45
Views
16
CrossRef citations to date
0
Altmetric
Review

Bilirubin, cardiovascular diseases and cancer: epidemiological perspectives

&
Pages 891-904 | Published online: 10 Jan 2014

References

  • McCarty MF. ‘Iatrogenic Gilbert syndrome’ — a strategy for reducing vascular and cancer risk by increasing plasma unconjugated bilirubin. Med. Hypotheses69(5), 974–994 (2007).
  • Abraham NG, Kappas A. Pharmacological and clinical aspects of hemo oxygenase. Pharmacol. Rev.60(1), 79–127 (2008).
  • Breimer LH, Mikhailidis DP. Could carbon monoxide and bilirubin be friends as well as foes of the body? Scand. J. Clin. Lab. Invest.70(1), 1–5 (2010).
  • Vítek L, Schwertner HA. The heme catabolic pathway and its protective effects on oxidative stress-mediated diseases. Adv. Clin. Chem.43, 1–57 (2007).
  • Schwertner HA, Vítek L. Gilbert syndrome, UGT1A1*28 allele, and cardiovascular disease risk: possible protective effects and therapeutic applications of bilirubin. Atherosclerosis198(1), 1–11 (2008).
  • Vítek L, Ostrow JD. Bilirubin chemistry and metabolism; harmful and protective aspects. Curr. Pharm. Des.15(25), 2869–2883 (2009).
  • Lin JP, Vitek L, Schwertner HA. Serum bilirubin and genes controlling bilirubin concentrations as biomarkers for cardiovascular disease. Clin. Chem.56(10), 1535–1543 (2010).
  • Tolman KG, Rej R. Liver function. In: Tietz Textbook of Clinical Chemistry (3rd Edition). Burtis CA, Ashwood ER (Eds). Saunders, PA, USA 1125–1177 (1999).
  • Maghzal GJ, Leck MC, Collinson E, Li C, Stocker R. Limited role for the bilirubin-biliverdin redox amplification cycle in the cellular antioxidant protection by biliverdin reductase. J. Biol. Chem.284(43), 29251–29259 (2009).
  • McDonagh AF. The biliverdin–bilirubin antioxidant cycle of cellular protection: missing a wheel? Free Radic. Biol. Med.49(5), 814–820 (2010).
  • Doumas BT, Kwok-Cheung PP, Perry BW et al. Candidate reference method for determination of total bilirubin in serum: development and validation. Clin. Chem.31(11), 1779–1789 (1985).
  • Madhavan M, Wattigney WA, Srinivasan SR, Berenson GS. Serum bilirubin distribution and its relation to cardiovascular risk in children and young adults. Atherosclerosis131(1), 107–113 (1997).
  • Zucker SD, Horn PS, Sherman KE. Serum bilirubin levels in the U.S. population: gender effect and inverse correlation with colorectal cancer. Hepatology40(8), 827–835 (2004).
  • Ohnaka K, Kono S, Inoguchi T et al. Inverse associations of serum bilirubin with high sensitivity C-reactive protein, glycated hemoglobin, and prevalence of Type 2 diabetes in middle-aged and elderly Japanese men and women. Diabetes Res. Clin. Pract.88(1), 103–110 (2010).
  • Pocock SJ, Ashby D, Shaper AG, Walker M, Broughton PM. Diurnal variations in serum biochemical and haematological measurements. J. Clin. Pathol.42(2), 172–179 (1989).
  • Fevery J. Fasting hyperbilirubinemia: unraveling the meachmism involved. Gastroenterology113(5), 1798–1800 (1997).
  • Schwertner HA. Association of smoking and low serum bilirubin antioxidant concentrations. Atherosclerosis136(2), 383–387 (1998).
  • Hayashi S, Omata Y, Sakamoto H et al. Characterization of rat heme oxygenase-3 gene. Implication of processed pseudogenes derived from heme oxygenase-2 gene. Gene336(2), 241–250 (2004).
