25
Views
2
CrossRef citations to date
0
Altmetric
Review

A critical analysis of the (near) legendary status of vitamin D

, , &
Pages 103-119 | Published online: 10 Jan 2014

References

  • Hypponen E, Laara E, Reunanen A, Jarvelin MR, Virtanen SM. Intake of vitamin D and risk of Type 1 diabetes: a birth-cohort study. Lancet358, 1500–1503 (2001).
  • Pittas AG, Lau J, Hu FB, Dawson-Hughes B. The role of vitamin D and calcium in Type 2 diabetes. A systematic review and meta-analysis. J. Clin. Endocrinol. Metab.92, 2017–2029 (2007).
  • Rejnmark L, Vestergaard P, Heickendorff L, Mosekilde L. Simvastatin does not affect vitamin D status, but low vitamin D levels are associated with dyslipidemia: Results from a randomised, controlled trial. Int. J. Endocrinol.2010, 957174 (2010).
  • Scragg R, Sowers M, Bell C. Serum 25-hydroxyvitamin D, ethnicity, and blood pressure in the Third national health and nutrition examination survey. Am. J. Hypertens.20, 713–719 (2007).
  • Gross C, Stamey T, Hancock S, Feldman D. Treatment of early recurrent prostate cancer with 1,25-dihydroxyvitamin D3 (calcitriol). J. Urol.159, 2035–2039 (1998).
  • Beer TM, Ryan CW, Venner PM et al. Double-blinded randomized study of high-dose calcitriol plus docetaxel compared with placebo plus docetaxel in androgen-independent prostate cancer: a report from the ASCENT Investigators. J. Clin. Oncol.25, 669–674 (2007).
  • Mellanby E. An experimental investigation on rickets. Lancet1, 407–412 (1919).
  • Armas LA, Hollis BW, Heaney RP. Vitamin D2 is much less effective than vitamin D3 in humans. J. Clin. Endocrinol. Metab.89, 5387–5391 (2004).
  • Mortensen BM, Gautvik KM, Gordeladze JO. Bone turnover in rats treated with 1,25-dihydroxyvitamin D3, 25-hydroxyvitamin D3 or 24,25-dihydroxyvitamin D3. Biosci. Rep.13, 27–39 (1993).
  • Bikle DD, Halloran BP, Whitney JO, Hollis BW. Measurement of 25,26-dihydroxyvitamin D: importance of the configuration of the C-25 hydroxyl group. Biochemistry23, 6920–6925 (1984).
  • Takeyama K, Kitanaka S, Sato T, Kobori M, Yanagisawa J, Kato S. 25-hydroxyvitamin D3 1α-hydroxylase and vitamin D synthesis. Science277, 1827–1830 (1997).
  • Sawada N, Sakaki T, Ohta M, Inouye K. Metabolism of vitamin D(3) by human CYP27A1. Biochem. Biophys. Res. Commun.273, 977–984 (2000).
  • Henry HL. Vitamin D hydroxylase. J. Cell. Biochem.49, 4–9 (1992).
  • Nebert DW, Gonzales FJ. P450 genes: structure, evolution and regulation. Ann. Rev. Biochem.56, 945–993 (1987).
  • Gupta RP, Hollis BW, Patel SB, Patrick KS. CYP3A4 is a human microsomal vitamin D 25-hydroxylase. J. Bone Miner. Res.19, 680–688 (2004).
  • Cheng JB, Motola DL, Mangelsdorf DJ, Russell DW. De-orphanization of cytochrome P450 2R1: a microsomal vitamin D 25-hydroxylase. J. Biol. Chem.278, 38084–38093 (2003).
  • Cheng JB, Levine MA, Bell NH, Mangelsdorf DJ, Russell DW. Genetic evidence that the human CYP2R1 enzyme is a key vitamin D 25-hydroxylase. Proc. Natl. Acad. Sci. USA101, 7711–7715 (2004).
  • Shinkyo R, Sakaki T, Kamakura M, Ohta M, Inouye K. Metabolism of vitamin D by human microsomal CYP2R1. Biochem. Biophys. Res. Commun.324, 451–457 (2004).
  • Heaney RP, Armas LAG, Shary JR, Bell NH, Binkley N, Hollis BW. 25-hydroxylation of vitamin D3: relation to circulating vitamin D3 under various input conditions. Am. J. Clin. Nutr.87, 1738–1742 (2008).
  • Shepard RM, Deluca HF. Plasma concentrations of vitamin D3 and its metabolites in the rat as influenced by vitamin D3 or 25-hydroxyvitamin D3 intakes. Arch. Biochem. Biophys.202, 43–53 (1980).
