59
Views
0
CrossRef citations to date
0
Altmetric
Review

Physiological effects of Type 2 diabetes on mRNA processing and gene expression

, &
Pages 255-267 | Published online: 10 Jan 2014

References

  • Devaraj S, Dasu MR, Jialal I. Diabetes is a proinflammatory state: a translational perspective. Expert Rev. Endocrinol. Metab.5(1), 19–28 (2010).
  • Stumvoll M, Goldstein BJ, van Haeften TW. Type 2 diabetes: principles of pathogenesis and therapy. Lancet365(9467), 1333–1346 (2005).
  • Chang-Chen KJ, Mullur R, Bernal-Mizrachi E. β-cell failure as a complication of diabetes. Rev. Endocr. Metab. Disord.9(4), 329–343 (2008).
  • Poitout V, Robertson RP. Glucolipotoxicity: fuel excess and β-cell dysfunction. Endocr. Rev.29(3), 351–366 (2008).
  • Del Prato S. Role of glucotoxicity and lipotoxicity in the pathophysiology of Type 2 diabetes mellitus and emerging treatment strategies. Diabet. Med.26(12), 1185–1192 (2009).
  • Poitout V, Amyot J, Semache M, Zarrouki B, Hagman D, Fontes G. Glucolipotoxicity of the pancreatic β cell. Biochim. Biophys. Acta1801(3), 289–298 (2010).
  • El-Assaad W, Buteau J, Peyot ML et al. Saturated fatty acids synergize with elevated glucose to cause pancreatic β-cell death. Endocrinology144(9), 4154–4163 (2003).
  • Jacqueminet S, Briaud I, Rouault C, Reach G, Poitout V. Inhibition of insulin gene expression by long-term exposure of pancreatic β cells to palmitate is dependent on the presence of a stimulatory glucose concentration. Metabolism49(4), 532–536 (2000).
  • Briaud I, Kelpe CL, Johnson LM, Tran PO, Poitout V. Differential effects of hyperlipidemia on insulin secretion in islets of langerhans from hyperglycemic versus normoglycemic rats. Diabetes51(3), 662–668 (2002).
  • Cnop M. Fatty acids and glucolipotoxicity in the pathogenesis of Type 2 diabetes. Biochem. Soc. Trans.36(Pt 3), 348–352 (2008).
  • Briaud I, Harmon JS, Kelpe CL, Segu VB, Poitout V. Lipotoxicity of the pancreatic β-cell is associated with glucose-dependent esterification of fatty acids into neutral lipids. Diabetes50(2), 315–321 (2001).
  • Prentki M, Joly E, El-Assaad W, Roduit R. Malonyl-CoA signaling, lipid partitioning, and glucolipotoxicity: role in β-cell adaptation and failure in the etiology of diabetes. Diabetes51(Suppl. 3), S405–S413 (2002).
  • Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature414(6865), 813–820 (2001).
  • Albu JB, Heilbronn LK, Kelley DE et al. Metabolic changes following a 1-year diet and exercise intervention in patients with Type 2 diabetes. Diabetes59(3), 627–633 (2010).
  • Nadeau DA. Partnering with patients to improve therapeutic outcomes: incretin-based therapy for Type 2 diabetes. Postgrad. Med.122(3), 7–15 (2010).
  • Ghanaat-Pour H, Huang Z, Lehtihet M, Sjoholm A. Global expression profiling of glucose-regulated genes in pancreatic islets of spontaneously diabetic Goto-Kakizaki rats. J. Mol. Endocrinol.39(2), 135–150 (2007).
  • Ghanaat-Pour H, Sjoholm A. Gene expression regulated by pioglitazone and exenatide in normal and diabetic rat islets exposed to lipotoxicity. Diabetes Metab. Res. Rev.25(2), 163–184 (2009).
  • Patti ME, Butte AJ, Crunkhorn S et al. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of PGC1 and NRF1. Proc. Natl Acad. Sci. USA100(14), 8466–8471 (2003).
  • Mootha VK, Lindgren CM, Eriksson KF et al. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet.34(3), 267–273 (2003).
  • Szyf M. Epigenetics, DNA methylation, and chromatin modifying drugs. Annu. Rev. Pharmacol. Toxicol.49, 243–263 (2009).
