40
Views
15
CrossRef citations to date
0
Altmetric
Review

Genetic susceptibility in pituitary adenomas: from pathogenesis to clinical implications

, , , , &
Pages 195-214 | Published online: 10 Jan 2014

References

  • Daly AF, Rixhon M, Adam C, Dempegioti A, Tichomirowa MA, Beckers A. High prevalence of pituitary adenomas: a cross-sectional study in the province of Liege, Belgium. J. Clin. Endocrinol. Metab.91(12), 4769–4775 (2006).
  • Daly A, Petrossians P, Murat A et al. A multicenter collaborative study to measure the prevalence of pituitary disease: methodology and preliminary findings. Presented at: 9th International Pituitary Congress, San Diego, CA, USA, 7–9 June 2005.
  • Arafah BM, Nasrallah MP. Pituitary tumors: pathophysiology, clinical manifestations and management. Endocr. Relat. Cancer8(4), 287–305 (2001).
  • Kaltsas GA, Nomikos P, Kontogeorgos G, Buchfelder M, Grossman AB, Diagnosis and management of pituitary carcinomas. J. Clin. Endocrinol. Metab.90(5), 3089–3099 (2005).
  • Asa SL, Ezzat S. The pathogenesis of pituitary tumors. Ann. Rev. Pathol.4, 97–126 (2009).
  • Dworakowska D, Grossman AB. The pathophysiology of pituitary adenomas. Best Pract. Res. Clin. Endocrinol. Metab.23(5), 525–541 (2009).
  • Vandeva S , Jaffrain-Rea ML, Daly AF, Tichomirowa M, Zacharieva S, Beckers A. The genetics of pituitary adenomas. Best Pract. Res. Clin. Endocrinol. Metab.24, 461–476 (2010).
  • Tichomirowa MA, Daly AF, Beckers A. Familial pituitary adenomas. J. Intern. Med.266(1), 5–18 (2009).
  • Elston MS, McDonald KL, Clifton-Bligh RJ, Robinson BG. Familial pituitary tumor syndromes. Nat. Rev. Endocrinol.5(8), 453–461 (2009).
  • Pellegata NS, Quintanilla-Martinez L, Siggelkow H et al. Germ-line mutations in p27Kip1 cause a multiple endocrine neoplasia syndrome in rats and humans. Proc. Natl Acad. Sci. USA103(42), 15558–15563 (2006).
  • Scheithauer BW, Laws ER Jr, Kovacs K, Horvath E, Randall RV, Carney JA. Pituitary adenomas of the multiple endocrine neoplasia type I syndrome. Semin. Diagn. Pathol.4(3), 205–211 (1987).
  • Daly AF, Jaffrain-Rea ML, Ciccarelli A et al. Clinical characterization of familial isolated pituitary adenomas. J. Clin. Endocrinol. Metab.91(9), 3316–3323 (2006).
  • Vierimaa O, Georgitsi M, Lehtonen R et al. Pituitary adenoma predisposition caused by germline mutations in the AIP gene. Science312(5777), 1228–1230 (2006).
  • Daly AF, Van Bellinghen JF, Khoo SK et al. Aryl hydrocarbon receptor interacting protein (AIP) gene mutations in familial isolated pituitary adenomas: analysis in 73 families. J. Clin. Endocrinol. Metab.92(5), 1891–1896 (2007).
  • Cazabat L, Guillaud-Bataille M, Bertherat J, Raffin-Sanson ML. Mutations of the gene for the aryl hydrocarbon receptor-interacting protein in pituitary adenomas. Horm. Res.71(3), 132–140 (2009).
  • Keil MF, Stratakis CA. Pituitary tumors in childhood: update of diagnosis, treatment and molecular genetics. Expert Rev. Neurother.8(4), 563–574 (2008).
  • Barlier A, Vanbellinghen JF, Daly AF et al. Mutations in the aryl hydrocarbon receptor interacting protein gene are not highly prevalent among subjects with sporadic pituitary adenomas. J. Clin. Endocrinol. Metab.92(5), 1952–1955 (2007).
  • Cazabat L, Libè R, Perlemoine K et al. Germline inactivating mutations of the aryl hydrocarbon receptor-interacting protein gene in a large cohort of sporadic acromegaly: mutations are found in a subset of young patients with macroadenomas. Eur. J. Endocrinol.157(1), 1–8 (2007).
