24
Views
0
CrossRef citations to date
0
Altmetric
Review

Multimodal imaging in functional endocrine pancreatic tumors

, , &
Pages 855-866 | Published online: 10 Jan 2014

References

  • Yao JC, Hassan M, Phan A et al. One hundred years after ‘carcinoid’: epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J. Clin. Oncol.26(18), 3063–3072 (2008).
  • Lam KY, Lo CY. Pancreatic endocrine tumour: a 22-year clinico-pathological experience with morphological, immunohistochemical observation and a review of the literature. Eur. J. Surg. Oncol.23(1), 36–42 (1997).
  • Vagefi PA, Razo O, Deshpande V et al. Evolving patterns in the detection and outcomes of pancreatic neuroendocrine neoplasms: the Massachusetts General Hospital experience from 1977 to 2005. Arch. Surg.142(4), 347–354 (2007).
  • Ito T, Sasano H, Tanaka M et al. Epidemiological study of gastroenteropancreatic neuroendocrine tumors in Japan. J. Gastroenterol.45(2), 234–243 (2010).
  • Service FJ, McMahon MM, O’Brien PC, Ballard DJ. Functioning insulinoma – incidence, recurrence, and long-term survival of patients: a 60-year study. Mayo Clin. Proc.66(7), 711–719 (1991).
  • Fendrich V, Langer P, Waldmann J, Bartsch DK, Rothmund M. Management of sporadic and multiple endocrine neoplasia type 1 gastrinomas. Br. J. Surg.94(11), 1331–1341 (2007).
  • Soga J, Yakuwa Y. Glucagonomas/diabetico-dermatogenic syndrome (DDS): a statistical evaluation of 407 reported cases. J. Hepatobiliary Pancreat. Surg.5(3), 312–319 (1998).
  • Nesi G, Marcucci T, Rubio CA, Brandi ML, Tonelli F. Somatostatinoma: clinico-pathological features of three cases and literature reviewed. J. Gastroenterol. Hepatol.23(4), 521–526 (2008).
  • Soga J, Yakuwa Y. Somatostatinoma/inhibitory syndrome: a statistical evaluation of 173 reported cases as compared to other pancreatic endocrinomas. J. Exp. Clin. Cancer Res.18(1), 13–22 (1999).
  • Soga J, Yakuwa Y. Vipoma/diarrheogenic syndrome: a statistical evaluation of 241 reported cases. J. Exp. Clin. Cancer Res.17(4), 389–400 (1998).
  • Ghaferi AA, Chojnacki KA, Long WD, Cameron JL, Yeo CJ. Pancreatic VIPomas: subject review and one institutional experience. J. Gastrointest. Surg.12(2), 382–393 (2008).
  • Zerbi A, Falconi M, Rindi G et al. Clinicopathological features of pancreatic endocrine tumors: a prospective multicenter study in Italy of 297 sporadic cases. Am. J. Gastroenterol.105(6), 1421–1429 (2010).
  • Vogel HJ, Schipper J, Hermans J. Abdominal ultrasonography: improved image quality with the combined use of a diet and laxatives. J. Clin. Ultrasound18(8), 627–630 (1990).
  • Gunther RW, Klose KJ, Ruckert K et al. Islet-cell tumors: detection of small lesions with computed tomography and ultrasound. Radiology148(2), 485–488 (1983).
  • Galiber AK, Reading CC, Charboneau JW et al. Localization of pancreatic insulinoma: comparison of pre- and intraoperative US with CT and angiography. Radiology166(2), 405–408 (1988).
  • D’Onofrio M, Mansueto G, Vasori S, Falconi M, Procacci C. Contrast-enhanced ultrasonographic detection of small pancreatic insulinoma. J. Ultrasound Med.22(4), 413–417 (2003).
  • Nagase M, Furuse J, Ishii H, Yoshino M. Evaluation of contrast enhancement patterns in pancreatic tumors by coded harmonic sonographic imaging with a microbubble contrast agent. J. Ultrasound Med.22(8), 789–795 (2003).
  • Ozawa Y, Numata K, Tanaka K et al. Contrast-enhanced sonography of small pancreatic mass lesions. J. Ultrasound Med.21(9), 983–991 (2002).
  • Oshikawa O, Tanaka S, Ioka T, Nakaizumi A, Hamada Y, Mitani T. Dynamic sonography of pancreatic tumors: comparison with dynamic CT. AJR Am. J. Roentgenol.178(5), 1133–1137 (2002).