  • Gunton JE, Kulkarni RN, Yim S et al. Loss of ARNT/HIF1β mediates altered gene expression and pancreatic-islet dysfunction in human Type 2 diabetes. Cell122(3), 337–349 (2005).
  • Marselli L, Thorne J, Dahiya S et al. Gene expression profiles of β-cell enriched tissue obtained by laser capture microdissection from subjects with Type 2 diabetes. PLoS One.5(7), e11499 (2010).
  • Tomita M, Mukae S, Geshi E, Umetsu K, Nakatani M, Katagiri T. Mitochondrial respiratory impairment in streptozotocin-induced diabetic rat heart. Jpn. Circ. J.60(9), 673–682 (1996).
  • Kelley DE, He J, Menshikova EV, Ritov VB. Dysfunction of mitochondria in human skeletal muscle in Type 2 diabetes. Diabetes51(10), 2944–2950 (2002).
  • Yu T, Robotham JL, Yoon Y. Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology. Proc. Natl Acad. Sci. USA103(8), 2653–2658 (2006).
  • Yang YL, Xiang RL, Yang C et al. Gene expression profile of human skeletal muscle and adipose tissue of Chinese Han patients with Type 2 diabetes mellitus. Biomed. Environ. Sci.22(5), 359–368 (2009).
  • Meugnier E, Faraj M, Rome S et al. Acute hyperglycemia induces a global downregulation of gene expression in adipose tissue and skeletal muscle of healthy subjects. Diabetes56(4), 992–999 (2007).
  • Calnan DR, Brunet A. The FoxO code. Oncogene27(16), 2276–2288 (2008).
  • Buteau J, Accili D. Regulation of pancreatic β-cell function by the forkhead protein FoxO1. Diabetes Obes. Metab.9(Suppl. 2), 140–146 (2007).
  • Andrews GK. Regulation of metallothionein gene expression by oxidative stress and metal ions. Biochem. Pharmacol.59(1), 95–104 (2000).
  • Chiaverini N, De Ley M. Protective effect of metallothionein on oxidative stress-induced DNA damage. Free Radic. Res.44(6), 605–613 (2010).
  • Keller MP, Choi Y, Wang P et al. A gene expression network model of Type 2 diabetes links cell cycle regulation in islets with diabetes susceptibility. Genome Res.18(5), 706–716 (2008).
  • Nishikawa T, Edelstein D, Du XL et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature404(6779), 787–790 (2000).
  • Du XL, Edelstein D, Rossetti L et al. Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation. Proc. Natl Acad. Sci. USA97(22), 12222–12226 (2000).
  • Li N, Brun T, Cnop M, Cunha DA, Eizirik DL, Maechler P. Transient oxidative stress damages mitochondrial machinery inducing persistent β-cell dysfunction. J. Biol. Chem.284(35), 23602–23612 (2009).
  • Lambert AJ, Brand MD. Reactive oxygen species production by mitochondria. Methods Mol. Biol.554, 165–181 (2009).
  • Covarrubias L, Hernandez-Garcia D, Schnabel D, Salas-Vidal E, Castro-Obregon S. Function of reactive oxygen species during animal development: passive or active? Dev. Biol.320(1), 1–11 (2008).
  • Pinheiro CH, Silveira LR, Nachbar RT, Vitzel KF, Curi R. Regulation of glycolysis and expression of glucose metabolism-related genes by reactive oxygen species in contracting skeletal muscle cells. Free Radic. Biol. Med.48(7), 953–960 (2010).
  • Lenzen S, Drinkgern J, Tiedge M. Low antioxidant enzyme gene expression in pancreatic islets compared with various other mouse tissues. Free Radic. Biol. Med.20(3), 463–466 (1996).
  • Tiedge M, Lortz S, Drinkgern J, Lenzen S. Relation between antioxidant enzyme gene expression and antioxidative defense status of insulin-producing cells. Diabetes46(11), 1733–1742 (1997).
  • Prentki M, Nolan CJ. Islet β cell failure in Type 2 diabetes. J. Clin. Invest.116(7), 1802–1812 (2006).
  • Tanaka Y, Tran PO, Harmon J, Robertson RP. A role for glutathione peroxidase in protecting pancreatic β cells against oxidative stress in a model of glucose toxicity. Proc. Natl Acad. Sci. USA99(19), 12363–12368 (2002).