  • Georgitsi M, De Menis E, Cannavò S et al. Aryl hydrocarbon receptor interacting protein (AIP) gene mutation analysis in children and adolescents with sporadic pituitary adenomas. Clin. Endocrinol. (Oxf.)69(4), 621–627 (2008).
  • Daly AF, Tichomirowa MA, Petrossians P et al. Clinical characteristics and therapeutic responses in patients with germline AIP mutations and pituitary adenomas: an international collaborative study. J. Clin. Endocrinol. Metab.95(11), E373–E383 (2010).
  • Marini F, Falchetti A, Del Monte F et al. Multiple endocrine neoplasia type 1. Orphanet J. Rare Dis.1, 38 (2006).
  • Chandrasekharappa SC, Guru SC, Manickam P et al. Positional cloning of the gene for multiple endocrine neoplasia-type 1. Science276(5311), 404–407 (1997).
  • Lemmens I, Van de Ven WJM, Kas K et al. Identification of the multiple endocrine neoplasia type 1 (MEN1) gene. Hum. Mol. Genet.6(7), 1177–1183 (1997).
  • Lemos MC, Thakker RV. Multiple endocrine neoplasia type 1 (MEN1): analysis of 1,336 mutations reported during the first decade following identification of the gene. Hum. Mut.29(1), 22–32 (2008).
  • Hao W, Skarulis MC, Simonds WF et al. Multiple endocrine neoplasia type 1 variant with frequent prolactinoma and rare gastrinoma. J. Clin. Endocrinol. Metab.89(8), 3776–3784 (2004).
  • Verges B, Boureille F, Goudet P et al. Pituitary disease in MEN type 1 (MEN1): data from the France–Belgium MEN1 multicenter study. J. Clin. Endocrinol. Metab.87(2), 457–465 (2002).
  • Trouillas J, Labat-Moleur F, Sturm N et al. Pituitary tumors and hyperplasia in multiple endocrine neoplasia type 1 syndrome (MEN1): a case–control study in a series of 77 patients versus 2509 non-MEN1 patients. Am. J. Surg. Pathol.32(4), 534–543 (2008).
  • Scheithauer BW, Kovacs K, Nose V et al. Multiple endocrine neoplasia type 1-associated thyrotropin-producing pituitary carcinoma: report of a probable de novo example. Hum. Pathol.40(2), 270–278 (2009).
  • Agarwal S, Ozawa A, Mateo CM, Marx SJ. The MEN1 gene and pituitary tumours. Horm. Res.71(Suppl. 2), 131–138 (2009).
  • Olufemi SE, Green J, Manickam P et al. Common ancestral mutation in the MEN1 gene is likely responsible for the prolactinoma prolactinoma variant of MEN1 (MEN1Burin) in four kindreds from Newfoundland. Hum. Mut.11(4), 264–269 (1998).
  • Pannett AJ, Thakker RV. Somatic mutations in MEN type 1 tumours, consistent with the Knudson “two-hit” hypothesis. J. Clin. Endocrinol. Metab.86(9), 4371–4374 (2001).
  • Bertolino P, Tong WM, Galendo D, Wang ZQ, Zhang CX. Heterozygous Men1 mutant mice develop a range of endocrine tumors mimicking multiple endocrine neoplasia type 1. Mol. Endocrinol.17(9), 1880–1892 (2003).
  • Biondi CA, Gartside MG, Waring P et al. Conditional inactivation of the Men1 gene leads to pancreatic and pituitary tumorigenesis but does not affect normal development of these tissues. Mol. Cell Biol.24(8), 3125–3131 (2004).
  • Agarwal SK, Burns AL, Sukhodolets KE et al. Molecular pathology of the MEN1 gene. NY Natl Acad. Sci.1014, 189–198 (2004).
  • Tsukada T, Nagamura Y, Okhura N, Men1 gene and its mutations: basic and clinical implications. Cancer Sci.100(2), 209–215 (2009).
  • Dreijerink KMA, Lips CJM, Timmers HTM. Multiple endocrine neoplasia type 1: a chromatin writer’s block. J. Intern. Med.266(1), 53–59 (2009).
  • Namihira H, Sato M, Murao K et al. The multiple endocrine neoplasia type 1 gene product, menin, inhibits the human PRL promoter activity. J. Mol. Endocrinol.29(3), 297–304 (2002).
  • Scacheri PC, Davis S, Odom DT et al. Genome-wide analysis of menin binding provides insights into MEN1 tumorigenesis. PLoS Genet.2(4), e51 (2006).