  • Dorffel Y, Wermke W. Neuroendocrine tumors: characterization with contrast-enhanced ultrasonography. Ultraschall. Med.29(5), 506–514 (2008).
  • Malago R, D’Onofrio M, Zamboni GA et al. Contrast-enhanced sonography of nonfunctioning pancreatic neuroendocrine tumors. AJR Am. J. Roentgenol.192(2), 424–430 (2009).
  • Rosch T, Lightdale CJ, Botet JF et al. Localization of pancreatic endocrine tumors by endoscopic ultrasonography. N. Engl. J. Med.326(26), 1721–1726 (1992).
  • Fein J, Gerdes H. Localization of islet cell tumors by endoscopic ultrasonography. Gastroenterology103(2), 711–712 (1992).
  • Glover JR, Shorvon PJ, Lees WR. Endoscopic ultrasound for localisation of islet cell tumours. Gut33(1), 108–110 (1992).
  • Ueno N, Tomiyama T, Tano S, Wada S, Aizawa T, Kimura K. Utility of endoscopic ultrasonography with color Doppler function for the diagnosis of islet cell tumor. Am. J. Gastroenterol.91(4), 772–776 (1996).
  • Dietrich CF, Ignee A, Braden B, Barreiros AP, Ott M, Hocke M. Improved differentiation of pancreatic tumors using contrast-enhanced endoscopic ultrasound. Clin. Gastroenterol. Hepatol.6(5), 590–597 (2008).
  • Kann PH, Balakina E, Ivan D et al. Natural course of small, asymptomatic neuroendocrine pancreatic tumours in multiple endocrine neoplasia type 1: an endoscopic ultrasound imaging study. Endocr. Relat. Cancer13(4), 1195–1202 (2006).
  • Kann PH, Kann B, Fassbender WJ, Forst T, Bartsch DK, Langer P. Small neuroendocrine pancreatic tumors in multiple endocrine neoplasia type 1 (MEN1): least significant change of tumor diameter as determined by endoscopic ultrasound (EUS) imaging. Exp. Clin. Endocrinol. Diabetes114(7), 361–365 (2006).
  • Chatzipantelis P, Salla C, Konstantinou P, Karoumpalis I, Sakellariou S, Doumani I. Endoscopic ultrasound-guided fine-needle aspiration cytology of pancreatic neuroendocrine tumors: a study of 48 cases. Cancer114(4), 255–262 (2008).
  • Hellman P, Hennings J, Akerstrom G, Skogseid B. Endoscopic ultrasonography for evaluation of pancreatic tumours in multiple endocrine neoplasia type 1. Br. J. Surg.92(12), 1508–1512 (2005).
  • Kann PH, Ivan D, Pfutzner A, Forst T, Langer P, Schaefer S. Preoperative diagnosis of insulinoma: low body mass index, young age, and female gender are associated with negative imaging by endoscopic ultrasound. Eur. J. Endocrinol.157(2), 209–213 (2007).
  • Norton JA, Shawker TH, Doppman JL et al. Localization and surgical treatment of occult insulinomas. Ann. Surg.212(5), 615–620 (1990).
  • van Heerden JA, Grant CS, Czako PF, Service FJ, Charboneau JW. Occult functioning insulinomas: which localizing studies are indicated? Surgery112(6), 1010–1014 (1992).
  • Norton JA, Cromack DT, Shawker TH et al. Intraoperative ultrasonographic localization of islet cell tumors. A prospective comparison to palpation. Ann. Surg.207(2), 160–168 (1988).
  • Grover AC, Skarulis M, Alexander HR et al. A prospective evaluation of laparoscopic exploration with intraoperative ultrasound as a technique for localizing sporadic insulinomas. Surgery138(6), 1003–1008 (2005).
  • Van Nieuwenhove Y, Vandaele S, Op dB, Delvaux G. Neuroendocrine tumors of the pancreas. Surg. Endosc.17(10), 1658–1662 (2003).
  • Zimmer T, Stolzel U, Bader M et al. Endoscopic ultrasonography and somatostatin receptor scintigraphy in the preoperative localisation of insulinomas and gastrinomas. Gut39(4), 562–568 (1996).
  • Stafford-Johnson DB, Francis IR, Eckhauser FE, Knol JA, Chang AE. Dual-phase helical CT of nonfunctioning islet cell tumors. J. Comput. Assist. Tomogr.22(2), 335–339 (1998).