  • Schulze PC, Yoshioka J, Takahashi T, He Z, King GL, Lee RT. Hyperglycemia promotes oxidative stress through inhibition of thioredoxin function by thioredoxin-interacting protein. J. Biol. Chem.279(29), 30369–30374 (2004).
  • Robertson R, Zhou H, Zhang T, Harmon JS. Chronic oxidative stress as a mechanism for glucose toxicity of the β cell in Type 2 diabetes. Cell Biochem. Biophys.48(2–3), 139–146 (2007).
  • Del Guerra S, Lupi R, Marselli L et al. Functional and molecular defects of pancreatic islets in human Type 2 diabetes. Diabetes54(3), 727–735 (2005).
  • Yang RL, Li W, Shi YH, Le GW. Lipoic acid prevents high-fat diet-induced dyslipidemia and oxidative stress: a microarray analysis. Nutrition24(6), 582–588 (2008).
  • Cui J, Le G, Yang R, Shi Y. Lipoic acid attenuates high fat diet-induced chronic oxidative stress and immunosuppression in mice jejunum: a microarray analysis. Cell Immunol.260(1), 44–50 (2009).
  • Dalle-Donne I, Aldini G, Carini M, Colombo R, Rossi R, Milzani A. Protein carbonylation, cellular dysfunction, and disease progression. J. Cell Mol. Med.10(2), 389–406 (2006).
  • Nair U, Bartsch H, Nair J. Lipid peroxidation-induced DNA damage in cancer-prone inflammatory diseases: a review of published adduct types and levels in humans. Free Radic. Biol. Med.43(8), 1109–1120 (2007).
  • Kong Q, Lin CL. Oxidative damage to RNA: mechanisms, consequences, and diseases. Cell Mol. Life Sci.67(11), 1817–1829 (2010).
  • Disher K, Skandalis A. Evidence of the modulation of mRNA splicing fidelity in humans by oxidative stress and p53. Genome50(10), 946–953 (2007).
  • Takeo K, Kawai T, Nishida K et al. Oxidative stress-induced alternative splicing of transformer 2β (SFRS10) and CD44 pre-mRNAs in gastric epithelial cells. Am. J. Physiol. Cell Physiol.297(2), C330–C338 (2009).
  • Luna C, Li G, Qiu J, Epstein DL, Gonzalez P. Role of miR-29b on the regulation of the extracellular matrix in human trabecular meshwork cells under chronic oxidative stress. Mol. Vis.15, 2488–2497 (2009).
  • Simone NL, Soule BP, Ly D et al. Ionizing radiation-induced oxidative stress alters miRNA expression. PLoS One4(7), e6377 (2009).
  • Takanabe R, Ono K, Abe Y et al. Up-regulated expression of microRNA-143 in association with obesity in adipose tissue of mice fed high-fat diet. Biochem. Biophys. Res. Commun.376(4), 728–732 (2008).
  • Herrera BM, Lockstone HE, Taylor JM et al. MicroRNA-125a is over-expressed in insulin target tissues in a spontaneous rat model of Type 2 diabetes. BMC Med. Genomics2, 54 (2009).
  • Sundar IK, Caito S, Yao H, Rahman I. Oxidative stress, thiol redox signaling methods in epigenetics. Methods Enzymol.474, 213–244 (2010).
  • Noh H, Oh EY, Seo JY et al. Histone deacetylase-2 is a key regulator of diabetes- and transforming growth factor-β1-induced renal injury. Am. J. Physiol. Renal. Physiol.297(3), F729–F739 (2009).
  • Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ. Addendum: deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat. Genet.41(6), 762 (2009).
  • Spellman CW. Pathophysiology of Type 2 diabetes: targeting islet cell dysfunction. J. Am. Osteopath. Assoc.110(3 Suppl. 2), S2–S7 (2010).
  • Tazi J, Bakkour N, Stamm S. Alternative splicing and disease. Biochim. Biophys. Acta.1792(1), 14–26 (2009).
  • Cartegni L, Chew SL, Krainer AR. Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat. Rev. Genet.3(4), 285–298 (2002).
  • Minn AH, Lan H, Rabaglia ME et al. Increased insulin translation from an insulin splice-variant overexpressed in diabetes, obesity, and insulin resistance. Mol. Endocrinol.19(3), 794–803 (2005).