  • Turner JJO, Leotlela PD, Pannett AAJ et al. Frequent occurrence of an intron 4 mutation in multiple endocrine neoplasia type 1. J. Clin. Endocrinol. Metab.87(6), 2668–2693 (2002).
  • Brandi ML, Gagel RF, Angeli A et al. Guidelines for diagnosis and therapy of MEN type 1 and type 2. J. Clin. Endocrinol. Metab.86(12), 5658–5671 (2001).
  • Burgess JR, Nord B, David R et al. Phenotype and phenocopy: the relationship between genotype and clinical phenotype in a single large family with multiple endocrine neoplasia type 1 (MEN 1). Clin. Endocrinol. (Oxf.)53(2), 205–211 (2000).
  • Agarwal SK, Mate CM, Marx SJ. Rare germline mutations in cyclin-dependent kinase inhibitor genes in multiple endocrine neoplasia type 1 and related states. J. Clin. Endocrinol. Metab.94(5), 1826–1834 (2009).
  • Georgitsi M, Raitila A, Karhu A et al. Molecular diagnosis of pituitary adenoma predisposition caused by aryl hydrocarbon receptor-interacting protein gene mutations. Proc. Natl Acad. Sci. USA104(10), 4101–4105 (2007).
  • Turner JJ, Christie PT, Pearce SH, Tumpenny PD, Thakker RV. Diagnostic challenges due to phenocopies: lessons from multiple endocrine neoplasia type 1 (MEN1). Hum. Mutat.31(1), E1089–E1101 (2010).
  • Lourenço DM Jr, Toledo RA, Coutinho FL et al. The impact of clinical and genetic screenings on the management of the multiple endocrine neoplasia type 1. Clinics (Sao Paulo)62(4), 465–476 (2007).
  • Pieterman CR, Schreinemakers JM, Koppeschaar HP et al. Multiple endocrine neoplasia type 1 (MEN1): its manifestations and effect of genetic screening on clinical outcome. Clin. Endocrinol. (Oxf).70(4), 575–581 (2009).
  • Goudet P, Murat A, Binquet C et al. Risk factors and causes of death in MEN1 disease. A GTE (Groupe d’Etude des Tumeurs Endocrines) cohort study among 758 patients. World J. Surg.34(2), 249–255 (2010).
  • Newey PJ, Jeyabalan J, Walls GV et al. Asymptomatic children with multiple endocrine neoplasia type 1 mutations may harbor nonfunctioning pancreatic neuroendocrine tumors. J. Clin. Endocrinol. Metab.94(10), 3640–3646 (2009).
  • Beckers A, Betea D, Valdes Socin H, Stevenaert A. The treatment of sporadic versus MEN1-related pituitary adenomas. J. Intern. Med.253(6), 599–605 (2003).
  • Stratakis CA, Kirschner LS, Carney JA. Clinical and molecular features of the Carney complex: diagnostic criteria and recommendations for patients evaluation. J. Clin. Endocrinol. Metab.86(9), 4041–4046 (2001).
  • Wilkes D, McDermott DA, Basson CT. Clinical phenotypes and molecular genetic mechanisms of Carney complex. Lancet Oncol.6, 501–508 (2005).
  • Rothenbuhler A, Stratakis CA. Clinical and molecular genetics of Carney complex. Best Pract. Res. Clin. Endocr. Metab.24(3), 389–400 (2010).
  • Bertherat J, Horvath A, Groussin L et al. Mutations in the regulatory subunit type 1A of cyclic adenosine 5´-monophosphate-dependent protein kinase (PRKAR1A):phenotype analysis in 353 patients and 80 different genotypes. J. Clin. Endocrinol. Metab.94(6), 2085–2091 (2009).
  • Boikos SA, Stratakis CA. Pituitary pathology in patients with Carney complex: growth-hormone producing hyperplasia or tumors and their association with other abnormalities. Pituitary9(3), 203–209 (2006).
  • Raff SB, Carney JA, Krugman D, Doppman JL, Stratakis CA. Prolactin secretion abnormalities in patients with the “syndrome of spotty skin pigmentation, myxomas, endocrine overactivity and schwannomas” (Carney complex). J. Pediatr. Endocrinol. Metab.13(4), 373–379 (2000).
