726
Views
8
CrossRef citations to date
0
Altmetric
Review

Variability in stress system regulatory control of inflammation: a critical factor mediating health effects of stress

Pages 269-278 | Published online: 10 Jan 2014

References

  • Danesh J. Smoldering arteries? Low-grade inflammation and coronary heart disease. JAMA282, 2169–2171 (1999).
  • Hotamisligil GS, Peraldi P, Budavari A, Ellis R, White MF, Spiegelman BM. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-α- and obesity-induced insulin resistance. Science271, 665–668 (1996).
  • Ershler WB, Sun WH, Binkley N. The role of interleukin-6 in certain age-related diseases. Drugs Aging5, 358–365 (1994).
  • Ford DE, Erlinger TP. Depression and C-reactive protein in US adults: data from the Third National Health and Nutrition Examination Survey. Arch. Intern. Med.164, 1010–1014 (2004).
  • Spitzer C, Barnow S, Volzke H et al. Association of posttraumatic stress disorder with low-grade elevation of C-reactive protein: evidence from the general population. J. Psychiatr. Res.44, 15–21 (2010).
  • von Kanel R, Hepp U, Kraemer B et al. Evidence for low-grade systemic proinflammatory activity in patients with posttraumatic stress disorder. J. Psychiatr. Res.41, 744–752 (2007).
  • Kiecolt-Glaser JK, Preacher KJ, MacCallum RC, Atkinson C, Malarkey WB, Glaser R. Chronic stress and age-related increases in the proinflammatory cytokine IL-6. Proc. Natl Acad. Sci. USA100, 9090–9095 (2003).
  • Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat. Rev. Neurosci.9, 46–56 (2008).
  • Miller AH, Maletic V, Raison CL. Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol. Psychiatry65, 732–741 (2009).
  • Dimsdale JE. Psychological stress and cardiovascular disease. J. Am. Coll. Cardiol.51, 1237–1246 (2008).
  • Cohen S, Janicki-Deverts D, Miller GE. Psychological stress and disease. JAMA298, 1685–1687 (2007).
  • McEwen BS, Stellar E. Stress and the individual. Mechanisms leading to disease. Arch. Intern. Med.153, 2093–2101 (1993).
  • McEwen BS. Protective and damaging effects of stress mediators. N. Engl. J. Med.338, 171–179 (1998).
  • Sapolsky RM, Romero LM, Munck AU. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr. Rev.21, 55–89 (2000).
  • Sternberg EM, Chrousos GP, Wilder RL, Gold PW. The stress response and the regulation of inflammatory disease. Ann. Intern. Med.117, 854–866 (1992).
  • Deuschle M, Schweiger U, Weber B et al. Diurnal activity and pulsatility of the hypothalamus–pituitary–adrenal system in male depressed patients and healthy controls. J. Clin. Endocrinol. Metab.82, 234–238 (1997).
  • Rohleder N, Marin TJ, Ma R, Miller GE. Biologic cost of caring for a cancer patient: dysregulation of pro- and anti-inflammatory signaling pathways. J. Clin. Oncol.27, 2909–2915 (2009).
  • Miller GE, Cohen S, Ritchey AK. Chronic psychological stress and the regulation of proinflammatory cytokines: a glucocorticoid-resistance model. Health Psychol.21, 531–541 (2002).
  • Rohleder N, Wolf JM, Kirschbaum C. Glucocorticoid sensitivity in humans – interindividual differences and acute stress effects. Stress6, 207–222 (2003).
  • Raison CL, Miller AH. When not enough is too much: the role of insufficient glucocorticoid signaling in the pathophysiology of stress-related disorders. Am. J. Psychiatry160, 1554–1565 (2003).
  • Elenkov IJ, Wilder RL, Chrousos GP, Vizi ES. The sympathetic nerve – an integrative interface between two supersystems: the brain and the immune system. Pharmacol. Rev.52, 595–638 (2000).
  • Tracey KJ. The inflammatory reflex. Nature420, 853–859 (2002).
  • Sternberg EM. Neural regulation of innate immunity: a coordinated nonspecific host response to pathogens. Nat. Rev. Immunol.6, 318–328 (2006).