  • Fred RG, Bang-Berthelsen CH, Mandrup-Poulsen T, Grunnet LG, Welsh N. High glucose suppresses human islet insulin biosynthesis by inducing miR-133a leading to decreased polypyrimidine tract binding protein-expression. PLoS One5(5), e10843 (2010).
  • Tillmar L, Carlsson C, Welsh N. Control of insulin mRNA stability in rat pancreatic islets. Regulatory role of a 3´-untranslated region pyrimidine-rich sequence. J. Biol. Chem.277(2), 1099–1106 (2002).
  • Spellman R, Rideau A, Matlin A et al. Regulation of alternative splicing by PTB and associated factors. Biochem. Soc. Trans.33(Pt 3), 457–460 (2005).
  • Wang W, Lai MD. [Alternative splicing of insulin receptor mRNA in cancer and Type 2 diabetes mellitus: a review]. Yi Chuan.28(2), 226–230 (2006).
  • Keembiyehetty C, Augustin R, Carayannopoulos MO et al. Mouse glucose transporter 9 splice variants are expressed in adult liver and kidney and are up-regulated in diabetes. Mol. Endocrinol.20(3), 686–697 (2006).
  • Harada N, Yamada Y, Tsukiyama K et al. A novel GIP receptor splice variant influences GIP sensitivity of pancreatic β-cells in obese mice. Am. J. Physiol. Endocrinol. Metab.294(1), E61–E68 (2008).
  • Oram JF. ATP-binding cassette transporter A1 and cholesterol trafficking. Curr. Opin. Lipidol.13(4), 373–381 (2002).
  • Singaraja RR, James ER, Crim J, Visscher H, Chatterjee A, Hayden MR. Alternate transcripts expressed in response to diet reflect tissue-specific regulation of ABCA1. J. Lipid Res.46(10), 2061–2071 (2005).
  • Wellington CL, Walker EK, Suarez A et al. ABCA1 mRNA and protein distribution patterns predict multiple different roles and levels of regulation. Lab. Invest.82(3), 273–283 (2002).
  • Singaraja RR, Bocher V, James ER et al. Human ABCA1 BAC transgenic mice show increased high density lipoprotein cholesterol and ApoAI-dependent efflux stimulated by an internal promoter containing liver X receptor response elements in intron 1. J. Biol. Chem.276(36), 33969–33979 (2001).
  • Kersten S, Desvergne B, Wahli W. Roles of PPARs in health and disease. Nature405(6785), 421–424 (2000).
  • Vozarova B, Stefan N, Lindsay RS et al. High alanine aminotransferase is associated with decreased hepatic insulin sensitivity and predicts the development of Type 2 diabetes. Diabetes51(6), 1889–1895 (2002).
  • West J, Brousil J, Gazis A et al. Elevated serum alanine transaminase in patients with Type 1 or Type 2 diabetes mellitus. QJM99(12), 871–876 (2006).
  • Anemaet IG, Meton I, Salgado MC, Fernandez F, Baanante IV. A novel alternatively spliced transcript of cytosolic alanine aminotransferase gene associated with enhanced gluconeogenesis in liver of Sparus aurata.Int. J. Biochem. Cell Biol.40(12), 2833–2844 (2008).
  • Davies KP, Zhao W, Tar M et al. Diabetes-induced changes in the alternative splicing of the Slo gene in corporal tissue. Eur. Urol.52(4), 1229–1237 (2007).
  • Zygalaki E, Kaklamanis L, Nikolaou NI et al. Expression profile of total VEGF, VEGF splice variants and VEGF receptors in the myocardium and arterial vasculature of diabetic and non-diabetic patients with coronary artery disease. Clin. Biochem.41(1–2), 82–87 (2008).
  • Bird A. Perceptions of epigenetics. Nature447(7143), 396–398 (2007).
  • Hales CN, Barker DJ. The thrifty phenotype hypothesis. Br. Med. Bull.60, 5–20 (2001).
  • Liu L, Li Y, Tollefsbol TO. Gene-environment interactions and epigenetic basis of human diseases. Curr. Issues. Mol. Biol.10(1–2), 25–36 (2008).