  • Tanaka Y, DeLuca HF. Rat renal 25-hydroxyvitamin D3 1- and 24-hydroxylases: their in vivo regulation. Am. J. Physiol.246, E168–E173 (1984).
  • Deluca HF, Prahl JM, Plum LA. 1,25-dihydroxyvitamin D is not responsible for toxicity caused by vitamin D or 25-hydroxyvitamin D. Arch. Biochem. Biophys.505, 226–230 (2011).
  • Chen TC, Persons K, Uskokovic MR, Horst RL, Holick MF. An evaluation of 1,25-dihydroxyvitamin D3 analogues on the proliferation an differentiation of cultured human keratinocytes, calcium metabolism and the differentiation of human HL-60 cells. J. Nutr. Biochem.4, 49–57 (1993).
  • Holick MF. Vitamin D deficiency. N. Engl. J. Med.357, 266–281 (2007).
  • IOM (Institute of Medicine). Dietary Reference Intakes for Calcium and Vitamin D. The National Academies Press, DC, USA (2011).
  • Malabanan A, Veronikis IE, Holick MF. Redefining vitamin D insufficiency. Lancet351, 805–806 (1998).
  • Bischoff-Ferrari HA, Dietrich T, Orav EJ et al. Higher 25-hydroxyvitamin D concentrations are associated with better lower-extremity function in both active and inactive persons aged >60 y. Am. J. Clin. Nutr.80, 752–758 (2004).
  • Heaney RP. Functional indices of vitamin D status and ramifications of vitamin D deficiency. Am. J. Clin. Nutr.80(Suppl.), S1706–S1709 (2004).
  • Gaugris S, Heaney RP, Boonen S et al. Vitamin D inadequacy among postmenopausal women: a systematic review. OJM98, 557–676 (2005).
  • Bischoff-Ferrari HA, Willett WC, Wong JB et al. Fracture prevention with vitamin D supplementation: a meta-analysis of randomized controlled trials. JAMA293, 2257–2264 (2005).
  • Holick MF, Binkley NC, Bischoff-Ferrari HA et al. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine society clinical practice guideline. J. Clin. Endocrin. Metab.9, 1911–1930 (2011).
  • Bodnar LM, Simhan HN, Powers RW, Frank MP, Cooperstein E, Roberts JM. High prevalence of vitamin D insufficiency in black and white women residing in the northern United States and their neonates. J. Nutr.137, 447–452 (2007).
  • Hollis BW. Vitamin D requirements during lactation: high-dose maternal supplementation as therapy to prevent hypovitaminosis D for both the mother and the nursing infant. Am. J. Clin. Nutr.80, 1752S–1758S (2004).
  • Omdahl JL, Bobrovinkova EA, Choe S, Dwivedi PP, May BK. Overview of regulatory cytochrome P450 enzymes of the vitamin D pathway. Steroids66, 381–389 (2001).
  • Lissner D, Mason RS, Posen S. Stability of vitamin D metabolites in human blood serum and plasma. Clin. Chem.27, 773–774 (1981).
  • Yates AM, Bowron A, Calton L et al. Interlaboratory variation in 25-hydroxyvitamin D2 and 25-hydroxyvitamin D3 is significantly improved if common calibration material is used. Clin. Chem.54, 2082–2084 (2008).
  • Roth HJ, Schmidt-Gayk H, Weber H, Niederau C. Accuracy and clinical implications of seven 25-hydroxyvitamin D methods compared with liquid chromatography-tandem mass spectrometry as a reference. Ann. Clin. Biochem.45, 153–159 (2008).
  • Tai SSC, Bedner M, Phinney KW. Development of a candidate reference measurement procedure for the determination of 25-hydroxyvitamin D3 and 25-hydroxyvitamin D2 in human serum using Isotope-dilution liquid chromatography-tandem mass spectrometry. Anal. Chem.82, 1942–1948 (2010).
  • Stockl D, Sluss PM, Thienpont LM. Specifications for trueness and precision of a reference measurement system for serum/plasma 25-hydroxyvitamin D analysis. Clin. Chim. Acta408, 8–13 (2009).
  • Cooke NE, Haddad JG. Vitamin D binding protein (Gc-globulin). Endocrinol. Rev.10, 294–307 (1989).
  • Sadafi FF, Thornton P, Magiera H et al. Osteopathy and resistance to vitamin D toxicity in mice null for vitamin D binding protein. J. Clin. Invest.103, 239–251 (1999).
