311
Views
142
CrossRef citations to date
0
Altmetric
Review

Estrogen action and prostate cancer

, &
Pages 437-451 | Published online: 10 Jan 2014

References

  • Huggins C, Hodges CV. Studies on prostate cancer: I. The effect of castration, of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. Cancer Res.1, 293–297 (1941).
  • Huggins C. Endocrine control of prostate cancer. Science97, 541–544 (1943).
  • Wibowo E, Schellhammer P, Wassersug RJ. Role of estrogen in normal male function: clinical implications for patients with prostate cancer on androgen deprivation therapy. J. Urol.185, 17–23 (2010).
  • Citrin DL, Resnick MI, Guinan P et al. A comparison of Zoladex and DES in the treatment of advanced prostate cancer: results of a randomized, multicenter trial. Prostate18, 139–146 (1991).
  • Dal Pra A, Cury FL, Souhami L. Combining radiation therapy and androgen deprivation for localized prostate cancer – a critical review. Curr. Oncol.17(5), 28–38 (2010).
  • Kim HS, Freedland SJ. Androgen deprivation therapy in prostate cancer: anticipated side-effects and their management. Curr. Opin. Support Palliat. Care4(3), 147–152 (2010).
  • Geier R, Adler S, Rashid G, Klein A. The synthetic estrogen diethylstilbestrol (DES) inibits the telemorase activity and gene expression of prostate cancer cells. Prostate70, 1307–1312 (2010).
  • Montgomery B, Nelson PS, Vessella R, Kalhorn T, Hess D, Vorey E. Estradiol suppresses tissue androgens and prostate cancer growth in castration resistant prostate cancer. BMC Cancer10, 244 (2010).
  • Post-menopausal estrogen therapy. IARC Mongr. Eval. Carcinog. Risks Hum.72, 399–530 (1992).
  • International Agency for Research on Cancer. Monographs on the evaluation of carcinogenic risks to humans. IARC, Lyon, France, 7, 280–285 (1987).
  • International Agency for Research on Cancer. Monographs on the evaluation of carcinogenic risks to humans: hormonal contraception and postmenopausal hormone therapy. IARC, Lyon, France, 72 (1999).
  • Greenwald P, Caputo TA, Wolfgang PE. Endometrial cancer after menopausal use of estrogens. Obstet. Gynecol.50, 239–243 (1977).
  • Siiteri PK, Nisker JA, Hammond GL. Hormonal basis of risk factors for breast and endometrial cancer. In: Hormones and Cancer. Iacobelli S, King RJB, Lindner HR, Lippman ME (Eds). Raven Press, NY, USA, 499–505 (1980).
  • Feigelson HS, Henderson BE. Estrogens and breast cancer. Carcinogenesis17, 2279–2284 (1996).
  • Bernstein L. The epidemiology of breast cancer. LOWAC J.1, 7–13 (1998).
  • Barrett-Connor E, Garland C, McPhillips JB, Khaw KT, Wingard DL. A prospective, population-based study of androstenedione, estrogens, and prostatic cancer. Cancer Res.50(1), 169–173 (1990).
  • Modugno F, Weissfeld JL, Trump DL et al. Allelic variants of aromatase and the androgen and estrogen receptors: toward a multigenic model of prostate cancer risk. Clin. Cancer Res.7, 3092–3096 (2001).
  • Gann PH, Hennekens CH, Ma J, Longcope C, Stampfer MJ. Prospective study of sex hormone levels and risk of prostate cancer. J. Natl Cancer Inst.88, 1118–1126 (1996).
  • Eaton NE, Reeves GK, Appleby PN, Key TJ. Endogenous sex hormones and prostate cancer: a quantitative review of prospective studies. Br. J. Cancer80, 930–934 (1999).
  • Platz EA, Leitzmann MF, Rifai N et al. Sex steroid hormones and the androgen receptor gene CAG repeat and subsequent risk of prostate cancer in the prostate-specific antigen era. Cancer Epidemiol. Biomarkers Prev.14, 1262–1269 (2005).
  • Wiren S, Stocks T, Rinaldi S, Hallmans G et al. Androgens and prostate cancer risk: a prospective study. Prostate67, 1230–1237 (2007).
  • Mohler JL, Gregory CW, Ford OH et al. The androgen axis in recurrent prostate cancer. Clin. Cancer Res.10, 440–448 (2004).
  • Ellem SJ, Schmitt JF, Pedersen JS, Frydenberg M, Risbridger GP. Local aromatase expression in human prostate is altered in malignancy. J. Clin. Endocrinol. Metab.89, 2431–2441 (2004).
  • Montgomery RB, Mostaghel EA, Vessella R et al. Maintenance of intratumoral androgens in metastatic prostate cancer: a mechanism for castration-resistant tumor growth. Cancer Res.68, 4447–4454 (2008).
  • Ricke WA, McPherson SJ, Bianco JJ, Cunha GR, Wang Y, Risbridger GP. Prostatic hormonal carcinogenesis is mediated by in situ estrogen production and estrogen receptor α signalling. FASEB J.22, 1512–1520 (2008).
  • Cussenot O, Azzouzi AR, Nicolaiew N et al. Combination of polymorphisms from genes related to estrogen metabolism and risk of prostate cancers: the hidden face of estrogens. J. Clin. Oncol.25, 3596–3602 (2007).