  • Exner M, Minar E, Wagner O, Schillinger M. The role of heme oxygenase-1 promoter polymorphisms in human disease. Free Radic. Biol. Med.37(8), 1097–1104 (2004).
  • Yamada N, Yamaya M, Okinaga S et al. Microsatellite polymorphism in the heme oxygenase-1 gene promoter is associated with susceptibility to emphysema. Am. J. Hum. Genet.66(1), 187–195 (2000); erratum in: Am. J. Hum. Genet.68(6), 1542 (2001).
  • Hirai H, Kubo H, Yamaya M et al. Microsatellite polymorphism in heme oxygenase-1 gene promoter is associated with susceptibility to oxidant-induced apoptosis in lymphoblastoid cell lines. Blood102(5), 1619–1621 (2003).
  • Grant DJ, Bell DA. Bilirubin UDP-glucuronosyltransferase 1A1 gene polymorphisms: susceptibility to oxidative damage and cancer? Mol. Carcinog.29(4), 198–204 (2000).
  • Schwertner HA, Jackson WG, Tolan G. Association of low serum concentration of bilirubin with increased risk of coronary artery disease. Clin. Chem.40(1), 18–23 (1994).
  • Levinson SS. Relationship between bilirubin, apolipoprotein B, and coronary artery disease. Ann. Clin. Lab. Sci.27(3), 185–192 (1997).
  • Cerne D, Ledinski G, Kager G, Greilberger J, Wang X, Jürgens G. Comparison of laboratory parameters as risk factors for the presence and the extent of coronary or carotid atherosclerosis: the significance of apolipoprotein B to apolipoprotein all ratio. Clin. Chem. Lab. Med.38(6), 529–538 (2000).
  • Chen YH, Chau LY, Chen JW, Lin SJ. Serum bilirubin and ferritin levels link heme oxygenase-1 gene promoter polymorphism and susceptibility to coronary artery disease in diabetic patients. Diabetes Care31(8), 1615–1620 (2008).
  • Lin R, Wang Y, Wang Y et al. Common variants of four bilirubin metabolism genes and their association with serum bilirubin and coronary artery disease in Chinese Han population. Pharmacogenet. Genomics19(4), 310–318 (2009).
  • Lüblinghoff N, Winkler K, Winkelmann BR et al. Genetic variants of the promoter of the heme oxygenase-1 gene and their influence on cardiovascular disease (the Ludwigshafen Risk and Cardiovascular Health study). BMC Med. Genet.10, 36 (2009).
  • Ghem C, Sarmento-Leite RE, de Quadros AS, Rossetto S, Gottschall CA. Serum bilirubin concentration in patients with an established coronary artery disease. Int. Heart J.51(2), 86–91 (2010).
  • Tanaka M, Fukui M, Tomiyasu K et al. Low serum bilirubin concentration is associated with coronary artery calcification (CAC). Atherosclerosis206(1), 287–291 (2009).
  • Endler G, Hamwi A, Sunder-Plassmann R et al. Is low serum bilirubin an independent risk factor for coronary artery disease in men but not in women? Clin. Chem.49(7), 1201–1204 (2003).
  • Hopkins PN, Wu LL, Hunt SC, James BC, Vincent GM, Williams RR. Higher serum bilirubin is associated with decreased risk for early familial coronary artery disease. Arterioscler. Thromb. Vasc. Biol.16(2), 250–255 (1996).
  • Hunt SC, Wu LL, Hopkins PN, Williams RR. Evidence for a major gene elevating serum bilirubin concentration in Utah pedigrees. Arterioscler. Thromb. Vasc. Biol.16(8), 912–917 (1996).
  • Hsieh CJ, Chen MJ, Liao YL, Liao TN. Polymorphisms of the uridine-diphosphoglucuronosyltransferase 1A1 gene and coronary artery disease. Cell. Mol. Biol. Lett.13(1), 1–10 (2008).