  • McLeod JF, Cooke NE. The vitamin D-binding protein, α-fetoprotein, albumin multigene family: detection of transcripts in multiple tissues. J. Biol. Chem.264, 21760–21769 (1989).
  • Birn H, Fyfe JC, Jacobsen C et al. Cubilin is an albumin binding protein important for renal tubular albumin reabsorption. Clin. Invest.105, 1353–1361 (2000).
  • Adams JS, Chen H, Chun RF et al. Novel regulators of vitamin D action and metabolism: lessons learned at the Los Angeles zoo. J. Cell. Biochem.88, 308–314 (2003).
  • Mangelsdorf DJ, Thummel C, Beato M et al. The nuclear receptor superfamily: the second decade. Cell83, 835–839 (1995).
  • Freedman LP, Luisi BF, Korszun ZR, Basavappa R, Sigler PB, Yamamoto KR. The function and structure of the metal coordination sites within the glucocorticoid receptor DNA binding domain. Nature334, 543–546 (1988).
  • Norman AW, Adams D, Collins ED, Okamura WH, Fletterick RJ. Three-dimensional model of the ligand binding domain of the nuclear receptor for 1α,25-dihydroxy-vitamin D3. J. Cell. Biochem.74, 323–333 (1999).
  • Rochel N, Wurtz JM, Mitschler A, Klaholz B, Moras D. The crystal structure of the nuclear receptor for vitamin D bound to its natural ligand. Mol. Cell.5, 173–179 (2000).
  • Wrange O, Eriksson P, Perlmann T. The purified activated glucocorticoid receptor is a homodimer. J. Biol. Chem.264, 5253–5259 (1989).
  • Durand B, Saunders M, Gaudon C, Roy B, Losson R, Chambon P. Activation function 2 (AF-2) of retinoic acid receptor and 9-cis retinoic acid receptor: presence of a conserved autonomous constitutive activating domain and influence of the nature of the response element on AF-2 activity. EMBO J.13, 5370–5382 (1994).
  • Staal A, van Wijnen AJ, Birkenhäger JC et al. Distinct conformations of vitamin D receptor/retinoid X receptor-α heterodimers are specified by dinucleotide differences in the vitamin D-responsive elements of the osteocalcin and osteopontin genes. Mol. Endocrinol.10, 1444–1456 (1996).
  • Stern M, Jensen R, Herskowitz I. Five SWI genes are required for expression of the HO gene in yeast. J. Mol. Biol.178, 853–868 (1984).
  • Rachez C, Gamble M, Chang CP, Atkins GB, Lazar MA, Freedman LP. The DRIP complex and SRC-1/p160 coactivators share similar nuclear receptor binding determinants but constitute functionally distinct complexes. Mol. Cell Biol.20, 2718–2726 (2000).
  • Chen D, Huang SM, Stallcup MR. Synergistic, p160 coactivator-dependent enhancement of estrogen receptor function by CARM1 and p300. J. Biol. Chem.275, 40810–40816 (2000).
  • Dupret JM, Brun P, Thomasset M. In vivo effects of transcriptional and translational inhibitors on duodenal vitamin D-dependent calcium-binding protein messenger ribonucleic acid stimulation by 1,25-dihydroxycholecalciferol. Endocrinology119, 2476–2483 (1986).
  • Sánchez-Martínez R, Zambrano A, Castillo AI, Aranda A. Vitamin D-dependent recruitment of corepressors to vitamin D/retinoid X receptor heterodimers. Mol. Cell. Biol.28, 3817–3829 (2008).
  • Polly P, Herdick M, Moehren U, Baniahmad A, Heinzel T, Carlberg C. VDR-Alien: a novel, DNA-selective vitamin D(3) receptor-corepressor partnership. FASEB J.14, 1455–1463 (2000).
  • Arbelle JE, Chen H, Gaead MA, Allegretto EA, Pike JW, Adams JS. Inhibition of vitamin D receptor-retinoid X receptor-vitamin D response element complex formation by nuclear extracts of vitamin D-resistant New World primate cells. Endocrinology137, 786–789 (1996).
  • Chen H, Hu B, Allegretto EA, Adams JS. The vitamin D response element-binding protein: a novel dominant-negative regulator of vitamin D-directed transactivation. J. Biol. Chem.275, 35557–35564 (2000).
  • Nelson HD, Helfand M, Woolf SH, Aallan JD. Screening for postmenopausal osteoposoris: a review of the evidence for the U.S. preventive services task force. Ann. Intern. Med.137, 529–541 (2002).