  • John K, Ragavan N, Pratt MM et al. Quantification of phase I/II metabolizing enzyme gene expression and polycyclic aromatic hydrocarbon-DNA adduct levels in human prostate. Prostate69(5), 505–519 (2009).
  • Ragavan N, Hewitt R, Cooper LJ et al. CYPB1 expression in prostate is higher in the peripheral than in the transition zone. Cancer Lett.215(1), 69–78 (2004).
  • Rohrmann S, Nelson WG, Rifai N. Serum estrogen, but not testosterone, levels differ between black and white men in a nationally representative sample of Americans. J. Clin. Endocrinol. Metab.92(7), 2519–2525 (2007).
  • Henderson BE, Bernstein L, Ross RK, Depue RH, Judd HL. The early in utero oestrogen and testosterone environment of blacks and whites: potential effects on male offspring. Br. J. Cancer57, 216–218 (1988).
  • Powell IJ, Meyskens FL Jr. African American men and hereditary/familial prostate cancer: intermediate-risk populations for chemoprevention trials. Urology57, 178–181 (2001).
  • Ho SM, Roy D. Sex hormone-induced nuclear DNA damage and lipid peroxidation in the dorsolateral prostates of Noble rats. Cancer Lett.84, 155–162 (1994).
  • Leav I, Ho SM, Ofner P, Merk FB, Kwan PW, Damassa D. Biochemical alterations in sex hormone-induced hyperplasia and dysplasia of the dorsolateral prostates of Noble rats. J. Natl Cancer Inst.80, 1045–1053 (1988).
  • Bosland MC, Ford H, Horton L. Induction of a high incidence of ductal prostate adenocarcinoma in NBL and Sprague Dawley rats treated with estrdaiol-17β or diethylstilbestrol in combination with testosterone. Carcinogenesis16, 1311–1317 (1995).
  • Bosland MC. The role of estrogens in prostate carcinogenesis: a rationale for chemoprevention. Rev. Urol.7(3), S4–S10 (2005).
  • Arai Y, Chen CY, Nishizuka Y. Cancer development in male reproductive tract in rats given diethylstilbestrol at neonatal age. Gann.69(6), 861–862 (1978).
  • McLachlan JA, Newbold RR, Li S, Negishi M. Are estrogens carcinogenic during development of the testes? APMIS106, 240–244 (1998).
  • Prins GS, Huang L, Birch L, Pu Y. The role of estrogens in normal and abnormal development of the prostate gland. Ann. NY Acad. Sci.1089, 1–13 (2006).
  • Prins GS, Birch L, Tang WY, Ho SM. Developmental estrogen exposures predispose to prostate carcinogenesis with aging. Rep. Toxicol.23(3), 374–382 (2007).
  • Kasper S. Exploring the origins of the normal prostate and prostate cancer stem cell. Stem Cell Rev.4, 193–201 (2008).
  • Miki J, Rhim J. Prostate cell cultures as in vitro models for the study of normal stem cells and cancer stem cells. Prostate Cancer Prostatic Dis.11, 32–39 (2008).
  • Gu G, Yuan J, Wills M, Kasper S. Prostate cancer cells with stem cell characteristics reconstitute the original tumor in vivo. Cancer Res.67, 4708–4715 (2007).
  • Leong KG, Wang BE, Johnson L, Gao WQ. Generation of a prostate from a single cell. Nature456, 804–808 (2008).
  • Vander Griend DJ, Karthaus WL, Dalrymple S, Meeker A, DeMarzo AM, Isaacs JT. The role of CD133 in normal human prostate stem cells and malignant cancer-initiating cells. Cancer Res.68, 9703–9711 (2008).
  • Isaacs JT, Coffey DS. Etiology and disease process of benign prostatic hyperplasia. Prostate Suppl.2, 33–50 (1989).
  • Lang SH, Stark M, Collins A et al. Experimental prostate morphogenesis in response to stroma and three dimensional matrigel culture. Cell Growth Differ.12, 631–640 (2001).
  • Goldstein AS, Lawson DA, Cheng D, Sun W, Garraway IP, Witte ON. Trop2 identifies a subpopulation of murine and human prostate basal cells with stem cell characteristics. Proc. Natl Acad. Sci. USA105, 20882–20887 (2008).
  • Garraway IP, Sun W, Tran CP et al. Human prostate sphere-forming cells represent a subset of basall epithelial cells capable of glandular regeneration in vivo. Prostate40, 491–501 (2010).
  • Hu WY, Shi GB, Hu DP et al. Estrogen-initiated transformation of prostate epithelium derived from normal human prostate stem-progenitor cells. Endocrinology DOI: 10.1210/en.2010-1377 (2011) (Epub ahead of print).
  • Taylor RA, Cowin PA, Cunha GR et al. Formation of human prostate tissue from embryonic stem cells. Nat. Methods3, 179–181 (2006).
  • Titus-Emstoff L, Hatch EE, Hoover RN et al. Long term risk in women given diethylstilbestrol (DES) during pregnancy. Br. J. Cancer84, 126–133 (2001).
  • Colton T, Greenberg ER, Noller K et al. Breast cancer in mothers prescribed diethylstilbestrol in pregnancy. Further follow-up. JAMA269, 2096–2100 (1993).