  • Thayer JF, Sternberg EM. Neural aspects of immunomodulation: focus on the vagus nerve. Brain Behav. Immun.24, 1223–1228 (2010).
  • McKay LI, Cidlowski JA. Molecular control of immune/inflammatory responses: interactions between nuclear factor-κ B and steroid receptor-signaling pathways. Endocr. Rev.20, 435–459 (1999).
  • Bamberger CM, Schulte HM, Chrousos GP. Molecular determinants of glucocorticoid receptor function and tissue sensitivity to glucocorticoids. Endocr. Rev.17, 245–261 (1996).
  • Pace TW, Hu F, Miller AH. Cytokine-effects on glucocorticoid receptor function: relevance to glucocorticoid resistance and the pathophysiology and treatment of major depression. Brain Behav. Immun.21, 9–19 (2007).
  • DeRijk RH, Petrides J, Deuster P, Gold PW, Sternberg EM. Changes in corticosteroid sensitivity of peripheral blood lymphocytes after strenous exercise in humans. J. Clin. Endocrinol. Metab.81, 228–235 (1996).
  • Smits HH, Grunberg K, Derijk RH, Sterk PJ, Hiemstra PS. Cytokine release and its modulation by dexamethasone in whole blood following exercise. Clin. Exp. Immunol.111, 463–468 (1998).
  • Kavelaars A, Kuis W, Knook L, Sinnema G, Heijnen CJ. Disturbed neuroendocrine-immune interactions in chronic fatigue syndrome. J. Clin. Endocrinol. Metab.85, 692–696 (2000).
  • Wirtz PH, von Kanel R, Schnorpfeil P, Ehlert U, Frey K, Fischer JE. Reduced glucocorticoid sensitivity of monocyte interleukin-6 production in male industrial employees who are vitally exhausted. Psychosom. Med.65, 672–678 (2003).
  • Wirtz PH, Von Kanel R, Frey K, Ehlert U, Fischer JE. Glucocorticoid sensitivity of circulating monocytes in essential hypertension. Am. J. Hypertens.17, 489–494 (2004).
  • Rohleder N, Joksimovic L, Wolf JM, Kirschbaum C. Hypocortisolism and increased glucocorticoid sensitivity of pro-inflammatory cytokine production in Bosnian war refugees with posttraumatic stress disorder. Biol. Psychiatry55, 745–751 (2004).
  • Sheridan JF, Stark JL, Avitsur R, Padgett DA. Social disruption, immunity, and susceptibility to viral infection. Role of glucocorticoid insensitivity and NGF. Ann. NY Acad. Sci.917, 894–905 (2000).
  • Miller GE, Rohleder N, Stetler C, Kirschbaum C. Clinical depression and regulation of the inflammatory response during acute stress. Psychosom. Med.67, 679–687 (2005).
  • Wirtz PH, Ehlert U, Emini L, Suter T. Higher body mass index (BMI) is associated with reduced glucocorticoid inhibition of inflammatory cytokine production following acute psychosocial stress in men. Psychoneuroendocrinology33, 1102–1110 (2008).
  • Bower JE, Ganz PA, Aziz N, Olmstead R, Irwin MR, Cole SW. Inflammatory responses to psychological stress in fatigued breast cancer survivors: relationship to glucocorticoids. Brain Behav. Immun.21, 251–258 (2007).
  • Rohleder N, Wolf JM, Piel M, Kirschbaum C. Impact of oral contraceptive use on glucocorticoid sensitivity of proinflammatory cytokine production after psychosocial stress. Psychoneuroendocrinology28, 261–273 (2003).
  • Mommersteeg PM, Heijnen CJ, Kavelaars A, van Doornen LJ. Immune and endocrine function in burnout syndrome. Psychosom. Med.68, 879–886 (2006).
  • Miller GE, Gaudin A, Zysk E, Chen E. Parental support and cytokine activity in childhood asthma: the role of glucocorticoid sensitivity. J. Allergy Clin. Immunol.123, 824–830 (2009).
  • de Kloet CS, Vermetten E, Bikker A et al. Leukocyte glucocorticoid receptor expression and immunoregulation in veterans with and without post-traumatic stress disorder. Mol. Psychiatry12, 443–453 (2007).