  • Breimer LH, Wannamethee G, Ebrahim S, Shaper AG. Serum bilirubin and risk of ischemic heart disease in middle-aged British men. Clin. Chem.41(10), 1504–1508 (1995).
  • Djoussé L, Levy D, Cupples LA, Evans JC, D’Agostino RB, Ellison RC. Total serum bilirubin and risk of cardiovascular disease in the Framingham offspring study. Am. J. Cardiol.87(10), 1196–1200 (2001).
  • Temme EH, Zhang J, Schouten EG, Kesteloot H. Serum bilirubin and 10-year mortality risk in a Belgian population. Cancer Causes Control12(10), 887–894 (2001).
  • Bosma PJ, van der Meer IM, Bakker CT, Hofman A, Paul-Abrahamse M, Witteman JC. UGT1A1*28 allele and coronary heart disease: the Rotterdam Study. Clin. Chem.49(7), 1180–1181 (2003).
  • Troughton JA, Woodside JV, Young IS et al. Bilirubin and coronary heart disease risk in the Prospective Epidemiological Study of Myocardial Infarction (PRIME). Eur. J. Cardiovasc. Prev. Rehabil.14(1), 79–84 (2007).
  • Ekblom K, Marklund SL, Jansson JH et al. Plasma bilirubin and UGT1A1*28 are not protective factors against first-time myocardial infarction in a prospective, nested case-referent setting. Circ. Cardiovasc. Genet.3(4), 340–347 (2010).
  • Schwertner HA. Bilirubin concentration, UGT1A1*28 polymorphism, and coronary artery disease. Clin. Chem.49(7), 1039–1040 (2003).
  • Breimer LH, Mikhailidis DP. Bilirubin and peripheral arterial disease: 15 years later. Expert Opin. Ther. Targets13(2), 139–140 (2009).
  • Vítek L, Jirsa M, Brodanova M et al. Gilbert syndrome and ischemic heart disease: a protective effect of elevated bilirubin levels. Atherosclerosis160(2), 449–456 (2002).
  • Perlstein TS, Pande RL, Creager MA, Weuve J, Beckman JA. Serum total bilirubin level, prevalent stroke, and stroke outcomes: NHANES 1999–2004. Am. J. Med.121(9), 781–788 (2008).
  • Kimm H, Yun JE, Jo J, Jee SH. Low serum bilirubin level as an independent predictor of stroke incidence: a prospective study in Korean men and women. Stroke40(11), 3422–3427 (2009).
  • Nieto FJ, Iribarren C, Gross MD, Comstock GW, Cutler RG. Uric acid and serum antioxidant capacity: a reaction to atherosclerosis? Atherosclerosis148(1), 131–139 (2000).
  • Ishizaka N, Ishizaka Y, Takahashi E, Yamakado M, Hashimoto H. High serum bilirubin level is inversely associated with the presence of carotid plaque. Stroke32(2), 580–583 (2001).
  • Ishizaka N, Ishizaka Y, Toda E, Nagai R, Yamakado M. Association between serum uric acid, metabolic syndrome, and carotid atherosclerosis in Japanese individuals. Arterioscler. Thromb. Vasc. Biol.25(5), 1038–1044 (2005).
  • Erdogan D, Gullu H, Yildirim E et al. Low serum bilirubin levels are independently and inversely related to impaired flow-mediated vasodilation and increased carotid intima-media thickness in both men and women. Atherosclerosis184(2), 431–437 (2006).
  • Vítek L, Novotný L, Sperl M, Holaj R, Spácil J. The inverse association of elevated serum bilirubin levels with subclinical carotid atherosclerosis. Cerebrovasc. Dis.21(5–6), 408–414 (2006).
  • Yang XF, Chen YZ, Su JL, Wang FY, Wang LX. Relationship between serum bilirubin and carotid atherosclerosis in hypertensive patients. Intern. Med.48(18), 1595–1599 (2009).