  • Herbst AL, Ulfelder H, Poskanzer DC. Adenocarcinoma of the vagina. Association of maternial stilbestrol therapy with tumor appearance in women. N. Engl. J. Med.284, 878–881 (1971).
  • Herbst AL, Poskanzer DC, Robboy SJ, Friedlander L, Scully RE. Prenatal exposure to stibestrol. A prospective comparison of exposed female offspring with unexposed controls. N. Engl. J. Med.292, 334–339 (1976).
  • Palmer JR, Wise LA, Hatch EE et al. Prenatal diethylstilbestrol exposure and risk of breast cancer. Cancer Epidemiol. Biomark. Prev.15, 1509–1514 (2006).
  • Driscoll SG, Taylor SH. Effects of the prenatal maternal estrogen on the male urogenital system. Obstet. Gynecol.56, 537–542 (1980).
  • Ekbom A, Wuu J, Adami HO et al. Duration of gestation and prostate cancer risk in offspring. Cancer Epidemiol. Biomarkers Prev.9, 221–223 (2000).
  • Prins GS, Birch L, Habermann H et al. Influence of neonatal estrogens on rat prostate development. Reprod. Fertil. Dev.13, 241–252 (2001).
  • Huang L, Pu Y, Alam S, Birch L, Prins GS. Estrogenic regulation of signaling pathways and homeobox genes during rat prostate development. J. Androl.25, 330–337 (2004).
  • Prins GS. Developmental estrogenization of the prostate gland. In: Prostate: Basic and Clinical Aspects. Naz RK (Ed.). CRC Press, FL, USA, 247–265 (1997).
  • Bosland MC, Ford H, Horton L. Induction at high incidence of ductal prostate adenocarcinomas in NBL/Cr and Sprague-Dawley Hsd:SD rats treated with a combination of testosterone and estradiol-17B or dietlhylstilbestrol. Carcinogenesis16, 1311–1317 (1995).
  • Ho SM, Wang WY, Belmonte J, Prins GS. Developmental exposure estradiol and bisphenol A (BPA) increases susceptibility to prostate carcinogenesis and epigenetically regulates phosphodisesterase type 4 variant (PDE4D4) in the rat prostate. Cancer Res.66, 5624–5632 (2006).
  • Prins GS, Ye SH, Birch L, Ho SM, Kannan K. Serum bisphenol A pharmacokinetics and prostatic responses following oral and subcutaneous exposures in neonatal sprague-dawley rats. Reprod. Toxicol.31(1), 1–9 (2011).
  • Prins GS, Ho SM. Early life estrogens and prostate cancer in an animal model. J. Dev. Orig. Health Dis.1, 365–370 (2010).
  • Esteller M. Aberrant DNA methylation as a cancer-inducing mechanism. Annu. Rev. Pharmacol. Toxicol.45, 629–656 (2005).
  • Feinberg AP, Ohlsson R, Henikoff S. The epigenetic progenitor origin of human cancer. Nat. Rev.7, 21–33 (2006).
  • Yegnasubramanian S, Kowalski J, Gonzalgo ML et al. Hypermethylation of CpG islands in primary and metastatic human prostate cancer. Cancer Res.64, 1975–1986 (2004).
  • Enokida H, Shiina H, Urakami S et al. Multigene methylation analysis for detection and staging of prostate cancer. Clin. Cancer Res.11, 6582–6588 (2005).
  • Vardi A, Bosviel R, Rabiau N et al. Soy phytoestrogens modify DNA methylation of GSTP1, RASSF1A, EPH2 and BRCA1 promoter in prostate cancer cells. In Vivo24(4), 393–400 (2010).
  • Majid S, Dar AA, Shahryari V et al. Genistein reverses hypermethylation and induces active histone modifications in tumor-suppressor gene B-cell translocation gene 3 in prostate cancer. Cancer116(1), 66–76 (2010).
  • Kikuno N, Shiina H, Urakami S et al. Genistein mediated histone acetylation and demethylation activates tumor-suppressor genes in prostate cancer cells. Int. J. Cancer123(3), 552–560 (2008).
  • Li S, Washburn KA, Moore R et al. Developmental exposure to diethylstilbestrol elicits demethylation of estrogen-responsive lactorfferrin gene in mouse uterus. Cancer Res.57, 4356–4359 (1997).
  • Alworth LC, Howdeshell KL, Ruhlen RL et al. Uterine responsiveness to estradiol and DNA methylation are altered by fetal exposure to diethylstilbestrol and methoxychlor in CD-1 mice: effects of low versus high doses. Toxicol. Appl. Pharmacol.183, 10–22 (2002).
  • Anway MD, Cupp AS, Uzumcu M, Skinner MK. Epigenetic transgenerational actions of endocrine disuptors and male fertility. Science308, 1466–1469 (2005).
  • Lang R, Redmann U. Non-mutagenicity of some sex hormones in the salmonella/microsome mutagenicity test. Mutat. Res.67, 361– 365 (1979).
  • Liehr JG, Fang WF, Sirbasku DA, Ari-Ulubelen A. Carcinogenicity of catechol estrogens in Syrian hamsters. J. Steroid Biochem.24, 353–356 (1986).
  • Lang R, Reiman R. Studies for a genotoxic potential of some endogenous and exogenous sex steroids. I. Communication: examination for the induction of gene mutations using the Ames Salmonella/microsome test and the HGPRT test in V79 cells. Environ. Mol. Mutagen.21, 272–304 (1993).
