64
Views
4
CrossRef citations to date
0
Altmetric
Review

Neovascularization in diabetes

, &
Pages 99-111 | Published online: 10 Jan 2014

References

  • Preis SR, Pencina MJ, Hwang SJ et al. Trends in cardiovascular disease risk factors in individuals with and without diabetes mellitus in the Framingham Heart Study. Circulation120(3), 212–220 (2009).
  • Kannel WB, Hjortland M, Castelli WP. Role of diabetes in congestive heart failure: the Framingham study. Am. J. Cardiol.34(1), 29–34 (1974).
  • Gordon T, Castelli WP, Hjortland MC, Kannel WB, Dawber TR. Diabetes, blood lipids, and the role of obesity in coronary heart disease risk for women. The Framingham study. Ann. Intern. Med.87(4), 393–397 (1977).
  • Kannel WB, McGee DL. Diabetes and cardiovascular risk factors: the Framingham study. Circulation59(1), 8–13 (1979).
  • Kannel WB, McGee DL. Diabetes and cardiovascular disease. The Framingham study. JAMA241(19), 2035–2038 (1979).
  • Feener EP, King GL. Vascular dysfunction in diabetes mellitus. Lancet350(Suppl. 1), SI9–SI13 (1997).
  • Rocchini AP. Childhood obesity and a diabetes epidemic. N. Engl. J. Med.346(11), 854–855 (2002).
  • Zimmet P, Alberti KG, Shaw J. Global and societal implications of the diabetes epidemic. Nature414(6865), 782–787 (2001).
  • Centers for Disease Control and Prevention (CDC). State-specific incidence of diabetes among adults – participating states, 1995–1997 and 2005–2007. MMWR Morb. Mortal. Wkly Rep.57(43), 1169–1173 (2008).
  • Narayan KM, Boyle JP, Geiss LS, Saaddine JB, Thompson TJ. Impact of recent increase in incidence on future diabetes burden: U.S., 2005–2050. Diabetes Care29(9), 2114–2116 (2006).
  • Caro JJ, Ward AJ, O’Brien JA. Lifetime costs of complications resulting from Type 2 diabetes in the U.S. Diabetes Care25(3), 476–481 (2002).
  • Fox CS, Coady S, Sorlie PD et al. Increasing cardiovascular disease burden due to diabetes mellitus: the Framingham Heart Study. Circulation115(12), 1544–1550 (2007).
  • Moss SE, Klein R, Klein BE. Cause-specific mortality in a population-based study of diabetes. Am. J. Public Health81(9), 1158–1162 (1991).
  • Silhi N. Diabetes and wound healing. J. Wound Care7(1), 47–51 (1998).
  • Liu ZJ, Velazquez OC. Hyperoxia, endothelial progenitor cell mobilization, and diabetic wound healing. Antioxid. Redox Signal.10(11), 1869–1882 (2008).
  • Howard BV, Rodriguez BL, Bennett PH et al. Prevention Conference VI: diabetes and cardiovascular disease: Writing Group I: epidemiology. Circulation105(18), e132–e137 (2002).
  • Saydah SH, Fradkin J, Cowie CC. Poor control of risk factors for vascular disease among adults with previously diagnosed diabetes. JAMA291(3), 335–342 (2004).
  • Garcia MJ, McNamara PM, Gordon T, Kannel WB. Morbidity and mortality in diabetics in the Framingham population. Sixteen year follow-up study. Diabetes23(2), 105–111 (1974).
  • Nathan DM, Cleary PA, Backlund JY et al. Intensive diabetes treatment and cardiovascular disease in patients with Type 1 diabetes. N. Engl. J. Med.353(25), 2643–2653 (2005).
  • Haffner SM, Lehto S, Ronnemaa T, Pyorala K, Laakso M. Mortality from coronary heart disease in subjects with Type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N. Engl. J. Med.339(4), 229–234 (1998).
  • Zuanetti G, Latini R, Maggioni AP, Santoro L, Franzosi MG. Influence of diabetes on mortality in acute myocardial infarction: data from the GISSI-2 study. J. Am. Coll. Cardiol.22(7), 1788–1794 (1993).
  • Khaw KT, Wareham N, Bingham S, Luben R, Welch A, Day N. Association of hemoglobin A1c with cardiovascular disease and mortality in adults: the European prospective investigation into cancer in Norfolk. Ann. Intern. Med.141(6), 413–420 (2004).
  • Milicevic Z, Raz I, Strojek K et al. Hyperglycemia and its effect after acute myocardial infarction on cardiovascular outcomes in patients with Type 2 diabetes mellitus (HEART2D) Study design. J. Diabetes Complications19(2), 80–87 (2005).
  • Selvin E, Marinopoulos S, Berkenblit G et al. Meta-analysis: glycosylated hemoglobin and cardiovascular disease in diabetes mellitus. Ann. Intern. Med.141(6), 421–431 (2004).