  • Nathan DM, Cleary PA, Backlund JY et al. Intensive diabetes treatment and cardiovascular disease in patients with Type 1 diabetes. N. Engl. J. Med.353(25), 2643–2653 (2005).
  • Miao F, Gonzalo IG, Lanting L, Natarajan R. In vivo chromatin remodeling events leading to inflammatory gene transcription under diabetic conditions. J. Biol. Chem.279(17), 18091–18097 (2004).
  • Miao F, Wu X, Zhang L, Yuan YC, Riggs AD, Natarajan R. Genome-wide analysis of histone lysine methylation variations caused by diabetic conditions in human monocytes. J. Biol. Chem.282(18), 13854–13863 (2007).
  • Tateishi K, Okada Y, Kallin EM, Zhang Y. Role of Jhdm2a in regulating metabolic gene expression and obesity resistance. Nature458(7239), 757–761 (2009).
  • El-Osta A, Brasacchio D, Yao D et al. Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. J. Exp. Med.205(10), 2409–2417 (2008).
  • Brasacchio D, Okabe J, Tikellis C et al. Hyperglycemia induces a dynamic cooperativity of histone methylase and demethylase enzymes associated with gene-activating epigenetic marks that coexist on the lysine tail. Diabetes58(5), 1229–1236 (2009).
  • Reddy MA, Villeneuve LM, Wang M, Lanting L, Natarajan R. Role of the lysine-specific demethylase 1 in the proinflammatory phenotype of vascular smooth muscle cells of diabetic mice. Circ. Res.103(6), 615–623 (2008).
  • Shi Y, Lan F, Matson C et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell119(7), 941–953 (2004).
  • Villeneuve LM, Reddy MA, Lanting LL, Wang M, Meng L, Natarajan R. Epigenetic histone H3 lysine 9 methylation in metabolic memory and inflammatory phenotype of vascular smooth muscle cells in diabetes. Proc. Natl Acad. Sci. USA105(26), 9047–9052 (2008).
  • Ling C, Del Guerra S, Lupi R et al. Epigenetic regulation of PPARGC1A in human Type 2 diabetic islets and effect on insulin secretion. Diabetologia51(4), 615–622 (2008).
  • Barrès R, Osler ME, Yan J et al. Non-CpG methylation of the PGC-1α promoter through DNMT3B controls mitochondrial density. Cell Metab.10(3), 189–198 (2009).
  • Feng B, Chen S, Chiu J, George B, Chakrabarti S. Regulation of cardiomyocyte hypertrophy in diabetes at the transcriptional level. Am. J. Physiol. Endocrinol. Metab.294(6), E1119–E1126 (2008).
  • Kaur H, Chen S, Xin X, Chiu J, Khan ZA, Chakrabarti S. Diabetes-induced extracellular matrix protein expression is mediated by transcription coactivator p300. Diabetes55(11), 3104–3111 (2006).
  • Xu P, Vernooy SY, Guo M, Hay BA. The drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr. Biol.13(9), 790–795 (2003).
  • Poy MN, Spranger M, Stoffel M. microRNAs and the regulation of glucose and lipid metabolism. Diabetes Obes. Metab.9(Suppl. 2), 67–73 (2007).
  • Poy MN, Eliasson L, Krutzfeldt J et al. A pancreatic islet-specific microRNA regulates insulin secretion. Nature432(7014), 226–230 (2004).
  • Lynn FC, Skewes-Cox P, Kosaka Y, McManus MT, Harfe BD, German MS. MicroRNA expression is required for pancreatic islet cell genesis in the mouse. Diabetes56(12), 2938–2945 (2007).
  • Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat. Rev. Genet.11(9), 597–610 (2010).
  • Guil S, Esteller M. DNA methylomes, histone codes and miRNAs: tying it all together. Int. J. Biochem. Cell Biol.41(1), 87–95 (2009).
  • Guo H, Ingolia NT, Weissman JS, Bartel DP. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature466(7308), 835–840 (2010).
  • Hutvagner G, Zamore PD. A microRNA in a multiple-turnover RNAi enzyme complex. Science297(5589), 2056–2060 (2002).
  • Li L, Xu J, Yang D, Tan X, Wang H. Computational approaches for microRNA studies: a review. Mamm. Genome21(1–2), 1–12 (2010).