  • Drevon C, Piccoli C, Montesano R. Mutagenicity assays of estrogenic hormones in mammalian cells. Mutat. Res.89, 83–90 (1981).
  • Rajah TT, Pento JT. The mutagenic potential of antiestrogens at the HPRT locus in V79 cells. Res. Commun. Mol. Pathol. Pharmacol.89, 85–92 (1995).
  • Tsutsui T, Suzuki N, Fukuda S et al. 17β-estradiol-induced cell transformation and aneuploidy of Syrian hamster embryo cells in culture. Carcinogenesis8, 1715–1719 (1987).
  • Tsutsui T, Barrett JC. Neoplastic transformation of cultured mammalian cells by estrogens and estrogen-like chemicals. Environ. Health Perspect.105, 619–324 (1997).
  • Tsutsui T, Taguchi S, Tanaka Y, Barrett JC. 17β-estradiol, diethylstilbestrol, tamoxifen, toremifene and ICI 164,384 induce morphological transformation and aneuploidy in cultured Syrian hamster embryo cells. Int. J. Cancer70, 188–193 (1997).
  • Banerjee SH, Banerjee S, Li S A, Li JJ. Cytogenetic changes in renal neoplasms and during estrogen-induced carcinogenesis. In: Hormonal Carcinogenesis. Li JJ, Nandi S, Li SA (Eds). Springer-Verlag, NY, USA, 247–251 (1992).
  • Banerjee SK, Banerjee S, Li SA, Li JJ. Induction of chromosome aberrations in Syrian hamster renal cortical cells by various estrogens. Mutat. Res.311, 191–197 (1994).
  • Tsutsui T, Suzuki N, Maizumi H, Barrett JC. Aneuploidy induction in human fibroblasts: comparison with results in Syrian hamster fibroblasts. Mutat. Res.240, 241–249 (1990).
  • Hunt PA, Koehler KE, Susiarjo M et al. Bisphenol A exposure causes meiotic aneuploidy in the female mouse. Curr. Biol.13, 546–553 (2003).
  • Sisiarjo M, Hassold TJ, Freeman E, Hunt PA. Bisphenol A exposure in utero disrupts early oogenesis in the mouse. PloS Genet.3(1), 63–70 (2007).
  • Jones LA, Hajek RA. Effects of estrogenic chemicals on development. Environ. Health Perspect.103, 63–67 (1995).
  • Hajek RA, Pathak S, Boddie AK, Jones LA. Aneuploidy of mouse cervicovaginal epithelium induced by perinatal estrogen treatment. Proc. Am. Assoc. Cancer Res.30, 299 (1989).
  • Li JJ, Hou X, Banerjee SK et al. Overexpression and amplification of c-myc in the Syrian hamster kidney during estrogen carcinogenesis: a probable critical role in neoplastic transformation. Cancer Res.59, 2340–2346 (1999).
  • Hodgson AV, Ayala-Torres S, Thompson EB, Liehr JG. Estrogen-induced microsatellite DNA alterations are associated with Syrian hamster kidney tumorigenesis. Carcinogenesis19, 2169–2172 (1998).
  • Yared E, McMillan TJ, Martin FL. Genotoxic effects of oestrogens in breast cells detected by the micronucleus assay and the Comet assay. Mutagenesis17(4), 345–352 (2002).
  • Cavalieri EL, Frenkel K, Liehr JG, Rogan EG, Roy D. Estrogens as endogenous genotoxic agents – DNA adducts and mutations. J. Natl Cancer Inst.27, 75–93 (2000).
  • Martin FL, Patel I, Sozeri O et al. Constitutive expression of bioactivating enzymes in normal human prostate suggests a capability to activate pro-carcinogens to DNA-damaging metabolites. Prostate70, 1586–1599 (2010).
  • Tang YM, Green BL, Chen GF et al. Human CYP1B1 Leu432Val gene polymorphism: ethnic distribution in African–Americans, Caucasians and Chinese; oestradiol hydroxylase activity; and distribution in prostate cancer cases and controls. Pharmacogenetics10, 761–766 (2000).
  • Bartke A, Doherty P, Steger R et al. Effects of estrogen-induced hyperprolactinemia on endocrine and sexual functions in adult male rats. Neuroendocrinology39, 126–135 (1984).
  • Harvey PW, Everett DJ, Springall CJ. Hyperprolactinaemia as an adverse effect in regulatory and clinical toxicology: role in breast and prostate cancer. Hum. Exp. Toxicol.25(7), 395–404 (2006).
  • Jacobson EM, Hugo ER, Tuttle TR, Papoian R, Ben-Jonathan N. Unexploited therapies in breast and prostate cancer: blockade of the prolactin receptor. Trends Endocrinol. Metab.21(11), 691–698 (2010).
  • Fernandez I, Touraine P, Goffin V. Prolactin and human tumourogenesis. J. Neuroendocrinol.22(7), 771–777 (2010).
  • Li J, Ahonen TJ, Alanen K et al. Activation of signal transducer and activator of transcription 5 in human prostate cancer is associated with high histological grade. Cancer Res.64(14), 4774–4782 (2004).
  • Tan SH, Dagvadorj A, Shen F et al. Transcription factor Stat5 synergizes with androgen receptor in prostate cancer cells. Cancer Res.68(1), 236–248 (2008).