  • Breimer LH, Spyropolous KA, Winder AF, Mikhailidis DP, Hamilton G. Is bilirubin protective against coronary artery disease? Clin. Chem.40(10), 1987–1988 (1994).
  • Perlstein TS, Pande RL, Beckman JA, Creager MA. Serum total bilirubin level and prevalent lower-extremity peripheral arterial disease: National Health and Nutrition Examination Survey (NHANES) 1999 to 2004. Arterioscler. Thromb. Vasc. Biol.28(1), 166–172 (2008).
  • Rantner B, Kollerits B, Anderwald-Stadler M et al. Association between the UGT1A1 TA-repeat polymorphism and bilirubin concentration in patients with intermittent claudication: results from the CAVASIC study. Clin. Chem.54(5), 851–857 (2008).
  • Bhuiyan AR, Srinivasan SR, Chen W, Sultana A, Berenson GS. Association of serum bilirubin with pulsatile arterial function in asymptomatic young adults: the Bogalusa Heart Study. Metabolism57(5), 612–616 (2008).
  • Chen YH, Lin SJ, Lin MW et al. Microsatellite polymorphism in promoter of heme oxygenase-1 gene is associated with susceptibility to coronary artery disease in Type 2 diabetic patients. Hum. Genet.111(1), 1–8 (2002).
  • Kaneda H, Ohno M, Taguchi J et al. Heme oxygenase-1 gene promoter polymorphism is associated with coronary artery disease in Japanese patients with coronary risk factors. Arterioscler. Thromb. Vasc. Biol.22(10), 1680–1685 (2002).
  • Endler G, Exner M, Schillinger M et al. A microsatellite polymorphism in the heme oxygenase-1 gene promoter is associated with increased bilirubin and HDL levels but not with coronary artery disease. Thromb. Haemost.91(1), 155–161 (2004).
  • Ono K, Goto Y, Takagi S et al. A promoter variant of the heme oxygenase-1 gene may reduce the incidence of ischemic heart disease in Japanese. Atherosclerosis173(2), 315–319 (2004).
  • Lin JP, O’Donnell CJ, Schwaiger JP et al. Association between the UGT1A1*28 allele, bilirubin levels, and coronary heart disease in the Framingham Heart Study. Circulation114(14), 1476–1481 (2006).
  • Kronenberg F. Associataion of bilirubin with cardiovascular outcomes. More hype than substance. Circ. Cardiovasc. Genet.3(4), 308–310 (2010).
  • Lingenhel A, Kollerits B, Schwaiger JP et al. Serum bilirubin levels, UGT1A1 polymorphisms and risk for coronary artery disease. Exp. Gerontol.43(12), 1102–1107 (2008).
  • Gajdos V, Petit FM, Perret C et al. Further evidence that the UGT1A1*28 allele is not associated with coronary heart disease: the ECTIM study. Clin. Chem.52(12), 2313–2314 (2006).
  • Breimer LH. Molecular mechanisms of oxygen radical carcinogenesis and mutagenesis: the role of DNA base damage. Mol. Carcinog.3(4), 188–197 (1990).
  • Breimer LH. Repair of DNA damage induced by reactive oxygen species. Free Radic. Res. Commun.14(3), 159–171 (1991).
  • Ko WF, Helzlsouer KJ, Comstock GW. Serum albumin, bilirubin, and uric acid and the anatomic site-specific incidence of colon cancer. J. Natl Cancer Inst.86(24), 1874–1875 (1994).
  • Ioannou GN, Liou IW, Weiss NS. Serum bilirubin and colorectal cancer risk: a population-based cohort study. Aliment. Pharmacol. Ther.23(11), 1637–1642 (2006).
  • Ching S, Ingram D, Hahnel R, Beilby J, Rossi E. Serum levels of micronutrients, antioxidants and total antioxidant status predict risk of breast cancer in a case control study. J. Nutr.132(2), 303–306 (2002).
  • Vítek L. Bilirubin and colorectal cancer. Aliment. Pharmacol. Ther.24(10), 1503–1504 (2006).