  • Van Hoe L, Gryspeerdt S, Marchal G, Baert AL, Mertens L. Helical CT for the preoperative localization of islet cell tumors of the pancreas: value of arterial and parenchymal phase images. AJR Am. J. Roentgenol.165(6), 1437–1439 (1995).
  • Chung MJ, Choi BI, Han JK, Chung JW, Han MC, Bae SH. Functioning islet cell tumor of the pancreas. Localization with dynamic spiral CT. Acta Radiol.38(1), 135–138 (1997).
  • Ichikawa T, Peterson MS, Federle MP et al. Islet cell tumor of the pancreas: biphasic CT versus MR imaging in tumor detection. Radiology216(1), 163–171 (2000).
  • Rockall AG, Reznek RH. Imaging of neuroendocrine tumours (CT/MR/US). Best Pract. Res. Clin. Endocrinol. Metab.21(1), 43–68 (2007).
  • Gouya H, Vignaux O, Augui J et al. CT, endoscopic sonography, and a combined protocol for preoperative evaluation of pancreatic insulinomas. AJR Am. J. Roentgenol.181(4), 987–992 (2003).
  • Pfannenberg AC, Burkart C, Krober SM, Eschmann SM, Horger MS, Claussen CD. Dual-phase multidetector thin-section CT in detecting duodenal gastrinoma. Abdom. Imaging30(5), 543–547 (2005).
  • Sheth S, Hruban RK, Fishman EK. Helical CT of islet cell tumors of the pancreas: typical and atypical manifestations. AJR Am. J. Roentgenol.179(3), 725–730 (2002).
  • Buetow PC, Parrino TV, Buck JL et al. Islet cell tumors of the pancreas: pathologic-imaging correlation among size, necrosis and cysts, calcification, malignant behavior, and functional status. AJR Am. J. Roentgenol.165(5), 1175–1179 (1995).
  • Owen NJ, Sohaib SA, Peppercorn PD et al. MRI of pancreatic neuroendocrine tumours. Br. J. Radiol.74(886), 968–973 (2001).
  • Semelka RC, Cumming MJ, Shoenut JP et al. Islet cell tumors: comparison of dynamic contrast-enhanced CT and MR imaging with dynamic gadolinium enhancement and fat suppression. Radiology186(3), 799–802 (1993).
  • Thoeni RF, Mueller-Lisse UG, Chan R, Do NK, Shyn PB. Detection of small, functional islet cell tumors in the pancreas: selection of MR imaging sequences for optimal sensitivity. Radiology214(2), 483–490 (2000).
  • Semelka RC, Custodio CM, Cem BN, Woosley JT. Neuroendocrine tumors of the pancreas: spectrum of appearances on MRI. J. Magn. Reson. Imaging11(2), 141–148 (2000).
  • Herwick S, Miller FH, Keppke AL. MRI of islet cell tumors of the pancreas. AJR Am. J. Roentgenol.187(5), W472–W480 (2006).
  • Rha SE, Jung SE, Lee KH, Ku YM, Byun JY, Lee JM. CT and MR imaging findings of endocrine tumor of the pancreas according to WHO classification. Eur. J. Radiol.62(3), 371–377 (2007).
  • Soyer P, Gueye C, Somveille E, Laissy JP, Scherrer A. MR diagnosis of hepatic metastases from neuroendocrine tumors versus hemangiomas: relative merits of dynamic gadolinium chelate-enhanced gradient-recalled echo and unenhanced spin-echo images. AJR Am. J. Roentgenol.165(6), 1407–1413 (1995).
  • Berger JF, Laissy JP, Limot O et al. Differentiation between multiple liver hemangiomas and liver metastases of gastrinomas: value of enhanced MRI. J. Comput. Assist. Tomogr.20(3), 349–355 (1996).
  • Wang C, Ahlstrom H, Eriksson B, Lonnemark M, McGill S, Hemmingsson A. Uptake of mangafodipir trisodium in liver metastases from endocrine tumors. J. Magn. Reson. Imaging8(3), 682–686 (1998).
  • Rockall AG, Planche K, Power N et al. Detection of neuroendocrine liver metastases with MnDPDP-enhanced MRI. Neuroendocrinology89(3), 288–295 (2009).
  • Hamoud AK, Khan MF, Aboalmaali N, Usadel KH, Wullstein C, Vogl TJ. Mangan-enhanced MR imaging for the detection and localisation of small pancreatic insulinoma. Eur. Radiol.14(5), 923–925 (2004).