  • Ahonen TJ, Härkönen PL, Laine J, Rui H, Martikainen PM, Nevalainen MT. Prolactin is a survival factor for androgen-deprived rat dorsal and lateral prostate epithelium in organ culture. Endocrinology140, 5412–5421 (1999).
  • Prins GS. Prolactin influence on cytosol and nuclear androgen receptors in the ventral, dorsal, and lateral lobes of the rat prostate. Endocrinology120(4), 1457–1464 (1987).
  • Van Coppenolle F, Slomianny C, Carpentier F. Effects of hyperprolactinemia on rat prostate growth: evidence of androgeno-dependence. Am. J. Physiol. Endocrinol. Metab.280(1), E120–E129 (2001).
  • Gilleran JP, Putz O, DeJong M et al. The role of prolactin in the prostatic inflammatory response to neonatal estrogen. Endocrinology144(5), 2046–2054 (2003).
  • Tam NN, Szeto CY, Freudenberg JM, Fullenkamp AN, Medvedovic M, Ho SM. Research resource: estrogen-driven prolactin-mediated gene-expression networks in hormone-induced prostatic intraepithelial neoplasia. Mol. Endocrinol.24(11), 2207–2217 (2010).
  • Fenner A. Prostate cancer: antagonizing the prolactin receptor prevents tumorigenesis in a transgenic mouse model of prostate cancer. Nat. Rev. Urol.7(11), 591 (2010).
  • Prins GS, Birch L. Neonatal estrogen exposure up-regulates estrogen receptor expression in the developing and adult rat prostate lobes. Endocrinology138(5), 1801–1809 (1997).
  • Bianco JJ, McPherson SJ, Wang H, Prins GS, Risbridger GP. Transient neonatal estrogen exposure to estrogen-deficient mice (aromatase knockout) reduces prostate weight and induces inflammation in late life. Am. J. Pathol.168, 1869–1878 (2006).
  • Ellem SJ, Wang H, Poutanen M, Rispbridger G. Increased endogenous estrogen synthesis leads to the sequential induction of prostatic inflammation (prostatitis) and prostatic pre-malignancy. Am. J. Pathol.175, 1187–1199 (2009).
  • Harris MT, Feldberg RS, Lau KM, Lazarus NH, Cochrane DE. Expression of proinflammatory genes during estrogen-induced inflammation of the rat prostate. Prostate44, 19–25 (2000).
  • Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet357, 539–545 (2001).
  • Coussens LM, Werb Z. Inflammation and cancer. Nature420, 860–867 (2002).
  • Kuper H, Adami HO, Trichopoulos D. Infections as a major preventable cause of human cancer. J. Intern. Med.248, 171–183 (2000).
  • De Marzo AM, Marchi VL, Epstein JI, Nelson WG. Proliferative inflammatory atrophy of the prostate: implications for prostatic carcinogenesis. Am. J. Pathol.155, 1985–1992 (1999).
  • Palapattu GS, Sutcliffe S, Bastian PJ et al. Prostate carcinogenesis and inflammation: emerging insights. Carcinogenesis26, 1170–1181 (2005).
  • Dennis LK, Dawson DV. Meta-analysis of measures of sexual activity and prostate cancer. Epidemiology13, 72–79 (2002).
  • Ruska KM, Sauvageot J, Epstein JI. Histology and cellular kinetics of prostatic atrophy. Am. J. Surg. Pathol.22, 1073–1077 (1998).
  • Woenckhaus J, Fenic I. Proliferative inflammatory atrophy: a background lesion of prostate cancer? Andrologia40(2), 134–137 (2008).
  • Frenkel K, Wei L, Wei H. 7, 12-Dimethylbenz[a]anthracene induces oxidative DNA modification in vivo. Free Radic. Biol. Med.19, 373–380 (1995).
  • Elmets CA, Athar M, Tubesing KA et al. Susceptibility to the biological effects of polyaromatic hydrocarbons is influenced by genes of the major histocompatibility complex. Proc. Natl Acad. Sci. USA95, 14915–14919 (1998).
  • Casale GP, Cheng Z, Liu J et al. Profiles of cytokine mRNAs in the skin and lymph nodes of SENCAR mice treated epicutaneously with dibenzo[a, l]pyrene or dimethylbenz[a]anthracene reveal a direct correlation between carcinogen-induced contact hypersensitivity and epidermal hyperplasia. Mol. Carcinog.27, 125–140 (2000).
  • Lewis CE, Leek R, Harris A et al. Cytokine regulation of angiogenesis in breast cancer: the role of tumor-associated macrophages. J. Leukoc. Biol.57, 747–751 (1995).
  • Chen Z, Malhotra PS, Thomas GR et al. Expression of proinflammatory and proangiogenic cytokines in patients with head and neck cancer. Clin. Cancer Res.5, 1369–1379 (1999).
  • Inoue K, Slaton JW, Eve BY et al. Interleukin 8 expression regulates tumorigenicity and metastases in androgen-independent prostate cancer. Clin. Cancer Res.6, 2104–2119 (2000).
  • Mahmud SM, Franco EL, Aprikian AG. Use of nonsteroidal anti-inflammatory drugs and prostate cancer risk: a meta-analysis. Int. J. Cancer127(7), 1680–1691 (2010).