  • Ioannou GN, Liou IW, Weiss NS. Serum bilirubin and colorectal cancer risk: authors’ reply. Aliment. Pharmacol. Ther.23(10), 1504 (2006).
  • Chang KW, Lee TC, Yeh WI et al. Polymorphism in heme oxygenase-1 (HO-1) promoter is related to the risk of oral squamous cell carcinoma occurring on male areca chewers. Br. J. Cancer.91(8), 1551–1555 (2004).
  • Hu JL, Li ZY, Liu W et al. Polymorphism in heme oxygenase-1 (HO-1) promoter and alcohol are related to the risk of esophageal squamous cell carcinoma on Chinese males. Neoplasma57(1), 86–92 (2010).
  • Kikuchi A, Yamaya M, Suzuki S et al. Association of susceptibility to the development of lung adenocarcinoma with the heme oxygenase-1 gene promoter polymorphism. Hum. Genet.116(5), 354–360 (2005).
  • Lo SS, Lin SC, Wu CW et al. Heme oxygenase-1 gene promoter polymorphism is associated with risk of gastric adenocarcinoma and lymphovascular tumor invasion. Ann. Surg. Oncol.14(8), 2250–2256 (2007).
  • Sawa T, Mounawar M, Tatemichi M, Gilibert I, Katoh T, Ohshima H. Increased risk of gastric cancer in Japanese subjects is associated with microsatellite polymorphisms in the heme oxygenase-1 and the inducible nitric oxide synthase gene promoters. Cancer Lett.269(1), 78–84 (2008).
  • Okamoto I, Krögler J, Endler G et al. A microsatellite polymorphism in the heme oxygenase-1 gene promoter is associated with risk for melanoma. Int. J. Cancer119(6), 1312–1315 (2006).
  • Hong CC, Ambrosone CB, Ahn J et al. Genetic variability in iron-related oxidative stress pathways (Nrf2, NQO1, NOS3, and HO-1), iron intake, and risk of postmenopausal breast cancer. Cancer Epidemiol. Biomarkers Prev.16(9), 1784–1794 (2007).
  • Fang JL, Lazarus P. Correlation between the UDP-glucuronosyltransferase (UGT1A1) TATAA box polymorphism and carcinogen detoxification phenotype: significantly decreased glucuronidating activity against benzo(a)pyrene-7,8-dihydrodiol(-) in liver microsomes from subjects with the UGT1A1*28 variant. Cancer Epidemiol. Biomarkers Prev.13(1), 102–109 (2004).
  • Girard H, Thibaudeau J, Court MH et al.UGT1A1 polymorphisms are important determinants of dietary carcinogen detoxification in the liver. Hepatology42(2), 448–457 (2005).
  • Chang JL, Bigler J, Schwarz Y et al.UGT1A1 polymorphism is associated with serum bilirubin concentrations in a randomized, controlled, fruit and vegetable feeding trial. J. Nutr.137(4), 890–897 (2007).
  • van der Logt EM, Bergevoet SM, Roelofs HM et al. Genetic polymorphisms in UDP-glucuronosyltransferases and glutathione S-transferases and colorectal cancer risk. Carcinogenesis25(12), 2407–2415. (2004).
  • Girard H, Butler LM, Villeneuve L et al.UGT1A1 and UGT1A9 functional variants, meat intake, and colon cancer, among Caucasians and African–Americans. Mutat. Res.644(1–2), 56–63 (2008).
  • Tang KS, Chiu HF, Chen HH et al. Link between colorectal cancer and polymorphisms in the uridine-diphosphoglucuronosyltransferase 1A7 and 1A1 genes. World J. Gastroenterol.11(21), 3250–3254 (2005).
  • Lacko M, Roelofs HM, Te Morsche RH et al. Genetic polymorphism in the conjugating enzyme UGT1A1 and the risk of head and neck cancer. Int. J. Cancer DOI: 10.1002/ijc.25296 (2010) (Epub ahead of print).