  • Guettier JM, Kam A, Chang R et al. Localization of insulinomas to regions of the pancreas by intraarterial calcium stimulation: the NIH experience. J. Clin. Endocrinol. Metab.94(4), 1074–1080 (2009).
  • Morganstein DL, Lewis DH, Jackson J et al. The role of arterial stimulation and simultaneous venous sampling in addition to cross-sectional imaging for localisation of biochemically proven insulinoma. Eur. Radiol.19(10), 2467–2473 (2009).
  • Pereira PL, Roche AJ, Maier GW et al. Insulinoma and islet cell hyperplasia: value of the calcium intraarterial stimulation test when findings of other preoperative studies are negative. Radiology206(3), 703–709 (1998).
  • Imamura M, Takahashi K. Use of selective arterial secretin injection test to guide surgery in patients with Zollinger–Ellison syndrome. World J. Surg.17(4), 433–438 (1993).
  • Doppman JL, Miller DL, Chang R et al. Gastrinomas: localization by means of selective intraarterial injection of secretin. Radiology174(1), 25–29 (1990).
  • Gibril F, Doppman JL, Chang R, Weber HC, Termanini B, Jensen RT. Metastatic gastrinomas: localization with selective arterial injection of secretin. Radiology198(1), 77–84 (1996).
  • Mussig K, Petersenn S, Wehrmann M et al. Somatostatin receptor expression in a parathyroid hormone-related peptide-secreting pancreatic neuroendocrine tumour causing severe hypercalcaemia. Eur. J. Gastroenterol. Hepatol.19(8), 719–723 (2007).
  • Mussig K, Wehrmann M, Horger M et al. Lymph node gastrinoma in multiple endocrine neoplasia type 1 – a diagnostic challenge. Exp. Clin. Endocrinol. Diabetes116(9), 554–557 (2008).
  • Virgolini I, Traub T, Novotny C et al. New trends in peptide receptor radioligands. Q. J. Nucl. Med.45(2), 153–159 (2001).
  • Rodrigues M, Traub-Weidinger T, Li S, Ibi B, Virgolini I. Comparison of 111In-DOTA-DPhe1-Tyr3-octreotide and 111In-DOTA-lanreotide scintigraphy and dosimetry in patients with neuroendocrine tumours. Eur. J. Nucl. Med. Mol. Imaging33(5), 532–540 (2006).
  • Lamberts SW, Chayvialle JA, Krenning EP. The visualization of gastroenteropancreatic endocrine tumors. Metabolism41(9 Suppl. 2), 111–115 (1992).
  • Krenning EP, Kwekkeboom DJ, Bakker WH et al. Somatostatin receptor scintigraphy with [111In-DTPA-D-Phe1]- and [123I-Tyr3]-octreotide: the Rotterdam experience with more than 1000 patients. Eur. J. Nucl. Med.20(8), 716–731 (1993).
  • Krenning EP, Kooij PP, Pauwels S et al. Somatostatin receptor: scintigraphy and radionuclide therapy. Digestion57(Suppl. 1), 57–61 (1996).
  • Kumbasar B, Kamel IR, Tekes A, Eng J, Fishman EK, Wahl RL. Imaging of neuroendocrine tumors: accuracy of helical CT versus SRS. Abdom. Imaging29(6), 696–702 (2004).
  • Ezziddin S, Logvinski T, Yong-Hing C et al. Factors predicting tracer uptake in somatostatin receptor and MIBG scintigraphy of metastatic gastroenteropancreatic neuroendocrine tumors. J. Nucl. Med.47(2), 223–233 (2006).
  • Mussig K, Oksuz MO, Dudziak K et al. Association of somatostatin receptor 2 immunohistochemical expression with [111In]-DTPA octreotide scintigraphy and [68Ga]-DOTATOC PET/CT in neuroendocrine tumors. Horm. Metab. Res.42(8), 599-606 (2010).
  • Behe M, Gotthardt M, Behr TM. Imaging of gastrinomas by nuclear medicine methods. Wien. Klin. Wochenschr.119(19–20), 593–596 (2007).
  • Johnson DS, Coel MN, Bornemann M. Current imaging and possible therapeutic management of glucagonoma tumors: a case report. Clin. Nucl. Med.25(2), 120–122 (2000).