  • Wilson PW. Diabetes mellitus and coronary heart disease. Am. J. Kidney Dis.32(5 Suppl. 3), S89–S100 (1998).
  • Mizuno R, Fujimoto S, Saito Y, Nakamura S. Depressed recovery of subendocardial perfusion in persistent heart failure after complete revascularisation in diabetic patients with hibernating myocardium. Heart95(10), 830–834 (2009).
  • Abbott RD, Donahue RP, Kannel WB, Wilson PW. The impact of diabetes on survival following myocardial infarction in men vs women. The Framingham Study. JAMA260(23), 3456–3460 (1988).
  • Abaci A, Oguzhan A, Kahraman S et al. Effect of diabetes mellitus on formation of coronary collateral vessels. Circulation99(17), 2239–2242 (1999).
  • Yarom R, Zirkin H, Stammler G, Rose AG. Human coronary microvessels in diabetes and ischaemia. Morphometric study of autopsy material. J. Pathol.166(3), 265–270 (1992).
  • Li Y, Hazarika S, Xie D, Pippen AM, Kontos CD, Annex BH. In mice with Type 2 diabetes, a vascular endothelial growth factor (VEGF)-activating transcription factor modulates VEGF signaling and induces therapeutic angiogenesis after hindlimb ischemia. Diabetes56(3), 656–665 (2007).
  • Hazarika S, Dokun AO, Li Y, Popel AS, Kontos CD, Annex BH. Impaired angiogenesis after hindlimb ischemia in Type 2 diabetes mellitus: differential regulation of vascular endothelial growth factor receptor 1 and soluble vascular endothelial growth factor receptor 1. Circ. Res.101(9), 948–956 (2007).
  • Boodhwani M, Sodha NR, Mieno S et al. Functional, cellular, and molecular characterization of the angiogenic response to chronic myocardial ischemia in diabetes. Circulation116(11 Suppl.), I31–I37 (2007).
  • Park CW, Kim HW, Lim JH et al. Vascular endothelial growth factor inhibition by dRK6 causes endothelial apoptosis, fibrosis, and inflammation in the heart via the Akt/eNOS Axis in db/db mice. Diabetes58(11), 2666–2676 (2009).
  • San Martin A, Du P, Dikalova A et al. Reactive oxygen species-selective regulation of aortic inflammatory gene expression in Type 2 diabetes. Am. J. Physiol. Heart Circ. Physiol.292(5), H2073–H2082 (2007).
  • Wang Y, Feng W, Xue W et al. Inactivation of GSK-3β by metallothionein prevents diabetes-related changes in cardiac energy metabolism, inflammation, nitrosative damage, and remodeling. Diabetes58(6), 1391–1402 (2009).
  • Emanueli C, Caporali A, Krankel N, Cristofaro B, Van Linthout S, Madeddu P. Type-2 diabetic Lepr(db/db) mice show a defective microvascular phenotype under basal conditions and an impaired response to angiogenesis gene therapy in the setting of limb ischemia. Front. Biosci.12, 2003–2012 (2007).
  • Schiekofer S, Galasso G, Sato K, Kraus BJ, Walsh K. Impaired revascularization in a mouse model of Type 2 diabetes is associated with dysregulation of a complex angiogenic-regulatory network. Arterioscler. Thromb. Vasc. Biol.25(8), 1603–1609 (2005).
  • Islam MM, Ali A, Khan NA et al. Comparative study of coronary collaterals in diabetic and nondiabetic patients by angiography. Mymensingh Med. J.15(2), 170–175 (2006).
  • Pirart J. [Diabetes mellitus and its degenerative complications: a prospective study of 4,400 patients observed between 1947 and 1973 (3rd and last part)]. Diabete Metab.3(4), 245–256 (1977).
  • Porter TR. Capillary blood flow abnormalities in the skeletal muscle and microvascular complications in diabetes lessons that cannot be learned from larger vessels. J. Am. Coll. Cardiol.53(23), 2184–2185 (2009).
  • Capla JM, Grogan RH, Callaghan MJ et al. Diabetes impairs endothelial progenitor cell-mediated blood vessel formation in response to hypoxia. Plast. Reconstr. Surg.119(1), 59–70 (2007).
  • Chen JX, Stinnett A. Disruption of Ang-1/Tie-2 signaling contributes to the impaired myocardial vascular maturation and angiogenesis in Type II diabetic mice. Arterioscler. Thromb. Vasc. Biol.28(9), 1606–1613 (2008).
  • Kivela R, Silvennoinen M, Touvra AM, Lehti TM, Kainulainen H, Vihko V. Effects of experimental Type 1 diabetes and exercise training on angiogenic gene expression and capillarization in skeletal muscle. FASEB J.20(9), 1570–1572 (2006).
  • Kip KE, Faxon DP, Detre KM, Yeh W, Kelsey SF, Currier JW. Coronary angioplasty in diabetic patients. The National Heart, Lung, and Blood Institute Percutaneous Transluminal Coronary Angioplasty Registry. Circulation94(8), 1818–1825 (1996).