  • Boikos SA, Stratakis CA. Molecular genetics of the cAMP-dependent protein kinase pathway and of sporadic pituitary tumorigenesis. Hum. Mol. Genet.16(R1), R80–R87 (2007).
  • Horvath A, Bertherat J, Groussin L et al. Mutations and polymorphisms in the gene encoding regulatory subunit type 1-α of protein kinase A (PRKAR1A): an update. Hum. Mut.31(4), 369–379 (2010).
  • Bossis I, Voutetakis A, Bei T, Sandrini F, Griffin KJ, Stratakis CA. Protein kinase A and its role in human neoplasia: the Carney complex paradigm. Endocr. Relat. Cancer11(2), 265–280 (2004).
  • Kirschner LS, Kusewitt DF, Matyakhima L et al. Use of mouse models to understand the molecular basis of tissue-specific tumorigenesis in the Carney complex. J. Intern. Med.266(1), 60–68 (2009).
  • Yin Z, Williams-Simons L, Parlow AF, Asa S, Kirschner LS. Pituitary-specific knockout of the Carney complex gene Prkar1a leads to pituitary tumorigenesis. Mol. Endocrinol.22(2), 380–387 (2008).
  • Matyakhina L, Pack S, Kirschner LS et al. Chromosome 2 (2p16) abnormalities in Carney complex tumours. J. Med. Genet.40(4), 268–277 (2003).
  • Veugelers M, Bressan M, McDermott DA et al. Mutation of perinatal myosin heavy chain associated with a Carney complex variant. N. Engl. J. Med.351(5), 460–469 (2004).
  • Weinstein LS, Shenker A, Gejman PV, Merino MJ, Friedman E, Spiegel AM. Activating mutations of the stimulatory G protein in the McCune–Albright syndrome. N. Engl. J. Med.325(24), 1688–1695 (1991).
  • Akintoje SO, Chebli C, Booher S et al. Characterization of gsp-mediated growth hormone excess in the context of McCune–Albright syndrome. J. Clin. Endocrinol. Metab.87(11), 5104–5112 (2002).
  • Lumbroso S, Paris F, Sultan C. McCune–Albright syndrome: molecular genetics. J. Pediatr. Endocrinol. Metab.15(3), 875–882 (2002).
  • Landis CA, Masters SB, Spada A, Pace AM, Bourne HR, Vallar L. GTPase inhibiting mutations activate the α chain of Gs and stimulate adenylyl cyclase in human pituitary tumours. Nature340(6236), 692–696 (1989).
  • Mantovani G, Bondioni S, Lania AG et al. Parental origin of Gsα mutations in the McCune–Albright syndrome and in isolated endocrine tumors. J. Clin. Endocrinol. Metab.89(6), 3007–3009 (2004).
  • Völkl TMK, Dörr HG. McCune–Albright syndrome: clinical pictures and natural history in children and adolescents. J. Pediatr. Endocrinol. Metab.19(Suppl. 2), 551–559 (2006).
  • Chanson P, Salenave S, Orcel P. McCune–Albright syndrome in adulthood. Pediatr. Endocr. Rev.4(Suppl. 4), 453–462 (2007).
  • Lumbroso S, Paris F, Sultan C. Activating Gsα mutations: analysis of 113 patients with signs of McCune–Albright syndrome – a European collaborative study. J. Clin. Endocrinol. Metab.89(5), 2107–2113 (2004).
  • Dumitrescu CE, Collins MT. McCune–Albright syndrome. Orphanet J. Rare Dis.3(1), 12 (2008).
  • Galland F, Kamenicki P, Affres H et al. McCune–Albright syndrome and acromegaly: effects of hypothalamo-pituitary radiotherapy and/or pegvisomant in somatostatin analog-resistant patients. J. Clin. Endocrinol. Metab.91(12), 4957–4961 (2006).
  • Akintoje SO, Kelly MH, Brillante B et al. Pegvisomant for the treatment of gsp-mediated growth hormone excess in patients with McCune–Albright syndrome. J. Clin. Endocrinol. Metab.91(8), 2960–2966 (2006).
  • Fritz A, Walch A, Piotrowska K et al. Recessive transmission of a multiple endocrine neoplasia syndrome in the rat. Cancer Res.62(11), 3048–3051 (2002).
  • Georgitsi M, Raitila A, Karhu A et al. Germline CDKN1B/p27kip1 mutation in multiple endocrine neoplasia. J. Clin. Endocrinol. Metab.92(8), 3321–3325 (2007).