  • Schillaci O, Annibale B, Scopinaro F, delle Fave G, Colella AC. Somatostatin receptor scintigraphy of malignant somatostatinoma with indium-111-pentetreotide. J. Nucl. Med.38(6), 886–887 (1997).
  • Thomason JW, Martin RS, Fincher ME. Somatostatin receptor scintigraphy: the definitive technique for characterizing vasoactive intestinal peptide-secreting tumors. Clin. Nucl. Med.25(9), 661–664 (2000).
  • Krenning EP, Bakker WH, Breeman WA et al. Localisation of endocrine-related tumours with radioiodinated analogue of somatostatin. Lancet1(8632), 242–244 (1989).
  • Pfannenberg AC, Eschmann SM, Horger M et al. Benefit of anatomical–functional image fusion in the diagnostic work-up of neuroendocrine neoplasms. Eur. J. Nucl. Med. Mol. Imaging30(6), 835–843 (2003).
  • Schillaci O, Corleto VD, Annibale B, Scopinaro F, delle FG. Single photon emission computed tomography procedure improves accuracy of somatostatin receptor scintigraphy in gastro-entero pancreatic tumours. Ital. J. Gastroenterol. Hepatol.31(Suppl. 2), S186–S189 (1999).
  • Chiti A, Fanti S, Savelli G et al. Comparison of somatostatin receptor imaging, computed tomography and ultrasound in the clinical management of neuroendocrine gastro-entero-pancreatic tumours. Eur. J. Nucl. Med.25(10), 1396–1403 (1998).
  • Briganti V, Matteini M, Ferri P, Vaggelli L, Castagnoli A, Pieroni C. Octreoscan SPET evaluation in the diagnosis of pancreas neuroendocrine tumors. Cancer Biother. Radiopharm.16(6), 515–524 (2001).
  • Krausz Y, Keidar Z, Kogan I et al. SPECT/CT hybrid imaging with 111In-pentetreotide in assessment of neuroendocrine tumours. Clin. Endocrinol. (Oxf.)59(5), 565–573 (2003).
  • Amthauer H, Ruf J, Bohmig M et al. Diagnosis of neuroendocrine tumours by retrospective image fusion: is there a benefit? Eur. J. Nucl. Med. Mol. Imaging31(3), 342–348 (2004).
  • Virgolini I, Ambrosini V, Bomanji JB et al. Procedure guidelines for PET/CT tumour imaging with 68Ga-DOTA-conjugated peptides: 68Ga-DOTA-TOC, 68Ga-DOTA-NOC, 68Ga-DOTA-TATE. Eur. J. Nucl. Med. Mol. Imaging (2010) (In press).
  • Heppeler A, Froidevaux S, Eberle AN, Maecke HR. Receptor targeting for tumor localisation and therapy with radiopeptides. Curr. Med. Chem.7(9), 971–994 (2000).
  • Kwekkeboom DJ, Kooij PP, Bakker WH, Macke HR, Krenning EP. Comparison of 111In-DOTA-Tyr3-octreotide and 111In-DTPA-octreotide in the same patients: biodistribution, kinetics, organ and tumor uptake. J. Nucl. Med.40(5), 762–767 (1999).
  • Kowalski J, Henze M, Schuhmacher J, Macke HR, Hofmann M, Haberkorn U. Evaluation of positron emission tomography imaging using [68Ga]-DOTA-D Phe(1)-Tyr(3)-octreotide in comparison to [111In]-DTPAOC SPECT. First results in patients with neuroendocrine tumors. Mol. Imaging Biol.5(1), 42–48 (2003).
  • Buchmann I, Henze M, Engelbrecht S et al. Comparison of 68Ga-DOTATOC PET and 111In-DTPAOC (Octreoscan) SPECT in patients with neuroendocrine tumours. Eur. J. Nucl. Med. Mol. Imaging34(10), 1617–1626 (2007).
  • Gabriel M, Decristoforo C, Kendler D et al.68Ga-DOTA-Tyr3-octreotide PET in neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and CT. J. Nucl. Med.48(4), 508–518 (2007).
  • Righi L, Volante M, Tavaglione V et al. Somatostatin receptor tissue distribution in lung neuroendocrine tumours: a clinicopathologic and immunohistochemical study of 218 ‘clinically aggressive’ cases. Ann. Oncol.21(3), 548–555 (2010).