  • Croce CM. Causes and consequences of microRNA dysregulation in cancer. Nat. Rev. Genet.10(10), 704–714 (2009).
  • Kolfschoten IG, Roggli E, Nesca V, Regazzi R. Role and therapeutic potential of microRNAs in diabetes. Diabetes Obes. Metab.11(Suppl. 4), 118–129 (2009).
  • Esau C, Davis S, Murray SF et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab.3(2), 87–98 (2006).
  • Krutzfeldt J, Rajewsky N, Braich R et al. Silencing of microRNAs in vivo with ‘antagomirs’. Nature438(7068), 685–689 (2005).
  • Moore KJ, Rayner KJ, Suarez Y, Fernandez-Hernando C. MicroRNAs and cholesterol metabolism. Trends Endocrinol. Metab.21(12), 699–706 (2010).
  • Najafi-Shoushtari SH, Kristo F, Li Y et al. MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science328(5985), 1566–1569 (2010).
  • Rayner KJ, Suarez Y, Davalos A et al. MiR-33 contributes to the regulation of cholesterol homeostasis. Science328(5985), 1570–1573 (2010).
  • Marquart TJ, Allen RM, Ory DS, Baldan A. miR-33 links SREBP-2 induction to repression of sterol transporters. Proc. Natl Acad. Sci. USA107(27), 12228–12232 (2010).
  • Horie T, Ono K, Horiguchi M et al. MicroRNA-33 encoded by an intron of sterol regulatory element-binding protein 2 (Srebp2) regulates HDL in vivo. Proc. Natl Acad. Sci. USA107(40), 17321–17326 (2010).
  • Gerin I, Clerbaux LA, Haumont O et al. Expression of miR-33 from an SREBP2 intron inhibits cholesterol export and fatty acid oxidation. J. Biol. Chem.285(44), 33652–33661 (2010).
  • Foretz M, Pacot C, Dugail I et al. ADD1/SREBP-1c is required in the activation of hepatic lipogenic gene expression by glucose. Mol. Cell Biol.19(5), 3760–3768 (1999).
  • Kim JB, Sarraf P, Wright M et al. Nutritional and insulin regulation of fatty acid synthetase and leptin gene expression through ADD1/SREBP1. J. Clin. Invest.101(1), 1–9 (1998).
  • Poy MN, Hausser J, Trajkovski M et al. miR-375 maintains normal pancreatic α- and β-cell mass. Proc. Natl Acad. Sci. USA106(14), 5813–5818 (2009).
  • Li Y, Xu X, Liang Y et al. miR-375 enhances palmitate-induced lipoapoptosis in insulin-secreting NIT-1 cells by repressing myotrophin (V1) protein expression. Int. J. Clin. Exp. Pathol.3(3), 254–264 (2010).
  • Lovis P, Roggli E, Laybutt DR et al. Alterations in microRNA expression contribute to fatty acid-induced pancreatic β-cell dysfunction. Diabetes57(10), 2728–2736 (2008).
  • Lovis P, Gattesco S, Regazzi R. Regulation of the expression of components of the exocytotic machinery of insulin-secreting cells by microRNAs. Biol. Chem.389(3), 305–312 (2008).
  • Ling HY, Ou HS, Feng SD et al. Changes in microRNA profile and effects of miR-320 in insulin-resistant 3T3-L1 adipocytes. Clin. Exp. Pharmacol. Physiol. DOI: 10.1111/j.1440-1681.2009.05207.x (2009) (Epub ahead of print).
  • Esau C, Kang X, Peralta E et al. MicroRNA-143 regulates adipocyte differentiation. J. Biol. Chem.279(50), 52361–52365 (2004).
  • Gallagher IJ, Scheele C, Keller P et al. Integration of microRNA changes in vivo identifies novel molecular features of muscle insulin resistance in Type 2 diabetes. Genome Med.2(2), 9 (2010).
  • He A, Zhu L, Gupta N, Chang Y, Fang F. Overexpression of micro ribonucleic acid 29, highly up-regulated in diabetic rats, leads to insulin resistance in 3T3-L1 adipocytes. Mol. Endocrinol.21(11), 2785–2794 (2007).