  • Pfeifer M, Begerow B, Minne HW, Suppan K, Fahrleitner-Pammer A, Dobnig H. Effects of a long-term vitamin D and calcium supplementation on falls and parameters of muscle function in community-dwelling older individuals. Osteoporos. Int.20, 315–322 (2009).
  • Meyer HE, Smedshaug GB, Kvaavik E, Falch JA, Tverdal A, Pedersen JI. Can vitamin D supplementation reduce the risk of fracture in the elderly? A randomized controlled trial. J. Bone Miner. Res.17, 709–715 (2002).
  • Bischoff-Ferrari HA, Willett WC, Wong JB et al. Prevention of nonvertebral fractures with oral vitamin D dose dependency. A meta-analysis of randomized controlled trials. Arch. Intern. Med.169, 551–561 (2009).
  • Graafmans WC, Ooms ME, Hofstee HM, Bezemer PD, Bouter LM, Lips P. Falls in elderly: a prospective study of risk factor and risk profiles. Am. J. Epidemiol.143, 1129–1136 (1996).
  • Pfeifer M, Begerow B, Minne HW, Abrams C, Nachtigall D, Hansen C. Effects of a short-term vitamin D and calcium supplementation on body sway and secondary hyperparathyroidism in elderly women. J. Bone Miner. Res.15, 1113–1118 (2000).
  • Bischoff-Ferrari HA, Stahelin HB, Dick W et al. Effects of vitamin D and calcium supplementation on falls: a randomized controlled trial. J. Bone Miner. Res.18, 343–351 (2003).
  • Broe KE, Chen TC, Weinberg J, Bischoff-Ferrari HA, Holick MF, Kiel DP. A higher dose of vitamin D reduces the risk of falls in nursing home residents: a randomized, multiple-dose study. J. Am. Geriatr. Soc.55, 234–239 (2007).
  • Priemel M, von Domarus C, Klatte TO et al. Bone mineralization defects and vitamin D deficiency: histomorphometric analysis of iliac crest bone biopsies and circulating 25-hydroxyvitamin D in 675 patients. J. Bone Miner. Res.25, 305–312 (2010).
  • Need AG. Bone resorption markers in vitamin D insufficiency. Clin. Chim. Acta368, 48–52 (2006).
  • van Driel M, Koedam M, Buurman CJ et al. Evidence for auto/paracrine actions of vitamin D in bone: 1α-hydroxylase expression and activity in human bone cells. FASEB J.20, 2417–2419 (2006).
  • Atkins GJ, Anderson PH, Findlay DM et al. Metabolism of vitamin D3 in human osteoblasts: evidence for autocrine and paracrine activities of 1 α,25-dihydroxyvitamin D3. Bone40, 1517–1528 (2007).
  • Horwood NJ, Elliott J, Martin TJ, Gillespie MT. Osteotropic agents regulate the expression of osteoclast differentiation factor and osteoprotegerin in osteoblastic stromal expression of osteoclast differentiation factor and osteoprotegerin in osteoblastic stromal cells. Endocrinology139, 4743–4746 (1998).
  • Kogawa M, Findlay DM, Anderson PH et al. Osteoclastic metabolism of 25(OH)-vitamin D3: a potential mechanism for optimization of bone resorption. Endocrinology151, 4613–4625 (2010).
  • Pescovitz MD, Greenbaum CJ, Krause-Steinrauf H et al. Rituximab, B-lymphocyte depletion, and preservation of β-cell function. N. Engl. J. Med.361, 2143–2152 (2009).
  • MacLaughlin JA, Anderson RR, Holick MF. Spectral character of sunlight modulates photosynthesis of previtamin D3 and its isomers in human skin. Science216, 1001–1003 (1982).
  • Webb AR, Kline L, Holilck MF. Influence of season and latitude on the cutaneous synthesis of vitamin D3: exposure to winter sunlight in Boston and Edmonton will not promote vitamin D3 synthesis in human skin. J. Clin. Endocrinol. Metab.67, 373–378 (1988).
  • Staples JA, Ponsonby AL, Lim LL, McMichael AJ. Ecologic analysis of some immune-related disorders, including Type 1 diabetes, in Australia: latitude, regional ultraviolet radiation, and disease prevalence. Environ. Health Perspect.111, 518–523 (2003).
  • Kimlin MG, Olds WJ, Moore MR. Location and vitamin D synthesis: is the hypothesis validated by geophysical data? J. Photochem. Photobiol.B.86, 234–239 (2007).
  • Mohr SB, Garland CF, Gorham ED, Garland FC. The association between ultraviolet B irradiance, vitamin D status and incidence rates of Type 1 diabetes in 51 regions worldwide. Diabetologia51, 1391–1398 (2008).
