schmidt RE, Dorsey DA, Beaudet LN et al. Non-obese diabetic mice rapidly develop dramatic sympathetic neuritic dystrophy: a new experimental model of diabetic autonomic neuropathy. Am. J. Pathol.163(5), 2077–2091 (2003).
  • Schmidt RE, Dorsey DA, Beaudet LN, Peterson RG. Analysis of the Zucker diabetic fatty (ZDF) Type 2 diabetic rat model suggests a neurotrophic role for insulin/IGF-I in diabetic autonomic neuropathy. Am. J. Pathol.163(1), 21–28 (2003).
  • Schmidt RE, Green KG, Snipes LL, Feng D. Neuritic dystrophy and neuronopathy in Akita (Ins2(Akita)) diabetic mouse sympathetic ganglia. Exp. Neurol.216(1), 207–218 (2009).
  • Schmidt RE, Parvin CA, Green KG. Synaptic ultrastructural alterations anticipate the development of neuroaxonal dystrophy in sympathetic ganglia of aged and diabetic mice. J. Neuropathol. Exp. Neurol.67(12), 1166–1186 (2008).
  • Schmidt RE, Plurad SB, Parvin CA, Roth KA. Effect of diabetes and aging on human sympathetic autonomic ganglia. Am. J. Pathol.143(1), 143–153 (1993).
  • Baloh RH. Mitochondrial dynamics and peripheral neuropathy. Neuroscientist14(1), 12–18 (2008).
  • Chan DC. Mitochondria: dynamic organelles in disease, aging, and development. Cell125(7), 1241–1252 (2006).
  • Frank S. Dysregulation of mitochondrial fusion and fission: an emerging concept in neurodegeneration. Acta Neuropathol.111(2), 93–100 (2006).
  • Karbowski M, Youle RJ. Dynamics of mitochondrial morphology in healthy cells and during apoptosis. Cell Death Differ.10(8), 870–880 (2003).
  • Overly CC, Rieff HI, Hollenbeck PJ. Organelle motility and metabolism in axons vs dendrites of cultured hippocampal neurons. J. Cell Sci.109(Pt 5), 971–980 (1996).
  • Muller M, Mironov SL, Ivannikov MV, Schmidt J, Richter DW. Mitochondrial organization and motility probed by two-photon microscopy in cultured mouse brainstem neurons. Exp. Cell Res.303(1), 114–127 (2005).
  • Brown MR, Sullivan PG, Geddes JW. Synaptic mitochondria are more susceptible to Ca2+ overload than nonsynaptic mitochondria. J. Biol. Chem.281(17), 11658–11668 (2006).
  • Knott AB, Perkins G, Schwarzenbacher R, Bossy-Wetzel E. Mitochondrial fragmentation in neurodegeneration. Nat. Rev. Neurosci.9(7), 505–518 (2008).
  • Narendra D, Tanaka A, Suen DF, Youle RJ. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol.183(5), 795–803 (2008).
  • Barsoum MJ, Yuan H, Gerencser AA et al. Nitric oxide-induced mitochondrial fission is regulated by dynamin-related GTPases in neurons. EMBO J.25(16), 3900–3911 (2006).
  • Cho DH, Nakamura T, Fang J et al. S-nitrosylation of Drp1 mediates β-amyloid-related mitochondrial fission and neuronal injury. Science324(5923), 102–105 (2009).
  • Baloh RH, Schmidt RE, Pestronk A, Milbrandt J. Altered axonal mitochondrial transport in the pathogenesis of Charcot-Marie-Tooth disease from mitofusin 2 mutations. J. Neurosci.27(2), 422–430 (2007).
  • Germain D. Ubiquitin-dependent and -independent mitochondrial protein quality controls: implications in ageing and neurodegenerative diseases. Mol. Microbiol.70(6), 1334–1341 (2008).
  • Westermann B. Nitric oxide links mitochondrial fission to Alzheimer’s disease. Sci. Signal.2(69), pe29 (2009).