  • Dhillon PK, Kenfield SA, Stampfer MJ, Giovannucci EL. Long-term aspirin use and the risk of total, high-grade, regionally advanced and lethal prostate cancer in a prospective cohort of health professionals, 1988–2006. Int. J. Cancer128(10), 2444–2452 (2010).
  • Brasky TM, Velicer CM, Kristal AR, Peters U, Potter JD, White E. Non-steroidal anti-inflammatory drugs and prostate cancer risk in the VITamins And Lifestyle (VITAL) cohort. Cancer Epidemiol. Biomarkers Prev.19(7), 1696–1708 (2010).
  • Mueller SO, Korach SK. Estrogen receptors and endocrine diseases. Lessons from estrogen receptor knockout mice. Curr. Opin. Pharmacol.1, 613–619 (2001).
  • Bonkhoff H, Berges R. The evolving role of oestrogens and their receptors in the development and progression of prostate cancer. Eur. Urol.55, 533–542 (2009).
  • Chang WY, Prins GS. Estrogen receptor-β: implications for the prostate gland. Prostate40, 115–124 (1999).
  • Ho SM. Estrogens and anti-estrogens: key mediators of prostate carcinogenesis and new therapeutic candidates. J. Cell Biochem.91, 491–503 (2004).
  • Risbridger GP, Ellem SJ, McPherson SJ. Estrogen action on the prostate gland: a critical mix of endocrine and paracrine signalling. J. Mol. Endocrinol.39, 183–188 (2007).
  • Singh PB, Matanhelia SS, Martin FL. A potential paradox in prostate adenocarcinoma progression: oestrogen as the initiating driver. Eur. J. Cancer44, 928–936 (2008).
  • Bonkhoff H, Fixemer T, Hunsicker I, Remberger K. Estrogen receptor expression in prostate cancer and premalignant prostatic lesions. Am. J. Pathol.155, 641–647 (1999).
  • Edwards DP. Regulation of signal transduction pathways by estrogen and progesterone. Annu. Rev. Physiol.67, 335–376 (2005).
  • Levin ER. Plasma membrane estrogen receptors. Trends Endocrinol. Metab.20(10), 489–494 (2009).
  • O’Dowd BF, Nguyen T, Marchese A et al. Discovery of three novel G-protein-coupled receptor genes. Genomics47(2), 310–313 (1998).
  • Bonkhoff H, Remberger K. Differentiation pathways and histogenetic aspects of normal and abnormal prostatic growth: a stem cell model. Prostate28, 98–106 (1996).
  • Prins GS, Birch L, Couse JF, Choi I, Katzenellenbogen B, Korach KS. Estrogen imprinting of the developing prostate gland is mediated through stromal estrogen receptor α: studies with αERKO and βERKO mice. Cancer Res.61, 6089–6097 (2001).
  • Bonkhoff H, Fixemer T, Hunsicker I, Remberger K. Progesterone receptor expression in human prostate cancer: correlation with tumor progression. Prostate48(4), 285–291 (2001).
  • Bonkhoff H, Stein U, Welter C, Remberger K. Differential expression of the PS2 protein in the human prostate and prostate cancer: association with premalignant changes and neuroendocrine differentiation. Hum. Pathol.26(8), 824–828 (1995).
  • Price D, Stein B, Sieber P et al. Toremifene for the prevention of prostate cancer in men with high grade prostatic intraepithelial neoplasia: results of a double-blind, placebo controlled, Phase IIB clinical trial. J. Urol.176, 965–970 (2006).
  • Kuiper GG, Enmark E, Pelto-Huikko M, Nilsson S, Gustafsson JA. Cloning of anovel receptor expressed in rat prostate and ovary. Proc. Natl Acad. Sci. USA93, 5925–5930 (1996).
  • Fixemer T, Remberger K, Bonkhoff H. Differential expression of the estrogen receptor β (ERβ) in human prostate tissue, premalignant changes, and in primary, metastatic, and recurrent prostatic adenocarcinoma. Prostate54, 79–87 (2003).
  • Adams JY, Leav I, Lau KM, Ho SM, Pflueger SM. Expression of estrogen receptor β in the fetal, neonatal, and prepubertal human prostate. Prostate52(1), 69–81 (2002).
  • Hedelin M, Bälter KA, Chang ET et al. Dietary intake of phytoestrogens, estrogen receptor-β polymorphisms and the risk of prostate cancer. Prostate66, 1512–1520 (2006).
  • Leav I, Lau KM, Adams JY et al. Comparative studies of the estrogen receptors β and α and the androgen receptor in normal human prostate glands, dysplasia, and in primary and metastatic carcinoma. Am. J. Pathol.159(1), 79–92 (2001).
  • Zhu X, Leav I, Leung YK et al. Dynamic regulation of estrogen receptor-β expression by DNA methylation during prostate cancer development and metastasis. Am. J. Pathol.164(6), 2003–2012 (2004).
  • Mak P, Leav I, Pursell B. ERB impedes prostate cancer EMT by destabilizing HIF-1α and inhibiting VEGF-mediated snail nuclear localization: implications for Gleason grading. Cancer Cell17, 319–332 (2010).
  • McPherson SJ, Hussain S, Balanathan P et al. Estrogen receptor-β activated apoptosis in benign hyperplasia and cancer of the prostate is androgen independent and TNF α mediated. Proc. Natl Acad. Sci. USA107(7), 3123–3128 (2010).