  • Palumbo PJ, Elveback LR, Chu CP, Connolly DC, Kurland LT. Diabetes mellitus: incidence, prevalence, survivorship, and causes of death in Rochester, Minnesota, 1945–1970. Diabetes25(7), 566–573 (1976).
  • Schwartz L, Kip KE, Frye RL, Alderman EL, Schaff HV, Detre KM. Coronary bypass graft patency in patients with diabetes in the Bypass Angioplasty Revascularization Investigation (BARI). Circulation106(21), 2652–2658 (2002).
  • Gurtner GC, Werner S, Barrandon Y, Longaker MT. Wound repair and regeneration. Nature453(7193), 314–321 (2008).
  • Bauer SM, Bauer RJ, Velazquez OC. Angiogenesis, vasculogenesis, and induction of healing in chronic wounds. Vasc. Endovasc. Surg.39(4), 293–306 (2005).
  • Semenza GL, Wang GL. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol. Cell. Biol.12(12), 5447–5454 (1992).
  • Forsythe JA, Jiang BH, Iyer NV et al. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol. Cell. Biol.16(9), 4604–4613 (1996).
  • Semenza GL. Perspectives on oxygen sensing. Cell98(3), 281–284 (1999).
  • Semenza GL. Surviving ischemia: adaptive responses mediated by hypoxia-inducible factor 1. J. Clin. Invest.106(7), 809–812 (2000).
  • Hickey MM, Simon MC. Regulation of angiogenesis by hypoxia and hypoxia-inducible factors. Curr. Top. Dev. Biol.76, 217–257 (2006).
  • Loinard C, Ginouves A, Vilar J et al. Inhibition of prolyl hydroxylase domain proteins promotes therapeutic revascularization. Circulation120(1), 50–59 (2009).
  • Weidemann A, Johnson RS. Biology of HIF-1α. Cell Death Differ.15(4), 621–627 (2008).
  • Emerling BM, Weinberg F, Liu JL, Mak TW, Chandel NS. PTEN regulates p300-dependent hypoxia-inducible factor 1 transcriptional activity through Forkhead transcription factor 3a (FOXO3a). Proc. Natl Acad. Sci. USA105(7), 2622–2627 (2008).
  • Covello KL, Simon MC. HIFs, hypoxia, and vascular development. Curr. Top. Dev. Biol.62, 37–54 (2004).
  • Semenza GL. Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer3(10), 721–732 (2003).
  • Folkman J. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med.285(21), 1182–1186 (1971).
  • Folkman J, Shing Y. Angiogenesis. J. Biol. Chem.267(16), 10931–10934 (1992).
  • Murakami M, Nguyen LT, Zhuang ZW et al. The FGF system has a key role in regulating vascular integrity. J. Clin. Invest.118(10), 3355–3366 (2008).
  • Shweiki D, Itin A, Soffer D, Keshet E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature359(6398), 843–845 (1992).
  • Hu G, Xu C, Riordan JF. Human angiogenin is rapidly translocated to the nucleus of human umbilical vein endothelial cells and binds to DNA. J. Cell. Biochem.76(3), 452–462 (2000).
  • Hudlicka O, Brown MD. Adaptation of skeletal muscle microvasculature to increased or decreased blood flow: role of shear stress, nitric oxide and vascular endothelial growth factor. J. Vasc. Res.46(5), 504–512 (2009).
  • Carmeliet P. Angiogenesis in health and disease. Nat. Med.9(6), 653–660 (2003).
  • van Royen N, Piek JJ, Buschmann I, Hoefer I, Voskuil M, Schaper W. Stimulation of arteriogenesis; a new concept for the treatment of arterial occlusive disease. Cardiovasc. Res.49(3), 543–553 (2001).
  • Tuttle JL, Nachreiner RD, Bhuller AS et al. Shear level influences resistance artery remodeling: wall dimensions, cell density, and eNOS expression. Am. J. Physiol. Heart Circ. Physiol.281(3), H1380–H1389 (2001).
  • Heil M, Schaper W. Influence of mechanical, cellular, and molecular factors on collateral artery growth (arteriogenesis). Circ. Res.95(5), 449–458 (2004).
  • Simons M. Angiogenesis, arteriogenesis, and diabetes: paradigm reassessed? J. Am. Coll. Cardiol.46(5), 835–837 (2005).
  • Heil M, Schaper W. Insights into pathways of arteriogenesis. Curr. Pharm. Biotechnol.8(1), 35–42 (2007).
  • Hattori K, Dias S, Heissig B et al. Vascular endothelial growth factor and angiopoietin-1 stimulate postnatal hematopoiesis by recruitment of vasculogenic and hematopoietic stem cells. J. Exp. Med.193(9), 1005–1014 (2001).
  • Ceradini DJ, Kulkarni AR, Callaghan MJ et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat. Med.10(8), 858–864 (2004).
  • Asahara T, Masuda H, Takahashi T et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ. Res.85(3), 221–228 (1999).