  • Cimitan M, Buonadonna A, Cannizzaro R et al. Somatostatin receptor scintigraphy versus chromogranin A assay in the management of patients with neuroendocrine tumors of different types: clinical role. Ann. Oncol.14(7), 1135–1141 (2003).
  • Koukouraki S, Strauss LG, Georgoulias V et al. Evaluation of the pharmacokinetics of 68Ga-DOTATOC in patients with metastatic neuroendocrine tumours scheduled for 90Y-DOTATOC therapy. Eur. J. Nucl. Med. Mol. Imaging33(4), 460–466 (2006).
  • Kwekkeboom DJ, De Herder WW, Kam BL et al. Treatment with the radiolabeled somatostatin analog [177 Lu-DOTA 0,Tyr3]octreotate: toxicity, efficacy, and survival. J. Clin. Oncol.26(13), 2124–2130 (2008).
  • Wild D, Schmitt JS, Ginj M et al. DOTA-NOC, a high-affinity ligand of somatostatin receptor subtypes 2, 3 and 5 for labelling with various radiometals. Eur. J. Nucl. Med. Mol. Imaging30(10), 1338–1347 (2003).
  • Vezzosi D, Bennet A, Rochaix P et al. Octreotide in insulinoma patients: efficacy on hypoglycemia, relationships with Octreoscan scintigraphy and immunostaining with anti-sst2A and anti-sst5 antibodies. Eur. J. Endocrinol.152(5), 757–767 (2005).
  • de Sa SV, Correa-Giannella ML, Machado MC et al. Somatostatin receptor subtype 5 (SSTR5) mRNA expression is related to histopathological features of cell proliferation in insulinomas. Endocr. Relat. Cancer13(1), 69–78 (2006).
  • Kauhanen S, Seppanen M, Minn H et al. Fluorine-18-L-dihydroxyphenylalanine (18F-DOPA) positron emission tomography as a tool to localize an insulinoma or β-cell hyperplasia in adult patients. J. Clin. Endocrinol. Metab.92(4), 1237–1244 (2007).
  • Koopmans KP, Neels OC, Kema IP et al. Improved staging of patients with carcinoid and islet cell tumors with 18F-dihydroxy-phenyl-alanine and 11C-5-hydroxy-tryptophan positron emission tomography. J. Clin. Oncol.26(9), 1489–1495 (2008).
  • Jager PL, Chirakal R, Marriott CJ, Brouwers AH, Koopmans KP, Gulenchyn KY. 6-L-18F-fluorodihydroxyphenylalanine PET in neuroendocrine tumors: basic aspects and emerging clinical applications. J. Nucl. Med.49(4), 573–586 (2008).
  • Minn H, Kauhanen S, Seppanen M, Nuutila P. 18F-FDOPA: a multiple-target molecule. J. Nucl. Med.50(12), 1915–1918 (2009).
  • Nikolaou A, Thomas D, Kampanellou C et al. The value of 11C-5-hydroxy-tryptophan (5HTP) positron emission tomography (PET) in neuroendocrine tumour diagnosis and management: experience from one center. J. Endocrinol. Invest. (2010) (Epub ahead of print).
  • Tessonnier L, Sebag F, Ghander C et al. Limited value of 18F-F-DOPA PET to localize pancreatic insulin-secreting tumors in adults with hyperinsulinemic hypoglycemia. J. Clin. Endocrinol. Metab.95(1), 303–307 (2010).
  • Adams S, Baum R, Rink T, Schumm-Drager PM, Usadel KH, Hor G. Limited value of fluorine-18 fluorodeoxyglucose positron emission tomography for the imaging of neuroendocrine tumours. Eur. J. Nucl. Med.25(1), 79–83 (1998).
  • Nakamoto Y, Higashi T, Sakahara H et al. Contribution of PET in the detection of liver metastases from pancreatic tumours. Clin. Radiol.54(4), 248–252 (1999).
  • Gotthardt M, Behe MP, Grass J et al. Added value of gastrin receptor scintigraphy in comparison to somatostatin receptor scintigraphy in patients with carcinoids and other neuroendocrine tumours. Endocr. Relat. Cancer13(4), 1203–1211 (2006).
  • Reubi JC, Maecke HR. Peptide-based probes for cancer imaging. J. Nucl. Med.49(11), 1735–1738 (2008).
  • de Jong M, Breeman WA, Kwekkeboom DJ, Valkema R, Krenning EP. Tumor imaging and therapy using radiolabeled somatostatin analogues. Acc. Chem. Res.42(7), 873–880 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.