  • Fronczak CM, Barón AE, Chase HP et al. In utero dietary exposures and risk of islet autoimmunity in children. Diabet. Care26, 3237–3242 (2003).
  • The EURODIAB substudy 2 study group. Vitamin D supplement in early childhood and risk for type 1 (insulin-dependent) diabetes mellitus. Diabetologia42, 51–54 (1999).
  • Stene Ulriksen J, Magnus P, Joner G. Use of cod liver oil during pregnancy associated with lower risk of Type I diabetes in the offspring. Diabetologia43, 1093–1098 (2000).
  • Crinò A, Di Stasio E, Manfrini S et al. The effects of calcitriol and nicotinamide on residual pancreatic β-cell function in patients with recent-onset Type 1 diabetes (IMDIAB XI). Diabet. Med.23, 920–923 (2006).
  • Illig T, Bongardt F, Schöpfer A et al. Significant association of the interleukin-6 gene polymorphisms C-174G and A-598G with Type 2 diabetes. J. Clin. Endocrinol. Metab.89, 5053–5058 (2004).
  • Fernández-Real JM, Vendrell J, Ricart W et al. Polymorphism of the tumor necrosis factor- α receptor 2 gene is associated with obesity, leptin levels, and insulin resistance in young subjects and diet-treated Type 2 diabetic patients. Diabet. Care23, 831–837 (2000).
  • Gregori S, Giarratana N, Smiroldo S, Uskokovic M, Adorini L. A 1α,25-dihydroxyvitamin D3 analog enhances regulatory T-cells and arrests autoimmune diabetes in NOD mice. Diabetes51, 1367–1374 (2002).
  • Riachy R, Vandewalle B, Belaich S et al. Beneficial effect of 1,25 dihydroxyvitamin D3 on cytokine-treated human pancreatic islets. J. Endocrinol.169, 161–168 (2001).
  • Christakos S, Norman AW. Studies on the mode of action of calciferol XVIII-evidence for a specific high affinity binding protein for 1,25-dihydroxyvitamin D3 in chick kidney and pancreas. Biochem. Biophys. Res. Commun.89, 56–63 (1979).
  • Norman AW, Frankel JB, Heldt AM, Grodsky GM. Vitamin D deficiency inhibits pancreatic secretion of insulin. Science209, 823–825 (1980).
  • Milner RD, Hales CN. The role of calcium and magnesium in insulin secretion from rabbit pancreas studied in vitro. Diabetologia3, 47–49 (1967).
  • Boucher BJ, Mannan N, Noonan K, Hales CN, Evans SJ. Glucose intolerance and impairment of insulin secretion in relation to vitamin D deficiency in east London Asians. Diabetologia38, 1239–1245 (1995).
  • Gedik O, Akalin S. Effects of vitamin D deficiency and repletion on insulin and glucagon secretion in man. Diabetologia29, 142–145 (1986).
  • Orwoll E, Riddle M, Prince M. Effects of vitamin D on insulin and glucagon secretion in non-insulin-dependent diabetes mellitus. Am. J. Clin. Nutr.59, 1083–1087 (1994).
  • Chiu KC, Chu A, Go VL, Saad MF. Hypovitaminosis D is associated with insulin resistance and β-cell dysfunction. Am. J. Clin. Nutr.79, 820–825 (2004).
  • Sanchez M, de la Sierra A, Coca A, Poch E, Giner V, Urbano-Marquez A. Oral calcium supplementation reduces intraplatelet free calcium concentration and insulin resistance in essential hypertensive patients. Hypertension29, 531–536 (1997).
  • Harris MI, Flegal KM, Cowie CC et al. Prevalence of diabetes, impaired fasting glucose, and impaired glucose tolerance in U.S. adults: the Third National Health and Nutrition Examination Survey, 1988–1994. Diabet. Care21, 518–524 (1998).
  • Scragg R, Sowers M, Bell C. Serum 25-hydroxyvitamin D, diabetes, and ethnicity in the Third National Health and Nutrition Examination Survey. Diabet. Care27, 2813–2818 (2004).
  • Need AG, O’Loughlin PD, Horowitz M, Nordin BE. Relationship between fasting serum glucose, age, body mass index and serum 25 hydroxyvitamin D in postmenopausal women. Clin. Endocrinol. (Oxf.)62, 738–741 (2005).
  • Ford ES, Ajani UA, McGuire LC, Liu S. Concentrations of serum vitamin D and the metabolic syndrome among U.S. adults. Diabet. Care28, 1228–1230 (2005).