  • ter Wolbeek M, van Doornen LJ, Schedlowski M, Janssen OE, Kavelaars A, Heijnen CJ. Glucocorticoid sensitivity of immune cells in severely fatigued adolescent girls: a longitudinal study. Psychoneuroendocrinology33, 375–385 (2008).
  • Dhabhar FS, Miller AH, McEwen BS, Spencer RL. Stress-induced changes in blood leukocyte distribution. Role of adrenal steroid hormones. J. Immunol.157, 1638–1144 (1996).
  • Cole SW. Social regulation of leukocyte homeostasis: the role of glucocorticoid sensitivity. Brain Behav. Immun.22, 1049–1055 (2008).
  • Cole SW, Mendoza SP, Capitanio JP. Social stress desensitizes lymphocytes to regulation by endogenous glucocorticoids: insights from in vivo cell trafficking dynamics in rhesus macaques. Psychosom. Med.71, 591–597 (2009).
  • Cole SW, Hawkley LC, Arevalo JM, Sung CY, Rose RM, Cacioppo JT. Social regulation of gene expression in human leukocytes. Genome Biol.8, R189 (2007).
  • Miller GE, Chen E, Sze J et al. A functional genomic fingerprint of chronic stress in humans: blunted glucocorticoid and increased NF-κB signaling. Biol. Psychiatry64, 266–272 (2008).
  • Miller GE, Chen E, Fok AK et al. Low early-life social class leaves a biological residue manifested by decreased glucocorticoid and increased proinflammatory signaling. Proc. Natl Acad. Sci. USA106, 14716–14721 (2009).
  • Bower JE, Ganz PA, Irwin MR, Arevalo JM, Cole SW. Fatigue and gene expression in human leukocytes: increased NF-κB and decreased glucocorticoid signaling in breast cancer survivors with persistent fatigue. Brain Behav. Immun.25(1), 147–150 (2010).
  • Avitsur R, Stark JL, Sheridan JF. Social stress induces glucocorticoid resistance in subordinate animals. Horm. Behav.39, 247–257 (2001).
  • Bailey MT, Avitsur R, Engler H, Padgett DA, Sheridan JF. Physical defeat reduces the sensitivity of murine splenocytes to the suppressive effects of corticosterone. Brain Behav. Immun.18, 416–424 (2004).
  • Stark JL, Avitsur R, Padgett DA, Campbell KA, Beck FM, Sheridan JF. Social stress induces glucocorticoid resistance in macrophages. Am. J. Physiol. Regul. Integr. Comp. Physiol.280, R1799–R1805 (2001).
  • Engler H, Engler A, Bailey MT, Sheridan JF. Tissue-specific alterations in the glucocorticoid sensitivity of immune cells following repeated social defeat in mice. J. Neuroimmunol.163, 110–119 (2005).
  • Powell ND, Bailey MT, Mays JW et al. Repeated social defeat activates dendritic cells and enhances Toll-like receptor dependent cytokine secretion. Brain Behav. Immun.23, 225–231 (2009).
  • Quan N, Avitsur R, Stark JL et al. Molecular mechanisms of glucocorticoid resistance in splenocytes of socially stressed male mice. J. Neuroimmunol.137, 51–58 (2003).
  • Engler H, Bailey MT, Engler A, Stiner-Jones LM, Quan N, Sheridan JF. Interleukin-1 receptor type 1-deficient mice fail to develop social stress-associated glucocorticoid resistance in the spleen. Psychoneuroendocrinology33, 108–117 (2008).
  • Reber SO, Birkeneder L, Veenema AH et al. Adrenal insufficiency and colonic inflammation after a novel chronic psycho-social stress paradigm in mice: implications and mechanisms. Endocrinology148, 670–682 (2007).
  • Avitsur R, Powell N, Padgett DA, Sheridan JF. Social interactions, stress, and immunity. Immunol. Allergy Clin. North Am.29, 285–293 (2009).
  • Schmidt D, Reber SO, Botteron C et al. Chronic psychosocial stress promotes systemic immune activation and the development of inflammatory Th cell responses. Brain Behav. Immun.24, 1097–1104 (2010).
  • Wang X, Wu H, Lakdawala VS, Hu F, Hanson ND, Miller AH. Inhibition of Jun N-terminal kinase (JNK) enhances glucocorticoid receptor-mediated function in mouse hippocampal HT22 cells. Neuropsychopharmacology30, 242–249 (2005).