  • Guillemette C, Millikan RC, Newman B, Housman D. Genetic polymorphisms in uridine diphospho-glucuronosyltransferase 1A1 and association with breast cancer among African Americans. Cancer Res.60(4), 950–956 (2000).
  • Huo D, Kim HJ, Adebamowo CA et al. Genetic polymorphisms in uridine diphospho-glucuronosyltransferase 1A1 and breast cancer risk in Africans. Breast Cancer Res. Treat.110(2), 367–376 (2008).
  • Guillemette C, De Vivo I, Hankinson SE et al. Association of genetic polymorphisms in UGT1A1 with breast cancer and plasma hormone levels. Cancer Epidemiol. Biomarkers Prev.10(6), 711–714 (2001).
  • MARIE-GENICA Consortium on Genetic Susceptibility for Menopausal Hormone Therapy Related Breast Cancer Risk. Genetic polymorphisms in phase I and phase II enzymes and breast cancer risk associated with menopausal hormone therapy in postmenopausal women. Breast Cancer Res. Treat.119(2), 463–474 (2010); erratum in Breast Cancer Res. Treat.119(2), 475 (2010).
  • Adegoke OJ, Shu XO, Gao YT et al. Genetic polymorphisms in uridine diphospho-glucuronosyltransferase 1A1 (UGT1A1) and risk of breast cancer. Breast Cancer Res. Treat.85(3), 239–245 (2004).
  • Duguay Y, McGrath M, Lépine J et al. The functional UGT1A1 promoter polymorphism decreases endometrial cancer risk. Cancer Res.64(3), 1202–1207 (2004).
  • Rebbeck TR, Troxel AB, Wang Y et al. Estrogen sulfation genes, hormone replacement therapy, and endometrial cancer risk. J. Natl Cancer Inst.98(18), 1311–1320 (2006).
  • Deming SL, Zheng W, Xu WH et al.UGT1A1 genetic polymorphisms, endogenous estrogen exposure, soy food intake, and endometrial cancer risk. Cancer Epidemiol. Biomarkers Prev.17(3), 563–570 (2008).
  • Holt SK, Rossing MA, Malone KE, Schwartz SM, Weiss NS, Chen C. Ovarian cancer risk and polymorphisms involved in estrogen catabolism. Cancer Epidemiol. Biomarkers Prev.16(3), 481–489 (2007).
  • Karatzas A, Giannatou E, Tzortzis V et al. Genetic polymorphisms in the UDP-glucuronosyltransferase 1A1 (UGT1A1) gene and prostate cancer risk in Caucasian men. Cancer Epidemiol.34(3), 345–349 (2010).
  • Fulks M, Stout RL, Dolan VF. Mortality associated with bilirubin levels in insurance applicants. J. Insur. Med.41(3), 49–53 (2009).
  • Breimer LH. Mortality associated with bilirubin levels. J. Insur. Med.41(3), 230–231 (2009).
  • Inoguchi T, Sasaki S, Kobayashi K, Takayanagi R, Yamada T. Relationship between Gilbert syndrome and prevalence of vascular complications in patients with diabetes. JAMA298(12), 1398–1400 (2007).
  • Davey Smith G, Ebrahim S. ‘Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease? Int. J. Epidemiol.32(1), 1–22 (2003).
  • Jiraskova A, Lenicek M, Vitek L. Simultaneous genotyping of microsatellite variations in HMOX1 and UGT1A1 genes using multicolored capillary electrophoresis. Clin. Biochem.43(7–8), 697–699 (2010).
  • Vítek L, Muchová L, Jančová E et al. Association of systemic lupus erythematosus with low serum bilirubin levels. Scand. J. Rheumatol. (2010) DOI: 10.3109/03009741003742748 (Epub ahead of print).
  • Vítek L, Leníček M, Jirsa M et al. Serum bilirubin levels and UGT1A1 promoter variations in patients with schizophrenia. Psychiatry Res.178(2), 449–450 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.