  • Agarwal SK, Mateo CM, Marx SJ. Rare germline mutations in cyclin-dependent kinase inhibitor genes in multiple endocrine neoplasia type 1 and related states. J. Clin. Endocrinol. Metab.94(4), 1826–1834 (2009).
  • Querela V, Malumbres M. Cell cycle control of pituitary development and disease. J. Mol. Endocrinol.42(2), 75–86 (2009).
  • Nakayama K, Ishida N, Shirane M et al. Mice lacking p27Kip1 display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors. Cell85(5), 707–720 (1996).
  • Kiyokawa H, Kineman RD, Manova-Todorova KO et al. Enhanced growth of mice lacking the cyclin-dependent kinase inhibitor function of p27Kip1. Cell85(5), 721–732 (1996).
  • Chang B, Zheng, SL, Isaacs SD et al. A polymorphism in the CDKN1B gene is associated with increased risk of hereditary prostate cancer. Cancer Res.64, 1997–1999 (2004).
  • Lee J, Kim SS. The function of p27KIP1 during tumor development. Exp. Mol. Med.41(11), 765–771 (2009).
  • Bamberger CM, Fehn M, Bamberger AM et al. Reduced expression levels of the cell cycle inhibitor p27Kip1 in human pituitary adenomas. Eur. J. Endocrinol.140, 250–255 (1999).
  • Lidhar K, Korbonits M, Jordan S et al. Low expression of the cell cycle inhibitor p27Kip1 in normal corticotroph cells, corticotroph tumors, and malignant pituitary tumors. J. Clin. Endocrinol. Metab.84(10), 3823–3830 (1999).
  • Korbonits M, Chahal HS, Kaltsas G et al. Expression of phosphorylated p27Kip1 protein and jun activation domain-binding protein 1 in human pituitary tumors. J. Clin. Endocrinol. Metab.87(6), 2635–2643 (2002).
  • Takeushi S, Koeffler HP, Hinton DR, Miyoshi I, Melmed S, Shimon I. Mutation and expression analysis of of the cyclin-dependent kinase inhibitor p27/Kip1 in pituitary tumours. J. Endocrinol.157, 337–341 (1998).
  • Ozawa A, Agarwal SK, Mateo CM et al. The parathyroid/pituitary variant of multiple endocrine neoplasia type 1 usually has causes other than p27Kip1 mutations. J. Clin. Endocrinol. Metab.92(5), 1948–1951 (2007).
  • Occhi G, Trivellin P, Ceccato F et al. Prevalence of AIP mutations in a large series of sporadic Italian acromegalic patiens and evaluation of CDKN1B status in acromegalic patient with multiple endocrine neoplasia. Eur. J. Endocrinol.163(3), 369–376 (2010).
  • Igreja SC, Chahal HS, Akker SA et al. Assessment of p27 (cyclin- dependent kinase inhibitor 1B) and AIP (aryl hydrocarbon receptor-interacting protein) genes in MEN1 syndrome patients without any detectable MEN1 gene mutations. Clin. Endocrinol. (Oxf.)70(2), 259–264 (2009).
  • Owens M, Stals K, Ellard S, Vaidya B. Germline mutations in the CDKN1B gene encoding p27Kip1 are a rare cause of multiple endocrine neoplasia type 1. Clin. Endocrinol. (Oxf.)70(3), 499–500 (2009).
  • Tamburrano G, Jaffrain-Rea ML, Grossi A, Lise A, Bulletta C. [Familial acromegaly: a case report and a review of the literature]. Ann. Endocrinol. (Paris)53(5–6), 201–207 (1992).
  • Teh BT, Kytölä S, Farnebo F et al. Mutation analysis of the MEN1 gene in multiple endocrine neoplasia type 1, familial acromegaly and familial hyperparathyroidism. J. Clin. Endocrinol. Metab.83(8), 2621–2626 (1998).
  • Gadelha MR, Une KN, Rhode K, Vaisman M, Kineman RD, Frohman LA. Isolated familial somatotropinomas: establishment of a linkage to chromosome 11q13.1–11q13.3 and evidence for a potential second locus at chromosome 2p16. J. Clin. Endocrinol. Metab.85(2), 707–714 (2000).
  • Soares BS, Eguchi K, Frohman LA. Tumor deletion mapping on chromosome 11q13 in eight families with isolated familial somatotropinoma and in 15 sporadic somatotropinomas. J. Clin. Endocrinol. Metab.90(12), 6580–6587 (2005).