  • Kumsta R, Entringer S, Koper JW, van Rossum EF, Hellhammer DH, Wust S. Glucocorticoid receptor gene polymorphisms and glucocorticoid sensitivity of subdermal blood vessels and leukocytes. Biol. Psychol.79, 179–184 (2008).
  • Binder EB, Salyakina D, Lichtner P et al. Polymorphisms in FKBP5 are associated with increased recurrence of depressive episodes and rapid response to antidepressant treatment. Nat. Genet.36, 1319–1325 (2004).
  • Rohleder N, Wolf JM, Wolf OT. Glucocorticoid sensitivity of cognitive and inflammatory processes in depression and posttraumatic stress disorder. Neurosci. Biobehav. Rev.35, 104–114 (2010).
  • Steptoe A, Hamer M, Chida Y. The effects of acute psychological stress on circulating inflammatory factors in humans: a review and meta-analysis. Brain Behav. Immun.21, 901–912 (2007).
  • Bierhaus A, Wolf J, Andrassy M et al. A mechanism converting psychosocial stress into mononuclear cell activation. Proc. Natl Acad. Sci. USA100, 1920–1925 (2003).
  • Jänig W, Habler HJ. Neurophysiological analysis of target-related sympathetic pathways – from animal to human: similarities and differences. Acta Physiol. Scand.177, 255–274 (2003).
  • Malpas SC. Sympathetic nervous system overactivity and its role in the development of cardiovascular disease. Physiol. Rev.90, 513–557 (2010).
  • Besedovsky HO, del Rey A, Sorkin E, Da Prada M, Keller HH. Immunoregulation mediated by the sympathetic nervous system. Cell Immunol.48, 346–355 (1979).
  • del Rey A, Besedovsky HO, Sorkin E, da Prada M, Arrenbrecht S. Immunoregulation mediated by the sympathetic nervous system, II. Cell Immunol.63, 329–334 (1981).
  • Sanders VM, Munson AE. β adrenoceptor mediation of the enhancing effect of norepinephrine on the murine primary antibody response in vitro. J. Pharmacol. Exp. Ther.230, 183–192 (1984).
  • Sanders VM, Baker RA, Ramer-Quinn DS, Kasprowicz DJ, Fuchs BA, Street NE. Differential expression of the β2-adrenergic receptor by Th1 and Th2 clones: implications for cytokine production and B cell help. J. Immunol.158, 4200–4210 (1997).
  • van der Poll T, Jansen J, Endert E, Sauerwein HP, van Deventer SJ. Noradrenaline inhibits lipopolysaccharide-induced tumor necrosis factor and interleukin 6 production in human whole blood. Infect. Immun.62, 2046–2050 (1994).
  • Elenkov IJ, Hasko G, Kovacs KJ, Vizi ES. Modulation of lipopolysaccharide-induced tumor necrosis factor-α production by selective α- and β-adrenergic drugs in mice. J. Neuroimmunol.61, 123–131 (1995).
  • Besedovsky HO, del Rey A. Immune-neuro-endocrine interactions: facts and hypotheses. Endocr. Rev.17, 64–102 (1996).
  • Kohm AP, Sanders VM. Norepinephrine: a messenger from the brain to the immune system. Immunol. Today21, 539–542 (2000).
  • DeRijk RH, Boelen A, Tilders FJ, Berkenbosch F. Induction of plasma interleukin-6 by circulating adrenaline in the rat. Psychoneuroendocrinology19, 155–163 (1994).
  • Kavelaars A, Ballieux RE, Heijnen CJ. Differential effects of β-endorphin on cAMP levels in human peripheral blood mononuclear cells. Brain Behav. Immun.4, 171–179 (1990).
  • Heijnen CJ. Receptor regulation in neuroendocrine–immune communication: current knowledge and future perspectives. Brain Behav. Immun.21, 1–8 (2007).
  • Roupe van der Voort C, Heijnen CJ, Wulffraat N, Kuis W, Kavelaars A. Stress induces increases in IL-6 production by leucocytes of patients with the chronic inflammatory disease juvenile rheumatoid arthritis: a putative role for α(1)-adrenergic receptors. J. Neuroimmunol.110, 223–229 (2000).