  • Asahara T, Murohara T, Sullivan A et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science275(5302), 964–967 (1997).
  • Rafii DC, Psaila B, Butler J, Jin DK, Lyden D. Regulation of vasculogenesis by platelet-mediated recruitment of bone marrow-derived cells. Arterioscler. Thromb. Vasc. Biol.28(2), 217–222 (2008).
  • Velazquez OC. Angiogenesis and vasculogenesis: inducing the growth of new blood vessels and wound healing by stimulation of bone marrow-derived progenitor cell mobilization and homing. J. Vasc. Surg.45(Suppl. A), A39–A47 (2007).
  • Kopp HG, Ramos CA, Rafii S. Contribution of endothelial progenitors and proangiogenic hematopoietic cells to vascularization of tumor and ischemic tissue. Curr. Opin. Hematol.13(3), 175–181 (2006).
  • Tepper OM, Capla JM, Galiano RD et al. Adult vasculogenesis occurs through in situ recruitment, proliferation, and tubulization of circulating bone marrow-derived cells. Blood105(3), 1068–1077 (2005).
  • Zuk PA, Zhu M, Mizuno H et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng.7(2), 211–228 (2001).
  • Crisan M, Yap S, Casteilla L et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell3(3), 301–313 (2008).
  • Aicher A, Rentsch M, Sasaki K et al. Nonbone marrow-derived circulating progenitor cells contribute to postnatal neovascularization following tissue ischemia. Circ. Res.100(4), 581–589 (2007).
  • Jackson KA, Majka SM, Wang H et al. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J. Clin. Invest.107(11), 1395–1402 (2001).
  • Yi C, Xia W, Zheng Y et al. Transplantation of endothelial progenitor cells transferred by vascular endothelial growth factor gene for vascular regeneration of ischemic flaps. J. Surg. Res.135(1), 100–106 (2006).
  • Botusan IR, Sunkari VG, Savu O et al. Stabilization of HIF-1α is critical to improve wound healing in diabetic mice. Proc. Natl Acad. Sci. USA105(49), 19426–19431 (2008).
  • Catrina SB, Okamoto K, Pereira T, Brismar K, Poellinger L. Hyperglycemia regulates hypoxia-inducible factor-1α protein stability and function. Diabetes53(12), 3226–3232 (2004).
  • Ceradini DJ, Yao D, Grogan RH et al. Decreasing intracellular superoxide corrects defective ischemia-induced new vessel formation in diabetic mice. J. Biol. Chem.283(16), 10930–10938 (2008).
  • Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat. Med.1, 27–30 (1995).
  • Tepper OM, Galiano RD, Capla JM et al. Human endothelial progenitor cells from Type II diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures. Circulation106(22), 2781–2786 (2002).
  • Loomans CJ, van Haperen R, Duijs JM et al. Differentiation of bone marrow-derived endothelial progenitor cells is shifted into a proinflammatory phenotype by hyperglycemia. Mol. Med.15(5–6), 152–159 (2009).
  • Nakagawa T, Sato W, Glushakova O et al. Diabetic endothelial nitric oxide synthase knockout mice develop advanced diabetic nephropathy. J. Am. Soc. Nephrol.18(2), 539–550 (2007).
  • Thum T, Fraccarollo D, Schultheiss M et al. Endothelial nitric oxide synthase uncoupling impairs endothelial progenitor cell mobilization and function in diabetes. Diabetes56(3), 666–674 (2007).
  • Gao W, Ferguson G, Connell P et al. High glucose concentrations alter hypoxia-induced control of vascular smooth muscle cell growth via a HIF-1α-dependent pathway. J. Mol. Cell. Cardiol.42(3), 609–619 (2007).
  • Sodha NR, Clements RT, Boodhwani M et al. Endostatin and angiostatin are increased in diabetic patients with coronary artery disease and associated with impaired coronary collateral formation. Am. J. Physiol. Heart Circ. Physiol.296(2), H428–H434 (2009).
  • Kumari R, Willing LB, Krady JK, Vannucci SJ, Simpson IA. Impaired wound healing after cerebral hypoxia-ischemia in the diabetic mouse. J. Cereb. Blood Flow Metab.27(4), 710–718 (2007).
  • Moreira TJ, Cebere A, Cebers G, Ostenson CG, Efendic S, Liljequist S. Reduced HO-1 protein expression is associated with more severe neurodegeneration after transient ischemia induced by cortical compression in diabetic Goto-Kakizaki rats. J. Cereb. Blood Flow Metab.27(10), 1710–1723 (2007).
  • Podgorska M, Kocbuch K, Grden M, Szutowicz A, Pawelczyk T. Reduced ability to release adenosine by diabetic rat cardiac fibroblasts due to altered expression of nucleoside transporters. J. Physiol.576(Pt 1), 179–189 (2006).
  • Luan R, Liu S, Yin T et al. High glucose sensitizes adult cardiomyocytes to ischaemia/reperfusion injury through nitrative thioredoxin inactivation. Cardiovasc. Res.83(2), 294–302 (2009).