  • Valdes Socin H, Poncin J, Stevens V, Stevenaert A, Beckers A.[Familial isolated pituitary adenomas unrelated to MEN1 mutations: a follow-up of 27 patients.] Ann. Endocrinol. (Paris)61, 301 (2000).
  • Fajardo Montanana C, Daly AF, Tichomirowa MA et al. TSH-secreting pituitary adenoma in a male patient with a novel missense AIP mutation. Presented at: 91st Annual Meeting of the Endocrine Society. Washington, DC, USA, 10–13 June 2009.
  • Verloes A, Stevenaert A, Teh BT, Petrossians P, Beckers A. Familial acromegaly: case report and review of the literature. Pituitary1(3–4), 273–277 (1999).
  • Frohman LA, Eguchi K, Familial acromegaly. Growth Horm. IGF Res.14(Suppl. 1), 90–96 (2004).
  • Iwata T, Yamada S, Mizusawa N, Golam HMD, Sano T, Yoshimoto K. The aryl hydrocarbon receptor-interacting protein gene is rarely mutated in sporadic GH-secreting adenomas. Clin. Endocrinol. (Oxf.)66(4), 499–502 (2007).
  • Naves LA, Daly AF, Vanbellinghen JF et al. Variable pathological and clinical features of a large Brazilian family harboring a mutation in the aryl hydrocarbon receptor-interacting protein gene. Eur. J. Endocrinol.157(4), 383–391 (2007).
  • Toledo RA, Lourenco DM Jr, Liberman B et al. Germline mutation in the aryl hydrocarbon receptor interacting protein gene in familial somatotropinoma. J. Clin. Endocrinol. Metab.92(5), 1934–1937 (2007).
  • Leontiou CA, Gueorguiev M, van der Spuy J et al. The role of the aryl hydrocarbon receptor-interacting protein gene in familial and sporadic pituitary adenomas. J. Clin. Endocrinol. Metab.93(6), 2390–2401 (2008).
  • Jaffrain-Rea ML, Angelini M, Gargano D et al. Expression of aryl hydrocarbon receptor (AHR) and aryl hydrocarbon receptor interacting protein (AIP) in pituitary adenomas: pathological and clinical implications. Endocr. Relat. Cancer16(3), 1029–1043 (2009).
  • Jennings JE, Georgitsi M, Holdaway I et al. Aggressive pituitary adenomas occurring in young patients in a large Polynesian kindred with a germline R271W mutation in the AIP gene. Eur. J. Endocrinol.161(5), 799–804 (2009).
  • Georgitsi M, Heliövaara E, Paschke R et al. Large genomic deletions of the aryl hydrocarbon receptor interacting protein (AIP) in pituitary adenoma predisposition. J. Clin. Endocrinol. Metab.93(10), 4146–4151 (2008).
  • Occhi G, Jaffrain-Rea ML, Trivellin G et al. The R304X mutation of the aryl hydrocarbon receptor interacting protein gene in familial isolated pituitary adenomas: mutational hot-spot or founder effect? J. Endocrinol. Invest.33(11), 800–805 (2010).
  • Beckers A, Daly AF. The clinical, pathological, and genetic features of familial isolated pituitary adenomas. Eur. J. Endocrinol.157(4), 371–382 (2007).
  • Tichomirowa MA, Daly AF, Barlier A et al. High incidence of AIP mutations in sporadic pituitary adenomas in young patients with macroadenomas. Presented at 91st Annual Meeting, Endocrine Society. Washington, DC, USA, 10–13 June 2009.
  • Jaffrain-Rea ML, Tichomirowa M, Angelini M, Daly AF, Alesse E, Beckers A. Screening for AIP mutations in young patients with pituitary macroadenomas. J. Endocrinol. Invest.32(Suppl. 10) (2009).
  • Stratakis CA, Tichomirowa MA, Boikos S et al. The role of germline AIP, MEN1, PRKAR1A, CDKN1B and CDKN2C mutations in causing pituitary adenomas in a large cohort of children, adolescents, and patients with genetic syndromes. Clin. Genet.78(5), 457–463 (2010).
  • Elston MS, McDonald KL, Clifton-Bligh RJ, Robinson BG. Familial pituitary tumor syndromes. Nat. Rev. Endocrinol.5(8), 453–461 (2009).