  • Maggiolini M, Picard D. The unfolding stories of GPR30, a new membrane bound estrogen receptor. J. Endocrinol.204, 105–114 (2009).
  • Maggiolini M, Vivacqua A, Fasanella G et al. The G protein-coupled receptor GPR30 mediates c-fos up-regulation by 17β-estradiol and phytoestrogens in breast cancer cells. J. Biol. Chem.279, 27008–27016 (2004).
  • Albanito L, Sisci D, Aquila S et al. EGF induces GPR30 expression in estrogen receptor-negative breast cancer cells. Endocrinology149, 3799–3808 (2008).
  • Vivacqua A, Bonofiglio D, Recchia AG et al. The G protein-coupled receptor GPR30 mediates the proliferative effects induced by 17β-estradiol and hydroxytamoxifen in endometrial cancer cells. Mol. Endocrinol.20, 631–646 (2006).
  • Vivacqua A, Lappano R, De Marco P et al. G protein-coupled receptor 30 expression is up-regulated by EGF and TGF α in estrogen receptor α-positive cancer cells. Mol. Endocrinol.23, 1815–1826 (2009).
  • Revankar CM, Cimino DF, Sklar LA, Arterburn JB, Prossnitz ER. A transmembrane intracellular estrogen receptor mediates rapid cell signaling. Science307, 1625–1630 (2005).
  • Albanito L, Madeo A, Lappano R et al. G protein-coupled receptor 30 (GPR30) mediates gene expression changes and growth response to 17β-estradiol and selective GPR30 ligand G-1 in ovarian cancer cells. Cancer Res.67, 1859–1866 (2007).
  • Vivacqua A, Bonofiglio D, Albanito L et al. 17β-estradiol, genistein and 4-hydroxytamoxifen induce the proliferation of thyroid cancer cells through the G protein-coupled receptor GPR30. Mol. Pharmacol.70, 1414–1423 (2006).
  • Ariazi EA, Brailoiu E, Yerrum S et al. The G protein-coupled receptor GPR30 inhibits proliferation of estrogen receptor-positive breast cancer cells. Cancer Res.70, 1184–1194 (2010).
  • Prossnitz ER, Sklar LA, Oprea TI, Arterburn JB. GPR30: a novel therapeutic target in estrogen-related disease. Trends Pharmacol. Sci.29, 116–123 (2008).
  • Dong S, Terasaka S, Kiyama R. Bisphenol A induces a rapid activation of Erk1/2 through GPR30 in human breast cancer cells. Environ. Pollut.159(1), 212–218 (2010).
  • Filardo EJ, Graeber CT, Quinn JA et al. Distribution of GPR30, a seven membrane-spanning estrogen receptor, in primary breast cancer and its association with clinico-pathologic determinants of tumor progression. Clin. Cancer Res.12, 6359–6366 (2006).
  • Arias-Pulido H, Royce M, Gong Y et al. GPR30 and estrogen receptor expression: new insights into hormone dependence of inflammatory breast cancer. Breast Cancer Res. Treat.123(1), 51–58 (2010).
  • Madeo A, Maggiolini M. Nuclear alternate estrogen receptor GPR30 mediates 17β-estradiol-induced gene expression and migration in breast cancer-associated fibroblasts. Cancer Res.70(14), 6036–6046 (2010).
  • Karnoub AE, Dash AB, Vo AP et al. Bone marrow-derived mesenchymal stem cells promote breast cancer metastasis. Nature449, 557–563 (2007).
  • Bhowmick NA, Neilson EG, Moses HL. Stromal fibroblasts in cancer initiation and progression. Nature432, 332–337 (2004).
  • Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat. Rev. Cancer392–401 (2006).
  • Chan QKY, Lam HM, Ng CF et al. Activation of GPR30 inhibits growth of prostate cancer cells via sustained activation of Erk1/2, c-jun/c-fos-dependendent upregulation of p21, and induction of G2 cell-cycle arrest. Cell Death Differ.17(9), 1511–1523 (2011).
  • Zhou HB, Carlson KE, Stossi F et al. Analogs of methyl-piperidinopyrazole (MPP): antiestrogens with estrogen receptor α selective activity. Bioorg. Med. Chem. Lett.19(1), 108–110 (2009).
  • Meyers MJ, Sun J, Carlson KE et al. Estrogen receptor-α potency-selective ligands: structure–activity relationship studies of diarylpropionitriles and their acetylene and polar analogs. J. Med. Chem.44(24), 4230–4251 (2001).
  • Neubauer BL, Best KL, Counts DF et al. Raloxifene (LY156758) producesantimetastatic responsesandextends survival in the PAIII rat prostatic adenocarcinoma model. Prostate27, 220–229 (1995).
  • Kim IY, Seong DH, Kim BC et al. Raloxifene, a selective estrogen receptor modulator, induces apoptosis in androgen- responsive human prostate cancer cell line LNCaP through an androgen-independent pathway. Cancer Res.62, 3649–3653 (2002).
  • Kim IY, Kim BC, Seong DH et al. Raloxifene, a mixed estrogen agonist/antagonist, induces apoptosis in androgen- independent human prostate cancer cell lines. Cancer Res.62, 5365–5369 (2002).