  • Yu T, Robotham JL, Yoon Y. Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology. Proc. Natl Acad. Sci. USA103(8), 2653–2658 (2006).
  • Leinninger GM, Backus C, Sastry AM, Yi YB, Wang CW, Feldman EL. Mitochondria in DRG neurons undergo hyperglycemic mediated injury through Bim, Bax and the fission protein Drp1. Neurobiol. Dis.23(1), 11–22 (2006).
  • Molina AJ, Wikstrom JD, Stiles L et al. Mitochondrial networking protects β cells from nutrient induced apoptosis. Diabetes58(10), 2303–2315 (2009).
  • Paltauf-Doburzynska J, Malli R, Graier WF. Hyperglycemic conditions affect shape and Ca2+ homeostasis of mitochondria in endothelial cells. J. Cardiovasc. Pharmacol.44(4), 423–436 (2004).
  • Yu T, Sheu SS, Robotham JL, Yoon Y. Mitochondrial fission mediates high glucose-induced cell death through elevated production of reactive oxygen species. Cardiovasc. Res.79(2), 341–351 (2008).
  • Park KS, Wiederkehr A, Kirkpatrick C et al. Selective actions of mitochondrial fission/fusion genes on metabolism-secretion coupling in insulin-releasing cells. J. Biol. Chem.283(48), 33347–33356 (2008).
  • Ibsen HK. The Crabtree effect: a review. Cancer Res.21, 829–841 (1961).
  • Jiang Y, Calcutt NA, Ramos KM, Mizisin AP. Novel sites of aldose reductase immunolocalization in normal and streptozotocin-diabetic rats. J. Peripher. Nerv. Syst.11(4), 274–285 (2006).
  • Kikkawa R, Umemura K, Haneda M et al. Identification and characterization of aldose reductase in cultured rat mesangial cells. Diabetes41(9), 1165–1171 (1992).
  • Llewelyn JG, Thomas PK, Mirrlees DJ. Aldose reductase activity and myo-inositol levels in sciatic nerve and dorsal root ganglia of the diabetic mutant mouse [C57/BL/Ks (db/db)]. Metabolism40(10), 1084–1087 (1991).
  • Schmidt RE, Plurad SB, Sherman WR, Williamson JR, Tilton RG. Effects of aldose reductase inhibitor sorbinil on neuroaxonal dystrophy and levels of myo-inositol and sorbitol in sympathetic autonomic ganglia of streptozocin-induced diabetic rats. Diabetes38(5), 569–579 (1989).
  • Dabkowski ER, Williamson CL, Bukowski VC et al. Diabetic cardiomyopathy-associated dysfunction in spatially distinct mitochondrial subpopulations. Am. J. Physiol. Heart Circ. Physiol.296(2), H359–H369 (2009).
  • Yang JY, Yeh HY, Lin K, Wang PH. Insulin stimulates Akt translocation to mitochondria: implications on dysregulation of mitochondrial oxidative phosphorylation in diabetic myocardium. J. Mol. Cell. Cardiol.46(6), 919–926 (2009).
  • Yu X, Tesiram YA, Towner RA et al. Early myocardial dysfunction in streptozotocin-induced diabetic mice: a study using in vivo magnetic resonance imaging (MRI). Cardiovasc. Diabetol.6, 6 (2007).
  • Herlein JA, Fink BD, O’Malley Y, Sivitz WI. Superoxide and respiratory coupling in mitochondria of insulin-deficient diabetic rats. Endocrinology150(1), 46–55 (2009).
  • Lashin OM, Szweda PA, Szweda LI, Romani AM. Decreased complex II respiration and HNE-modified SDH subunit in diabetic heart. Free Radic. Biol. Med.40(5), 886–896 (2006).
  • Shen X, Zheng S, Thongboonkerd V et al. Cardiac mitochondrial damage and biogenesis in a chronic model of Type 1 diabetes. Am. J. Physiol. Endocrinol. Metab.287(5), E896–E905 (2004).