  • Avenell A, Cook JA, MacLennan GS, McPherson GC. Vitamin D supplementation and type 2 diabetes: a substudy of a randomised placebo-controlled trial in older people (RECORD trial, ISRCTN 51647438). Age Ageing38, 606–609 (2009).
  • Inomata S, Kadowaki S, Yamatani T, Fukase M, Fujita T. Effect of 1 α (OH)-vitamin D3 on insulin secretion in diabetes mellitus. Bone Miner.1, 187–192 (1986).
  • Ljunghall S, Lind L, Lithell H et al. Treatment with one-α-hydroxycholecalciferol in middle-aged men with impaired glucose tolerance – a prospective randomized double-blind study. Acta Med. Scand.222, 361–363 (1987).
  • Stumpf WE, Sar M, Reid FA et al. Target cells for 1,25-dihydroxyvitamin D3 in intestinal tract, stomach, kidney, skin, pituitary and parathyroid. Science206, 1188–1190 (1979).
  • Apperly FL. The relation of solar radiation to cancer mortality in North America. Cancer Res.1, 191–195 (1941).
  • Manson JE, Mayne ST, Clinton SK. Vitamin D and prevention of cancer-ready for prime time? N. Engl. J. Med.364, 1385–1387 (2011).
  • Speers C, Brown P. Breast cancer prevention using calcium and vitamin D: a bright future? J. Natl Cancer Inst.100, 1562–1564 (2008).
  • Heaney RP, Lappe JM. Reply to MM Sood and AR Sood. Am. J. Clin. Nutr.86, 1549–1550 (2007).
  • Robsahm TE, Tretli S, Dahlback A, Moan J. Vitamin D3 from sunlight may improve the prognosis of breast-, colon- and prostate cancer. Cancer Causes Cont.15, 149–158 (2004).
  • Colli JL, Colli A. International comparisons of prostate cancer mortality rates with dietary practices and sunlight levels. Urol. Oncol.24, 184–194 (2006).
  • Grant WB. A multicountry ecologic study of risk and risk reduction factors for prostate cancer mortality. Eur. Urol.45, 271–279 (2004).
  • Luscombe CJ, Fryer AA, French ME et al. Exposure to ultraviolet radiation: association with susceptibility and age at presentation with prostate cancer. Lancet258, 641–642 (2001).
  • Frazier AL, Li L, Cho E, Willett WC, Colditz GA. Adolescent diet and risk of breast cancer. Cancer Causes Cont.15, 73–82 (2004).
  • McCullough ML, Rodriguez C, Diver WR et al. Dairy, calcium and vitamin D intake and postmenopausal breast cancer risk in the Cancer Prevention Study II nutrition cohort. Cancer Epidemiol. Biomarkers Prev.14, 2898–2904 (2005).
  • Shin MH, Holmes MD, Hankinson SE, Wu K, Colditz GA, Willett WC. Intake of dairy products, calcium, and vitamin D and risk of breast cancer. J. Natl Cancer Inst.94, 1301–1311 (2002).
  • Knight JA, Lesosky M, Barnett H, Raboud JM, Vieth R. Vitamin D and reduced risk of breast cancer: a population-based case-control study. Cancer Epidemiol. Biomarkers Prev.16, 422–429 (2007).
  • Liu M, Lee MH, Cohen M, Bommakanti M, Freedman LP. Transcriptional activation of the Cdk inhibitor p21 by vitamin D3 leads to induced differentiation of the myelomonocytic cell line U937. Genes Dev.10, 142–153 (1996).
  • Norman AW, Bishop JE, Bula CM et al. Molecular tools for study of genomic and rapid signal transduction responses initiated by 1α25(OH)2-vitamin D3. Steroids67, 457–466 (2002).
  • Hager G, Kornfehl J, Knerer B, Weigel G, Formanek M. Molecular analysis of p21 promoter activity isolated from squamous carcinoma cell lines of the head and neck under the influence of 1,25(OH)2 vitamin D3 and its analogs. Acta Otolaryngol.124, 90–96 (2004).
  • van der Kerkhof PCM. Biological activity of vitamin D analogues in the skin, with special reference to antipsoriatic mechanisms. Br. J. Dermatol.132, 675–682 (1995).
  • Koli K, Keekj-Oja J. 1 α,25(OH)2D3 and its analogs down-regulate cell invasion-associated proteases in cultured malignant cells. Cell Growth Differ.11, 221–229 (2000).
  • Mantell DJ, Owens PE, Bundred NJ, Mawer EB, Canfield AE. 1α,25-dihydroxyvitamin D3 inhibits angiogenesis in vitro and in vivo. Circ. Res.87, 214–220 (2000).