  • Di Filippo C, Marfella R, Cuzzocrea S et al. Hyperglycemia in streptozotocin-induced diabetic rat increases infarct size associated with low levels of myocardial HO-1 during ischemia/reperfusion. Diabetes54(3), 803–810 (2005).
  • Marfella R, Di Filippo C, Esposito K et al. Absence of inducible nitric oxide synthase reduces myocardial damage during ischemia reperfusion in streptozotocin-induced hyperglycemic mice. Diabetes53(2), 454–462 (2004).
  • Chou E, Suzuma I, Way KJ et al. Decreased cardiac expression of vascular endothelial growth factor and its receptors in insulin-resistant and diabetic states: a possible explanation for impaired collateral formation in cardiac tissue. Circulation105(3), 373–379 (2002).
  • Marfella R, Esposito K, Nappo F et al. Expression of angiogenic factors during acute coronary syndromes in human Type 2 diabetes. Diabetes53(9), 2383–2391 (2004).
  • Marisa C, Lucci I, Di Giulio C et al. MCP-1 and MIP-2 expression and production in BB diabetic rat: effect of chronic hypoxia. Mol. Cell. Biochem.276(1–2), 105–111 (2005).
  • Waltenberger J, Lange J, Kranz A. Vascular endothelial growth factor-A-induced chemotaxis of monocytes is attenuated in patients with diabetes mellitus: a potential predictor for the individual capacity to develop collaterals. Circulation102(2), 185–190 (2000).
  • Dunaeva M, Voo S, van Oosterhoud C, Waltenberger J. Sonic hedgehog is a potent chemoattractant for human monocytes: diabetes mellitus inhibits Sonic hedgehog-induced monocyte chemotaxis. Basic Res. Cardiol. DOI: 10.1007/s00395-009-0047-x (2009) (Epub ahead of print).
  • Hoenig MR, Bianchi C, Sellke FW. Hypoxia inducible factor-1 a, endothelial progenitor cells, monocytes, cardiovascular risk, wound healing, cobalt and hydralazine: a unifying hypothesis. Curr. Drug Targets9(5), 422–435 (2008).
  • Real C, Caiado F, Dias S. Endothelial progenitors in vascular repair and angiogenesis: how many are needed and what to do? Cardiovasc. Hematol. Disord. Drug Targets8(3), 185–193 (2008).
  • Zhou B, Bi YY, Han ZB et al. G-CSF-mobilized peripheral blood mononuclear cells from diabetic patients augment neovascularization in ischemic limbs but with impaired capability. J. Thromb. Haemost.4(5), 993–1002 (2006).
  • Blazer S, Khankin E, Segev Y et al. High glucose-induced replicative senescence: point of no return and effect of telomerase. Biochem. Biophys. Res. Commun.296(1), 93–101 (2002).
  • Chen C, Liu Y, Liu R, Ikenoue T, Guan KL, Zheng P. TSC-mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species. J. Exp. Med.205(10), 2397–2408 (2008).
  • Loomans CJ, de Koning EJ, Staal FJ, Rookmaaker MB, Verseyden C. Endothelial progenitor cell dysfunction: a novel concept in the pathogenesis of vascular complications of Type 1 diabetes. Diabetes53, 195–199 (2004).
  • Voo S, Dunaeva M, Eggermann J, Stadler N, Waltenberger J. Diabetes mellitus impairs CD133+ progenitor cell function after myocardial infarction. J. Intern. Med.265(2), 238–249 (2009).
  • Gallagher KA, Liu ZJ, Xiao M et al. Diabetic impairments in NO-mediated endothelial progenitor cell mobilization and homing are reversed by hyperoxia and SDF-1 α. J. Clin. Invest.117(5), 1249–1259 (2007).
  • Esper RJ, Vilarino JO, Machado RA, Paragano A. Endothelial dysfunction in normal and abnormal glucose metabolism. Adv. Cardiol.45, 17–43 (2008).
  • Urbich C, Dernbach E, Rossig L, Zeiher AM, Dimmeler S. High glucose reduces cathepsin L activity and impairs invasion of circulating progenitor cells. J. Mol. Cell. Cardiol.45(3), 429–436 (2008).
  • Fadini GP, Miorin M, Facco M et al. Circulating endothelial progenitor cells are reduced in peripheral vascular complications of Type 2 diabetes mellitus. J. Am. Coll. Cardiol.45(9), 1449–1457 (2005).
  • De Falco E, Avitabile D, Totta P et al. Altered Sdf-1-mediated diffferentiation of bone marrow-derived endothelial progenitor cells in diabetes mellitus. J. Cell. Mol. Med. (2009) DOI: 10.1111/j.1582-4934.2008.00655.x (Epub ahead of print).
  • Urbich C, Dimmeler S. Endothelial progenitor cells: characterization and role in vascular biology. Circ. Res.95(4), 343–353 (2004).