  • Herrera BM, Lockstone HE, Taylor JM et al. Global microRNA expression profiles in insulin target tissues in a spontaneous rat model of Type 2 diabetes. Diabetologia53(6), 1099–1109 (2010).
  • Sengupta U, Ukil S, Dimitrova N, Agrawal S. Expression-based network biology identifies alteration in key regulatory pathways of Type 2 diabetes and associated risk/complications. PLoS One4(12), e8100 (2009).
  • Wang Q, Wang Y, Minto AW et al. MicroRNA-377 is up-regulated and can lead to increased fibronectin production in diabetic nephropathy. FASEB J.22(12), 4126–4135 (2008).
  • Du B, Ma LM, Huang MB et al. High glucose down-regulates miR-29a to increase collagen IV production in HK-2 cells. FEBS Lett.584(4), 811–816 (2010).
  • Yu XY, Song YH, Geng YJ et al. Glucose induces apoptosis of cardiomyocytes via microRNA-1 and IGF-1. Biochem. Biophys. Res. Commun.376(3), 548–552 (2008).
  • Xiao J, Luo X, Lin H et al. MicroRNA miR-133 represses HERG K+ channel expression contributing to QT prolongation in diabetic hearts. J. Biol. Chem.282(17), 12363–12367 (2007).
  • Li Y, Song YH, Li F, Yang T, Lu YW, Geng YJ. MicroRNA-221 regulates high glucose-induced endothelial dysfunction. Biochem. Biophys. Res. Commun.381(1), 81–83 (2009).
  • Zampetaki A, Kiechl S, Drozdov I et al. Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in Type 2 diabetes. Circ. Res.107(6), 810–817 (2010).
  • Moulton HM, Moulton JD. Morpholinos and their peptide conjugates: therapeutic promise and challenge for Duchenne muscular dystrophy. Biochim. Biophys. Acta1798(12), 2296–2303 (2010).
  • Groop LC, Bonadonna RC, DelPrato S et al. Glucose and free fatty acid metabolism in non-insulin-dependent diabetes mellitus. Evidence for multiple sites of insulin resistance. J. Clin. Invest.84(1), 205–213 (1989).
  • Abdul-Ghani MA, DeFronzo RA. Pathophysiology of prediabetes. Curr. Diab. Rep.9(3), 193–199 (2009).
  • Staley JP, Woolford JL Jr. Assembly of ribosomes and spliceosomes: complex ribonucleoprotein machines. Curr. Opin. Cell Biol.21(1), 109–118 (2009).
  • Warf MB, Berglund JA. Role of RNA structure in regulating pre-mRNA splicing. Trends Biochem. Sci.35(3), 169–178 (2010).
  • Licatalosi DD, Darnell RB. RNA processing and its regulation: global insights into biological networks. Nat. Rev. Genet.11(1), 75–87 (2010).
  • Kouzarides T. Chromatin modifications and their function. Cell128(4), 693–705 (2007).
  • Jenuwein T, Allis CD. Translating the histone code. Science293(5532), 1074–1080 (2001).
  • Burdge GC, Hanson MA, Slater-Jefferies JL, Lillycrop KA. Epigenetic regulation of transcription: a mechanism for inducing variations in phenotype (fetal programming) by differences in nutrition during early life? Br. J. Nutr.97(6), 1036–1046 (2007).
  • Bird A. DNA methylation patterns and epigenetic memory. Genes Dev.16(1), 6–21 (2002).
  • Fabian MR, Sonenberg N, Filipowicz W. Regulation of mRNA translation and stability by microRNAs. Annu. Rev. Biochem.79, 351–379 (2010).
  • Orom UA, Nielsen FC, Lund AH. MicroRNA-10a binds the 5´UTR of ribosomal protein mRNAs and enhances their translation. Mol. Cell30(4), 460–471 (2008).
  • Rigoutsos I. New tricks for animal microRNAs: targeting of amino acid coding regions at conserved and nonconserved sites. Cancer Res.69(8), 3245–3248 (2009).
  • Wu S, Huang S, Ding J et al. Multiple microRNAs modulate p21Cip1/Waf1 expression by directly targeting its 3´ untranslated region. Oncogene.29(15), 2302–2308 (2010).
  • Vasudevan S, Tong Y, Steitz JA. Switching from repression to activation: microRNAs can up-regulate translation. Science318(5858), 1931–1934 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.