  • Neubauer BL, McNulty AM, Chedid M et al. The selective estrogen receptor modulator trioxifene (LY133314) inhibits metastasis and extends survival in the PAIII rat prostatic carcinoma model. Cancer Res.63, 6056–6062 (2003).
  • Bhattacharyya RS, Krishnan AV, Swami S, Feldman D. Fulvestrant (ICI 182,780) down-regulates androgen receptor expression and diminishes androgenic responses in LNCaP human prostate cancer cells. Mol. Cancer Ther.5, 1539–1549 (2006).
  • Chadha MK, Ashraf U, Lawrence D et al. Phase II study of fulvestrant (Faslodex) in castration resistant prostate cancer. Prostate68, 1461–1466 (2008).
  • Raghow S, Hooshdaran MZ, Katiyar S, Steiner MS. Toremifene prevents prostate cancer in the transgenic adenocarcinoma of mouse prostate model. Cancer Res.62, 1370–1376 (2002).
  • Setlur SR, Mertz KD, Hoshida Y et al. Estrogen-dependent signaling in a molecularly distinct subclass of aggressive prostate cancer. J. Natl Cancer Inst.100, 815–825 (2008).
  • Bergan RC, Reid E, Myers CE. A Phase II study of high-dose tamoxifen in patients with hormone-refractory prostate cancer. Clin. Cancer Res.5(9), 2366–2373 (1999).
  • Smith MR, Malkowicz SB, Chu F et al. Toremifene increases bone mineral density in men receiving androgen deprivation therapy for prostate cancer: interim analysis of a multicenter Phase 3 clinical study. J. Urol.179, 152–155 (2008).
  • Smith MR, Malkowicz SB, Chu F et al. Toremifene improves lipid profiles in men receiving androgendeprivation therapy for prostate cancer: interim analysis of a multicenter Phase III study. J. Clin. Oncol.26, 1824–1829 (2008).
  • Taylor SE, Martin-Hirsch PL, Martin FL. Oestrogen receptor splice variants in the pathogenesis of disease. Cancer Lett.288(2), 133–148 (2010).
  • Taylor SE, Patel II, Singh PB et al. Elevated oestrogen receptor splice variant ER αΔ5 expression in tumour-adjacent hormone responsive tissue. Int. J. Environ. Res. Public Health7(11), 3871–3889 (2010).
  • Parkin DM, Bray F, Ferlay J, Pisani P. Global Cancer Statistics, 2002. CA Cancer J. Clin.55, 74–108 (2005).
  • Hwang YW, Kim SY, Jee SH, Kim YN, Nam CM. Soy food consumption and risk of prostate cancer: a meta-analysis of observational studies. Nutr. Cancer61(5), 598–606 (2009).
  • Mentor-Marcel R, Lamartiniere CA, Eltoum IE, Greenberg NM, Elgavish A. Genistein in the diet reduces the incidence of poorly differentiated prostatic adenocarcinoma in transgenic mice (TRAMP). Cancer Res.61, 6777–6782 (2001).
  • Mentor-Marcel R, Lamartiniere CA, Eltoum IA, Greenberg NM, Elgavish A. Dietary genistein improves survival and reduces expression of osteopontin in the prostate of transgenic mice with prostatic adenocarcinoma (TRAMP). J. Nutr.135(5), 989–995 (2005).
  • McCormick DL, Johnson WD, Bosland MC, Lubet RA, Steele VE. Chemoprevention of rate prostate carcinogenesis by soy isoflavones and by Bowman–Birk inhibitor. Nutr. Cancer57(2), 184–193 (2007).
  • Kumi-Diaka J, Merchant K, Haces A, Hormann V, Johnson M. Genistein–selenium combination induces growth arrest in prostate cancer cells. J. Med. Food13(4), 842–850 (2010).
  • Nakayama M, Gonzalgo ML, Yegnasubramanian S, Lin X, De Marzo AM, Nelson WG. GSTP1 CpG island hypermethylation as a molecular biomarker for prostate cancer. J. Cell Biochem.91, 540–552 (2004).
  • Yamasaki M, Mukai A, Ohba M et al. Genistein induced apoptotic cell death in adult T-cell leukemia cells through estrogen receptors. Biosci. Biotechnol. Biochem.74(10), 2113–2115 (2010).
  • Donzelli A, Braida D, Finardi A, Capurro V, Colleoni M, Sala M. Neuroprotective effects of genistein in mongolian gerbils: estrogen receptor-β involvement. J. Pharmacol. Sci.114(2), 158–167 (2010).
  • Matsumura K, Tanaka T, Kawashima H, Nakatani T. Involvement of the estrogen receptor β in genistein-induced expression of p21(waf1/cip1) in PC-3 prostate cancer cells. Anticancer Res.28(2A), 709–714 (2008).
  • Iso T, Watanabe T, Iwamoto T, Shimamoto A, Furuichi Y. DNA damage cuased by bisphenol A and estradiol through estrogenic activity. Biol. Pharm. Bull.29, 206–210 (2006).
  • Allen DL, Mitchner NA, Uveges TE, Nephew KP, Khan S, Ben-Jonathan N. Cell-specific induction of c-fos expression in the pituitary gland by estrogen. Endocrinology138(5), 2128–2135 (1997).
  • Benker G, Jaspers C, Häusler G, Reinwein D. Control of prolactin secretion. Klin. Wochenschr.68(23), 1157–1167 (1990).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.