  • Elias J, Marian B, Edling C et al. Induction of apoptosis by vitamin D metabolites and analogs in a glioma cell line. Recent Results Cancer Res.164, 319–332 (2003).
  • Tangpricha V, Spina C, Yao M, Chen TC, Wolfe MM, Holick MF. Vitamin D deficiency enhances the growth of MC-26 colon cancer xenografts in Balb/c mice. J. Nutr.135, 2350–2354 (2005).
  • Fu GK, Lin D, Zhang MY et al. Cloning of human 25-hydroxyvitamin D-1α-hydroxylase and mutations causing vitamin D-dependent rickets Type 1. Mol. Endocrinol.11, 1961–1970 (1997).
  • Ritchie HH, Hughes MR, Thompson ET et al. An ochre mutation in the vitamin D receptor gene causes hereditary 1,25-dihydroxyvitamin D3-resistant rickets in three families. Proc. Natl Acad. Sci. USA86, 9783–9787 (1989).
  • McDonnell DP, Scott RA, Kerner SA, O’Malley BW, Pike JW. Functional domains of the human vitamin D3 receptor regulate osteocalcin gene expression. Mol. Endocrinol.3, 635–644 (1989).
  • Sone T, Marx SJ, Liberman UA, Pike JW. A unique point mutation in the human vitamin D receptor chromosomal gene confers hereditary resistance to 1,25-dihydroxyvitamin D3. Mol. Endocrinol.4, 623–631 (1990).
  • Saijo T, Ito M, Takeda E et al. A unique mutation in the vitamin D receptor gene in three Japanese patients with vitamin D-dependent rickets type II: utility of single-strand conformation polymorphism analysis for heterozygous carrier detection. Am. J. Hum. Genet.49, 668–673 (1991).
  • Hirst MA, Hochman HI, Feldman D. Vitamin D resistance and alopecia: a kindred with normal 1,25-dihydroxyvitamin D binding, but decreased receptor affinity for deoxyribonucleic acid. J. Clin. Endocrinol. Metab.60, 490–495 (1985).
  • Rut AR, Hewison M, Kristjansson K, Luisi B, Hughes MR, O’Riordan JL. Two mutations causing vitamin D resistant rickets: modeling on the basis of steroid hormone receptor DNA-binding domain crystal structures. Clin. Endocrinol. (Oxf.).41, 581–590 (1994).
  • McKay HA, Bailey DA, Wilkinson AA, Houston CS. Familial comparison of bone mineral density at the proximal femur and lumbar spine. Bone Miner.24, 95–107 (1994).
  • Slemendda CW, Christian JC, Williams CJ, Norton JA, Johnston CC Jr. Genetic determinants of bone mass in adult women: a reevaluation of the twin model, and the potential importance of gene interaction on heritability estimates. J. Bone Miner. Res.6, 561–567 (1991).
  • Arai H, Miyamoto KI, Yoshida M et al. The polymorphism in the caudal-related homeodomain protein Cdx-2 binding element in the human vitamin D receptor gene. J. Bone Miner. Res.16, 1256–1264 (2001).
  • Fang Y, van Meurs JB, Bergink AP et al. Cdx-2 polymorphism in the promoter region of the human vitamin D receptor gene determines susceptibility to fracture in the elderly. J. Bone Miner. Res.18, 1632–1641 (2003).
  • Liel Y, Shany S, Smirnoff P, Schwartz B. Estrogen increases 1,25-dihydroxyvitamin D receptors expression and bioresponse in the rat duodenal mucosa. Endocrinology140, 280–285 (1999).
  • Uitterlinden AG, Ralston SH, Brandi ML et al. The association between common vitamin D receptor gene variations and osteoporosis: a participant-level meta-analysis. Ann. Intern. Med.145, 255–264 (2006).
  • Morrison NA, Yeoman R, Kelly PJ, Eisman JA. Contribution of trans-acting factor alleles to normal physiological variability: vitamin D receptor gene polymorphism and circulating osteocalcin. Proc. Natl Acad. Sci. USA89, 6665–6669 (1992).
  • Faraco JH, Morrison NA, Baker A, Shine J, Frossard PM. ApaI dimorphism at the human vitamin D receptor gene locus. Nucleic Acids Res.17, 2150–2157 (1989).
  • Morrison NA, Qi JC, Tokita A et al. Prediction of bone density from vitamin D receptor alleles. Nature367, 284–287 (1994).