  • Khoo SK, Pendek R, Nickolov R et al. Genome-wide scan identifies novel modifier loci of acromegalic phenotypes in isolated familial somatotropinomas. Endocr. Relat. Cancer16(3), 1057–1063 (2009).
  • Toledo RA, Mendonca BB, Fragoso MC et al. Isolated familial somatotropinoma: 11q13-LOH and gene/protein expression analysis suggests a possible involvement of AIP also in non-pituitary tumorigenesis. Clinics (Sao Paulo)65(4), 407–415 (2010).
  • Buchbinder S, Bierhaus A, Zorn M, Nawroth PP, Humpert P, Schilling T. Aryl hydrocarbon receptor interacting protein gene (AIP) mutations are rare in patients with hormone secreting or non-secreting pituitary adenomas. Exp. Clin. Endocrinol. Diab.116(10), 625–628 (2008).
  • Igreja S, Chahal HS, King P et al. Characterization of aryl hydrocarbon receptor interacting protein (AIP) mutations in familial isolated pituitary adenoma families. Hum. Mut.31(8), 950–960 (2010).
  • Ozfirat Z, Korbonits M. AIP gene and familial isolated pituitary adenomas. Mol. Cell. Endocrinol.326(1–2), 71–79 (2010).
  • Raitila A, Lehtonen HJ, Arola J et al. Mice with inactivation of aryl hydrocarbon receptor-interacting protein (AIP) display complete penetrance of pituitary adenomas with aberrant ARNT expression. Am. J. Pathol.177(4), 1969–1976 (2010).
  • Carver AL, La Pres JJ, Jain S, Dunham EE, Bradfield CA. Characterization of the Ah receptor-associated protein, ARA9. J. Biol. Chem.273(50), 33580–33587 (1998).
  • Lees MJ, Peet DJ, Whitelaw ML. Defining the role of XAP2 in stabilization of dioxin receptor. J. Biol. Chem.278(38), 35878–35888 (2003).
  • Marlowe JL, Puga A. Aryl hydrocarbon receptor, cell cycle regulation, toxicity, and tumorigenesis. J. Cell Biochem.96(6), 1174–1184 (2005).
  • Gasiewicz TA, Henry EC, Collins LL. Expression and activity of aryl hydrocarbon receptors in development and cancer. Crit. Rev. Eukaryot. Gene Expr.18(4), 279–321 (2008).
  • Bolger GB, Peden AH, Steele MR et al. Attenuation of the activity of the cAMP-specific phosphodiesterase PDE4A5 by interaction with the immunophilin XAP2. J. Biol. Chem.278(35), 33351–33363 (2003).
  • De Oliveira SK, Hoffmeister M, Gambaryan S et al. Phosphodiesterase 2A forms a complex with the co-chaperone XAP2 and regulates nuclear translocation of the aryl hydrocarbon receptor. J. Biol. Chem.282(18), 13656–13663 (2007).
  • Kang BH, Altieri DC. Regulation of survivin stability by the aryl hydrocarbon receptor-interacting protein. J. Biol. Chem.281(34), 24721–24727 (2006).
  • Vargiolu M, Fusco D, Kurelac I et al. The tyrosine kinase receptor RET interacts in vivo with aryl hydrocarbon receptor-interacting protein to alter survivin availability. J. Clin. Endocrinol. Metab.94(7), 2571–2578 (2009).
  • Sumanasekera WK, Tien ES, Turpey R, Vanden Heuvel JP, Perdew GH. Evidence that peroxisome proliferator-activated receptor α is complexed with the 90-kDa heat shock protein and the hepatitis virus B X-associated protein 2. J. Biol. Chem.278(7), 4467–4473 (2003).
  • Froidevaux MS, Berg P, Seugnet I et al. The co-chaperone XAP2 is required for activation of hypothalamic thyrotropin-releasing hormone transcription in vivo. EMBO Rep.7, 1035–1039 (2006).
  • Laenger A, Lang-Rollin I, Kozany C et al. XAP2 inhibits glucocorticoid receptor activity in mammalian cells. FEBS Lett.583, 1493–1498 (2009).
  • Meyer BK, Pray-Grant MG, Vanden Heuvel JP, Perdew GH. Hepatitis B virus X associated protein 2 is a subunit of the unliganded aryl hydrocarbon receptor core complex and exhibits transcriptional enhancer activity. Mol. Cell Biol.18, 978–988 (1998).