  • Ruiz E, Redondo S, Gordillo-Moscoso A et al. EPC adhesion to arteries from diabetic and non-diabetic patients: effect of pioglitazone. Front. Biosci.14, 3608–3618 (2009).
  • Ii M, Takenaka H, Asai J et al. Endothelial progenitor thrombospondin-1 mediates diabetes-induced delay in reendothelialization following arterial injury. Circ. Res.98(5), 697–704 (2006).
  • Dimmeler S, Fleming I, Fisslthaler B, Herman C, Busse R, Zeiher AM. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature399, 601–605 (1999).
  • Kim HK, Kim YJ, Kim JT et al. Alterations in the proangiogenic functions of adipose tissue-derived stromal cells isolated from diabetic rats. Stem Cells Dev.17(4), 669–680 (2008).
  • Kume S, Kato S, Yamagishi S et al. Advanced glycation end-products attenuate human mesenchymal stem cells and prevent cognate differentiation into adipose tissue, cartilage, and bone. J. Bone Miner. Res.20(9), 1647–1658 (2005).
  • El-Ftesi S, Chang EI, Longaker MT, Gurtner GC. Aging and diabetes impair the neovascular potential of adipose-derived stromal cells. Plast. Reconstr. Surg.123(2), 475–485 (2009).
  • Kazuyama E, Saito M, Kinoshita Y, Satoh I, Dimitriadis F, Satoh K. Endothelial dysfunction in the early- and late-stage Type-2 diabetic Goto-Kakizaki rat aorta. Mol. Cell. Biochem.332(1–2), 95–102 (2009).
  • Nakagami H, Kaneda Y, Ogihara T, Morishita R. Endothelial dysfunction in hyperglycemia as a trigger of atherosclerosis. Curr. Diabetes Rev.1(1), 59–63 (2005).
  • Jiang M, Wang B, Wang C et al. Angiogenesis by transplantation of HIF-1 a modified EPCs into ischemic limbs. J. Cell. Biochem.103(1), 321–334 (2008).
  • Lerman OZ, Galiano RD, Armour M, Levine JP, Gurtner GC. Cellular dysfunction in the diabetic fibroblast: impairment in migration, vascular endothelial growth factor production, and response to hypoxia. Am. J. Pathol.162(1), 303–312 (2003).
  • Rivard A, Silver M, Chen D et al. Rescue of diabetes-related impairment of angiogenesis by intramuscular gene therapy with adeno-VEGF. Am. J. Pathol.154(2), 355–363 (1999).
  • Sasso FC, Torella D, Carbonara O et al. Increased vascular endothelial growth factor expression but impaired vascular endothelial growth factor receptor signaling in the myocardium of Type 2 diabetic patients with chronic coronary heart disease. J. Am. Coll. Cardiol.46(5), 827–834 (2005).
  • Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature414(6865), 813–820 (2001).
  • Cantero AV, Portero-Otin M, Ayala V et al. Methylglyoxal induces advanced glycation end product (AGEs) formation and dysfunction of PDGF receptor-β: implications for diabetic atherosclerosis. FASEB J.21(12), 3096–3106 (2007).
  • Thangarajah H, Yao D, Chang EI et al. The molecular basis for impaired hypoxia-induced VEGF expression in diabetic tissues. Proc. Natl Acad. Sci. USA106(32), 13505–13510 (2009).
  • Giardino I, Edelstein D, Brownlee M. BCL-2 expression or antioxidants prevent hyperglycemia-induced formation of intracellular advanced glycation endproducts in bovine endothelial cells. J. Clin. Invest.97(6), 1422–1428 (1996).
  • Brownlee M, Cerami A, Vlassara H. Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications. N. Engl. J. Med.318(20), 1315–1321 (1988).
  • Tamarat R, Silvestre JS, Huijberts M et al. Blockade of advanced glycation end-product formation restores ischemia-induced angiogenesis in diabetic mice. Proc. Natl Acad. Sci. USA100(14), 8555–8560 (2003).
  • Ebrahimian TG, Heymes C, You D et al. NADPH oxidase-derived overproduction of reactive oxygen species impairs postischemic neovascularization in mice with Type 1 diabetes. Am. J. Pathol.169(2), 719–728 (2006).
  • Sambuceti G, Morbelli S, Vanella L et al. Diabetes impairs the vascular recruitment of normal stem cells by oxidant damage, reversed by increases in pAMPK, heme oxygenase-1, and adiponectin. Stem Cells27(2), 399–407 (2009).
  • Chen J, Huang L, Song M, Yu S, Gao P, Jing J. C-reactive protein upregulates receptor for advanced glycation end products expression and alters antioxidant defenses in rat endothelial progenitor cells. J. Cardiovasc. Pharmacol.53(5), 359–367 (2009).
  • Schaffer MR, Tantry U, Efron PA, Ahrendt GM, Thornton FJ, Barbul A. Diabetes-impaired healing and reduced wound nitric oxide synthesis: a possible pathophysiologic correlation. Surgery121(5), 513–519 (1997).
  • Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes54(6), 1615–1625 (2005).
  • Zhong Y, Li SH, Liu SM et al. C-reactive protein upregulates receptor for advanced glycation end products expression in human endothelial cells. Hypertension48(3), 504–511 (2006).
  • Linden E, Cai W, He JC et al. Endothelial dysfunction in patients with chronic kidney disease results from advanced glycation end products (AGE)-mediated inhibition of endothelial nitric oxide synthase through RAGE activation. Clin. J. Am. Soc. Nephrol.3(3), 691–698 (2008).
  • Chen Q, Dong L, Wang L, Kang L, Xu B. Advanced glycation end products impair function of late endothelial progenitor cells through effects on protein kinase Akt and cyclooxygenase-2. Biochem. Biophys. Res. Commun.381(2), 192–197 (2009).
  • Treins C, Giorgetti-Peraldi S, Murdaca J, Van Obberghen E. Regulation of vascular endothelial growth factor expression by advanced glycation end products. J. Biol. Chem.276(47), 43836–43841 (2001).
  • Duh E, Aiello LP. Vascular endothelial growth factor and diabetes: the agonist versus antagonist paradox. Diabetes48(10), 1899–1906 (1999).
  • Cha DR, Kim NH, Yoon JW et al. Role of vascular endothelial growth factor in diabetic nephropathy. Kidney Int.77(Suppl.), S104–S112 (2000).
  • Zheng Z, Chen H, Ke G et al. Protective effect of perindopril on diabetic retinopathy is associated with decreased vascular endothelial growth factor-to-pigment epithelium-derived factor ratio: involvement of a mitochondria-reactive oxygen species pathway. Diabetes58(4), 954–964 (2009).
  • Grattagliano I, Vendemiale G, Boscia F, Micelli-Ferrari T, Cardia L, Altomare E. Oxidative retinal products and ocular damages in diabetic patients. Free Radic. Biol. Med.25(3), 369–372 (1998).
  • Hammes HP, Alt A, Niwa T et al. Differential accumulation of advanced glycation end products in the course of diabetic retinopathy. Diabetologia42(6), 728–736 (1999).
  • Scheppke L, Aguilar E, Gariano RF et al. Retinal vascular permeability suppression by topical application of a novel VEGFR2/Src kinase inhibitor in mice and rabbits. J. Clin. Invest.118(6), 2337–2346 (2008).
  • Qaum T, Xu Q, Joussen AM et al. VEGF-initiated blood–retinal barrier breakdown in early diabetes. Invest. Ophthalmol. Vis. Sci.42(10), 2408–2413 (2001).
  • Gustavsson C, Agardh CD, Hagert P, Agardh E. Inflammatory markers in nondiabetic and diabetic rat retinas exposed to ischemia followed by reperfusion. Retina28(4), 645–652 (2008).
  • Kim JH, Yu YS, Shin JY, Lee HY, Kim KW. Deguelin inhibits retinal neovascularization by down-regulation of HIF-1α in oxygen-induced retinopathy. J. Cell. Mol. Med.12(6A), 2407–2415 (2008).
  • Jiang J, Xia XB, Xu HZ et al. Inhibition of retinal neovascularization by gene transfer of small interfering RNA targeting HIF-1α and VEGF. J. Cell Physiol.218(1), 66–74 (2009).
  • Mohamed Q, Gillies MC, Wong TY. Management of diabetic retinopathy: a systematic review. JAMA298(8), 902–916 (2007).
  • Kanesaki Y, Suzuki D, Uehara G et al. Vascular endothelial growth factor gene expression is correlated with glomerular neovascularization in human diabetic nephropathy. Am. J. Kidney Dis.45(2), 288–294 (2005).
  • Palm F, Buerk DG, Carlsson PO, Hansell P, Liss P. Reduced nitric oxide concentration in the renal cortex of streptozotocin-induced diabetic rats: effects on renal oxygenation and microcirculation. Diabetes54(11), 3282–3287 (2005).
  • Mauer SM, Steffes MW, Ellis EN, Sutherland DE, Brown DM, Goetz FC. Structural–functional relationships in diabetic nephropathy. J. Clin. Invest.74(4), 1143–1155 (1984).
  • Kriz W, LeHir M. Pathways to nephron loss starting from glomerular diseases – insights from animal models. Kidney Int.67(2), 404–419 (2005).
  • Eremina V, Sood M, Haigh J et al. Glomerular-specific alterations of VEGF-A expression lead to distinct congenital and acquired renal diseases. J. Clin. Invest.111(5), 707–716 (2003).
  • Kang DH, Kanellis J, Hugo C et al. Role of the microvascular endothelium in progressive renal disease. J. Am. Soc. Nephrol.13(3), 806–816 (2002).
  • Arany Z, Foo SY, Ma Y et al. HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1α. Nature451(7181), 1008–1012 (2008).
  • Waeber B, de la Sierra A, Ruilope LM. The ADVANCE Trial: Clarifying the role of perindopril/indapamide fixed-dose combination in the reduction of cardiovascular and renal events in patients with diabetes mellitus. Am. J. Cardiovasc. Drugs9(5), 283–291 (2009).