  • Rouppe van der Voort C, Kavelaars A, van de Pol M, Heijnen CJ. Noradrenaline induces phosphorylation of ERK-2 in human peripheral blood mononuclear cells after induction of α(1)-adrenergic receptors. J. Neuroimmunol.108, 82–91 (2000).
  • Lucas A, Cobelens PM, Kavelaars A et al. Disturbed in vitro adrenergic modulation of cytokine production in inflammatory bowel diseases in remission. J. Neuroimmunol.182, 195–203 (2007).
  • Langhorst J, Cobelens PM, Kavelaars A et al. Stress-related peripheral neuroendocrine-immune interactions in women with ulcerative colitis. Psychoneuroendocrinology32, 1086–1096 (2007).
  • Mausbach BT, Aschbacher K, Mills PJ et al. A 5-year longitudinal study of the relationships between stress, coping, and immune cell β(2)-adrenergic receptor sensitivity. Psychiatry Res.160, 247–255 (2008).
  • Avitsur R, Kavelaars A, Heijnen C, Sheridan JF. Social stress and the regulation of tumor necrosis factor-α secretion. Brain Behav. Immun.19, 311–317 (2005).
  • Pawlak CR, Jacobs R, Mikeska E et al. Patients with systemic lupus erythematosus differ from healthy controls in their immunological response to acute psychological stress. Brain Behav. Immun.13, 287–302 (1999).
  • Borovikova LV, Ivanova S, Zhang M et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature405, 458–462 (2000).
  • Felten DL, Felten SY, Bellinger DL et al. Noradrenergic sympathetic neural interactions with the immune system: structure and function. Immunol. Rev.100, 225–260 (1987).
  • Huston JM, Ochani M, Rosas-Ballina M et al. Splenectomy inactivates the cholinergic antiinflammatory pathway during lethal endotoxemia and polymicrobial sepsis. J. Exp. Med.203, 1623–1628 (2006).
  • Nance DM, Sanders VM. Autonomic innervation and regulation of the immune system (1987–2007). Brain Behav. Immun.21, 736–745 (2007).
  • Rosas-Ballina M, Tracey KJ. The neurology of the immune system: neural reflexes regulate immunity. Neuron64, 28–32 (2009).
  • Rosas-Ballina M, Goldstein RS, Gallowitsch-Puerta M et al. The selective α7 agonist GTS-21 attenuates cytokine production in human whole blood and human monocytes activated by ligands for TLR2, TLR3, TLR4, TLR9, and RAGE. Mol. Med.15, 195–202 (2009).
  • Bruchfeld A, Goldstein RS Chavan S et al. Whole blood cytokine attenuation by cholinergic agonists ex vivo and relationship to vagus nerve activity in rheumatoid arthritis. J. Intern. Med.268, 94–101 (2010).
  • Tracey KJ. Understanding immunity requires more than immunology. Nat. Immunol.11, 561–564 (2010).
  • Thayer JF, Yamamoto SS, Brosschot JF. The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors. Int. J. Cardiol.141, 122–131 (2010).
  • Miller GE, Blackwell E. Turning up the heat: inflammation as a mechanism linking chronic stress, depression, and heart disease. Curr. Dir. Psychol.Sci.15, 269–272 (2006).
  • Capellino S, Straub RH. Neuroendocrine immune pathways in chronic arthritis. Best Pract. Res. Clin. Rheumatol.22, 285–297 (2008).
  • Rohleder N, Wolf JM, Kirschbaum C, Wolf OT. Effects of cortisol on emotional but not on neutral memory are correlated with peripheral glucocorticoid sensitivity of inflammatory cytokine production. Int. J. Psychophysiol.72, 74–80 (2009).
  • Ebrecht M, Buske-Kirschbaum A, Hellhammer D et al. Tissue specificity of glucocorticoid sensitivity in healthy adults. J. Clin. Endocrinol. Metab.85, 3733–3739 (2000).
  • Hunter RG, Bloss EB, McCarthy KJ, McEwen BS. Regulation of the nicotinic receptor α7 subunit by chronic stress and corticosteroids. Brain Res.1325, 141–146 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.