  • Kashuba EV, Gradin K, Isaguliants M et al. Regulation of transactivation function of the aryl hydrocarbon receptor by the Epstein–Barr virus-encoded EBNA-3 protein. J. Biol. Chem.281, 1215–1223 (2006).
  • Yano M, Terada K, Mori M. AIP is a mitochondrial import mediator that binds to both import receptor Tom20 and preproteins. J. Cell. Biol.163(1), 45–56 (2003).
  • Heliövaara E, Raitila A, Launonen V et al. The expression of AIP-related molecules in elucidation of cellular pathways in pituitary adenomas. Am. J. Pathol.175(6), 2501–2507 (2009).
  • Couldwell WT, Cannon-Albright L. A heritable predisposition to pituitary tumours. Pituitary13(2), 130–137 (2010).
  • Zhuang Z, Ezzat SZ, Vortmeyer AO et al. Mutations of the MEN1 tumor suppressor gene in pituitary tumors. Cancer Res.57(24), 5446–5451 (1997).
  • Prezant TR, Levine J, Melmed S. Molecular characterization of the MEN1 tumor suppressor gene in sporadic pituitary tumors. J. Clin. Endocrinol. Metab.83(4), 1388–1391 (1998).
  • Tanaka C, Kimura T, Yang P et al. Analysis of loss of heterozygosity on chromosome 11 and infrequent inactivation of the MEN1 gene in sporadic pituitary adenomas. J. Clin. Endocrinol. Metab.83(8), 2631–2634 (1998).
  • Poncin J, Stevenaert A, Beckers A. Somatic MEN1 gene mutation does not contribute significantly to sporadic pituitary tumorigenesis. Eur. J. Endocrinol.140(6), 573–576 (1999).
  • Fukino K, Kitamura Y, Sanno N, Teramoto A, Emi M. Analysis of the MEN1 gene in sporadic pituitary adenomas from Japanese patients. Cancer Lett.144(1), 85–92 (1999).
  • Evans CO, Brown MR, Parks JS, Oyesiku NM. Screening for MEN1 tumor suppressor gene mutations in sporadic pituitary tumors. J. Endocrinol. Invest.23(5), 304–309 (2000).
  • Bergman L, Boothroyd C, Palmer J et al. Identification of somatic mutations of the MEN1 gene in sporadic endocrine tumours. Br. J. Cancer83(8), 1003–1008 (2000).
  • Farrell WE, Simpson DJ, Bicknell J et al.Sequence analysis and transcript expression of the MEN1 gene in sporadic pituitary tumours. Br. J. Cancer80(1–2), 44–50 (1999).
  • Rix M, Hertel NT, Nielsen FC et al. Cushing’s disease in childhood as the first manifestation of multiple endocrine neoplasia syndrome type 1. Eur. J. Endocrinol.151(6), 709–715 (2004).
  • Corbetta S, Pizzocaro A, Peracchi M, Beck-Peccoz P, Faglia G, Spada A. Multiple endocrine neoplasia type 1 in patients with recognized pituitary tumours of different types. Clin. Endocrinol. (Oxf.)47(5), 507–512 (1997).
  • Tortosa F, Chico A, Rodriguez-Espinosa J, Ruscalleda J, de Leiva A. Prevalence of MEN 1 in patients with prolactinoma. MEN1 Study Group of the Hospital de la Santa Creu i Sant Pau of Barcelona. Clin. Endocrinol. (Oxf.)50(2), 272 (1999).
  • Ellard S, Hattersley AT, Brewer CM, Vaidya B. Detection of a MEN1 gene mutation depends on clinical features and supports current referral criteria for diagnostic molecular genetic testing. Clin. Endocrinol. (Oxf.)62(2), 169–175 (2005).
  • Jaffrain-Rea ML, Tichomirowa MA, Daly AF, Beckers A. Pituitary adenomas in young patients: when should we consider a genetic predisposition? Expert Rev. Endocrinol. Metab.4(6), 529–531 (2009).
  • Naves LA, Jaffrain-Rea ML, Cunha Vêncio SA et al. Aggressive prolactinoma in a child related to germline mutation in the aryl hydrocarbon receptor interacting protein (AIP) gene. Arq. Bras. Endocrinol. Metab.54(8), 761–767 (2010).
  • Alevizaki M, Stratakis CA. Multiple endocrine neoplasias: advances and challenges for the future. J. Intern. Med.266(1), 1–4 (2009).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.