  • Braga MF, Leiter LA. Role of renin–angiotensin system blockade in patients with diabetes mellitus. Am. J. Cardiol.104(6), 835–839 (2009).
  • Konduracka E, Galicka-Latala D, Cieslik G et al. Effect of atorvastatin on endothelial function and inflammation in long-duration Type 1 diabetic patients without coronary heart disease and arterial hypertension. Diabetes Obes. Metab.10(9), 719–725 (2008).
  • Llevadot J, Murasawa S, Kureishi Y et al. HMG-CoA reductase inhibitor mobilizes bone marrow-derived endothelial progenitor cells. J. Clin. Invest.108, 399–405 (2001).
  • Mohler ER 3rd, Shi Y, Moore J et al. Diabetes reduces bone marrow and circulating porcine endothelial progenitor cells, an effect ameliorated by atorvastatin and independent of cholesterol. Cytometry A75(1), 75–82 (2009).
  • Economides PA, Caselli A, Tiani E, Khaodhiar L, Horton ES, Veves A. The effects of atorvastatin on endothelial function in diabetic patients and subjects at risk for Type 2 diabetes. J. Clin. Endocrinol. Metab.89(2), 740–747 (2004).
  • Kureishi Y, Luo Z, Shiojima I et al. The HMG-CoA reductase inhibitor simvastatin activates the protein kinase Akt and promotes angiogenesis in normocholesterolemic animals. Nat. Med.6(9), 1004–1010 (2000).
  • Ohshima M, Li TS, Kubo M, Qin SL, Hamano K. Antioxidant therapy attenuates diabetes-related impairment of bone marrow stem cells. Circ. J.73(1), 162–166 (2009).
  • Galiano R, Tepper O, Pelo C et al. Topical VEGF accelerates diabetic wound healing through increased angiogenesis and by mobilizing and recruiting bone marrow-derived cells. Am. J. Pathol.164(6), 1935–1947 (2004).
  • Tamarat R, Silvestre JS, Le Ricousse-Roussanne S et al. Impairment in ischemia-induced neovascularization in diabetes: bone marrow mononuclear cell dysfunction and therapeutic potential of placenta growth factor treatment. Am. J. Pathol.164(2), 457–466 (2004).
  • Liu XB, Wang JA, Ogle ME, Wei L. Prolyl hydroxylase inhibitor dimethyloxalylglycine enhances mesenchymal stem cell survival. J. Cell. Biochem.106(5), 903–911 (2009).
  • Zhu Y, Zhang L, Gidday JM. Deferroxamine preconditioning promotes long-lasting retinal ischemic tolerance. J. Ocul. Pharmacol. Ther.24(6), 527–535 (2008).
  • Feng W, Wang Y, Cai L, Kang YJ. Metallothionein rescues hypoxia-inducible factor-1 transcriptional activity in cardiomyocytes under diabetic conditions. Biochem. Biophys. Res. Commun.360(1), 286–289 (2007).
  • Barcelos LS, Duplaa C, Krankel N et al. Human CD133+ progenitor cells promote the healing of diabetic ischemic ulcers by paracrine stimulation of angiogenesis and activation of Wnt signaling. Circ. Res.104(9), 1095–1102 (2009).
  • Schatteman GC, Hanlon HD, Jiao C, Dodds SG, Christy BA. Blood-derived angioblasts accelerate blood-flow restoration in diabetic mice. J. Clin. Invest.106(4), 571–578 (2000).
  • van der Laan AM, Piek JJ, van Royen N. Targeting angiogenesis to restore the microcirculation after reperfused MI. Nat. Rev. Cardiol.6(8), 515–523 (2009).
  • Matsunaga S, Okigaki M, Takeda M et al. Endothelium-targeted overexpression of constitutively active FGF receptor induces cardioprotection in mice myocardial infarction. J. Mol. Cell. Cardiol.46(5), 663–673 (2009).
  • Chen JX, Stinnett A. Ang-1 gene therapy inhibits hypoxia-inducible factor-1α (HIF-1α)-prolyl-4-hydroxylase-2, stabilizes HIF-1α expression, and normalizes immature vasculature in db/db mice. Diabetes57(12), 3335–3343 (2008).
  • Lee PY, Chesnoy S, Huang L. Electroporatic delivery of TGF-β1 gene works synergistically with electric therapy to enhance diabetic wound healing in db/db mice. J. Invest. Dermatol.123(4), 791–798 (2004).
  • Kajiwara H, Luo Z, Belanger AJ et al. A hypoxic inducible factor-1 a hybrid enhances collateral development and reduces vascular leakage in diabetic rats. J. Gene Med.11(5), 390–400 (2009).
  • Grochot-Przeczek A, Lach R, Mis J et al. Heme oxygenase-1 accelerates cutaneous wound healing in mice. PLoS ONE4(6), e5803 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.