  • Inagaki K, Krall EA, Fleet JC, Garcia RI. Vitamin D receptor alleles, periodontal disease progression, and tooth loss in the VA dental longitudinal study. J. Periodontol.74, 161–167 (2003).
  • Wang C, Zhao H, Xiao L et al. Association between vitamin D receptor gene polymorphisms and severe chronic periodontitis in a Chinese population. J. Periodontol.80, 603–608 (2009).
  • Yoshihara A, Sugita N, Yamamoto K, Kobayashi T, Miyazaki H, Yoshi H. Analysis of vitamin D and Fc γ receptor polymorphisms in Japanese patients with generalized early-onset periodontitis. J. Dent. Res.80, 2051–2054 (2001).
  • de Brito Júnior RB, Scarel-Caminaga RM, Trevilatto PC, de Souza AP, Barros SP. Polymorphisms in the vitamin D receptor gene are associated with periodontal disease. J. Periodontol.75, 1090–1095 (2004).
  • Slattery ML, Herrick J, Wolff RK, Caan BJ, Potter JD, Sweeney C. CDX2 VDR polymorphism and colorectal cancer. Cancer Epidemiol. Biomarkers Prev.16, 2752–2755 (2007).
  • Sweeney C, Curtin K, Murtaugh MA, Caan BJ, Potter JD, Slattery ML. Haplotype analysis of common vitamin D receptor variants and colon and rectal cancers. Cancer Epidemiol. Biomarkers Prev.15, 744–749 (2006).
  • Guy M, Lowe LC, Bretherton-Watt D et al. Vitamin D receptor gene polymorphisms and breast cancer risk. Clin. Cancer Res.10, 5472–5481 (2004).
  • Li H, Stampfer MJ, Hollis JB et al. A prospective study of plasma vitamin D metabolites, vitamin D receptor polymorphisms, and prostate cancer. PLoS Med.4, e103 (2007).
  • Arai H, Miyamoto K, Taketani Y et al. A vitamin D receptor gene polymorphism in the translation initiation codon: effect on protein activity and relation to bone mineral density in Japanese women. J. Bone Miner. Res.12, 915–921 (1997).
  • Ruggiero M, Pacini S, Aterini S, Fallai C, Ruggiero C, Pacini P. Vitamin D receptor gene polymorphism is associated with metastatic breast cancer. Oncol. Res.10, 43–46 (1998).
  • Lowe LC, Guy M, Mansi JL et al. Plasma 25-hydroxyvitamin D concentrations, vitamin D receptor genotype and breast cancer risk in a UK Caucasian population. Eur. J. Cancer41, 1164–1169 (2005).
  • English DR, Armstrong BK, Kricker A, Fleming C. Sunlight and cancer. Cancer Causes Cont.8, 271–283 (1997).
  • Hutchinson PE, Osborne JE, Lear JT et al. Vitamin D receptor polymorphisms are associated with altered prognosis in patients with malignant melanoma. Clin. Cancer Res.2, 498–504 (2000).
  • Shulman AI, Larson C, Mangelsdorf DJ, Ranganathan R. Structural determinants of allosteric ligand activation in RXR heterodimers. Cell116, 417–429 (2004).
  • Li J, Wang J, Wang J et al. Both corepressor proteins SMRT and N-CoR exist in large protein complexes containing HDAC3. EMBO J.19, 4342–4350 (2000).
  • Fischle W, Dequiedt F, Hendzel MJ et al. Enzymatic activity associated with Class 2 HDACs is dependent on a multiprotein complex containing HDAC3 and SMRT/N-CoR. Mol. Cell.9, 45–57 (2002).
  • Rachez C, Freedman LP. Mechanisms of gene regulation by vitamin D(3) receptor: a network of coactivator interactions. Gene246, 9–21 (2000).
  • Banwell CM, MacCartney DP, Guy M et al. Altered nuclear receptor corepressor expression attenuates vitamin D receptor signaling in breast cancer cells. Clin. Cancer Res.12, 2004–2013 (2006).
  • Collins FS, Morgan M, Patrinos A. The human genome project: lessons from large-scale biology. Science300, 286–290 (2003).
  • Gross C, Eccleshall TR, Malloy PJ, Luz M. The presence of a polymorphism at the translation initiation site of the vitamin D receptor gene is associated with low bone mineral density in postmenopausal Mexican–American women. J. Bone Miner. Res.11, 1850–1855 (1996).
  • Mortial A, Iki M, Dohi Y et al. Prediction of bone mineral density from vitamin D receptor polymorphisms is uncertain in representative samples of Japanese women. Int. J. Epidemiol.33, 979–988 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.