  • Bugger H, Boudina S, Hu XX et al. Type 1 diabetic Akita mouse hearts are insulin sensitive but manifest structurally abnormal mitochondria that remain coupled despite increased uncoupling protein 3. Diabetes57(11), 2924–2932 (2008).
  • de Cavanagh EM, Ferder L, Toblli JE et al. Renal mitochondrial impairment is attenuated by AT1 blockade in experimental Type I diabetes. Am. J. Physiol. Heart Circ. Physiol.294(1), H456–H465 (2008).
  • Munusamy S, Saba H, Mitchell T, Megyesi JK, Brock RW, Macmillan-Crow LA. Alteration of renal respiratory complex-III during experimental Type-1 diabetes. BMC Endocr. Disord.9, 2 (2009).
  • Boushel R, Gnaiger E, Schjerling P, Skovbro M, Kraunsoe R, Dela F. Patients with Type 2 diabetes have normal mitochondrial function in skeletal muscle. Diabetologia50(4), 790–796 (2007).
  • Mogensen M, Sahlin K, Fernstrom M et al. Mitochondrial respiration is decreased in skeletal muscle of patients with Type 2 diabetes. Diabetes56(6), 1592–1599 (2007).
  • Phielix E, Schrauwen-Hinderling VB, Mensink M et al. Lower intrinsic ADP-stimulated mitochondrial respiration underlies in vivo mitochondrial dysfunction in muscle of male Type 2 diabetic patients. Diabetes57(11), 2943–2949 (2008).
  • Kelley DE, He J, Menshikova EV, Ritov VB. Dysfunction of mitochondria in human skeletal muscle in Type 2 diabetes. Diabetes51(10), 2944–2950 (2002).
  • Abdul-Ghani MA, Jani R, Chavez A, Molina-Carrion M, Tripathy D, Defronzo RA. Mitochondrial reactive oxygen species generation in obese non-diabetic and Type 2 diabetic participants. Diabetologia52(4), 574–582 (2009).
  • Rabol R, Hojberg PM, Almdal T et al. Improved glycaemic control decreases inner mitochondrial membrane leak in Type 2 diabetes. Diabetes Obes. Metab.11(4), 355–360 (2009).
  • Rabol R, Hojberg PM, Almdal T et al. Effect of hyperglycemia on mitochondrial respiration in Type 2 diabetes. J. Clin. Endocrinol. Metab.94(4), 1372–1378 (2009).
  • Rabol R, Svendsen PF, Skovbro M et al. Reduced skeletal muscle mitochondrial respiration and improved glucose metabolism in nondiabetic obese women during a very low calorie dietary intervention leading to rapid weight loss. Metabolism58, 1145–1152 (2009).
  • Shen W, Hao J, Tian C et al. A combination of nutriments improves mitochondrial biogenesis and function in skeletal muscle of Type 2 diabetic Goto-Kakizaki rats. PLoS ONE3(6), e2328 (2008).
  • De Feyter HM, Lenaers E, Houten SM et al. Increased intramyocellular lipid content but normal skeletal muscle mitochondrial oxidative capacity throughout the pathogenesis of Type 2 diabetes. FASEB J.22(11), 3947–3955 (2008).
  • Chowdhury SK, Gemin A, Singh G. High activity of mitochondrial glycerophosphate dehydrogenase and glycerophosphate-dependent ROS production in prostate cancer cell lines. Biochem. Biophys. Res. Commun.333(4), 1139–1145 (2005).
  • Powers WJ, Haas RH, Le T et al. Normal platelet mitochondrial complex I activity in Huntington’s disease. Neurobiol. Dis.27(1), 99–101 (2007).
  • Chowdhury SK, Raha S, Tarnopolsky MA, Singh G. Increased expression of mitochondrial glycerophosphate dehydrogenase and antioxidant enzymes in prostate cancer cell lines/cancer. Free Radic. Res.41(10), 1116–1124 (2007).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.