56
Views
6
CrossRef citations to date
0
Altmetric
Reviews

Glucocorticoid-induced hypertension and the nitric oxide system

&
Pages 273-280 | Published online: 10 Jan 2014

References

  • Magiakou MA, Smyrnaki P, Chrousos GP. Hypertension in Cushing's syndrome. Best Pract. Res. Clin. Endocrinol. Metab. 20(3), 467–482 (2006).
  • Connell JM, Whitworth JA, Davies DL, Lever AF, Richards AM, Fraser R. Effects of ACTH and cortisol administration on blood pressure, electrolyte metabolism, atrial natriuretic peptide and renal function in normal man. J. Hypertens. 5(4), 425–433 (1987).
  • Kelly JJ, Tam SH, Williamson PM, Lawson J, Whitworth JA. The nitric oxide system and cortisol-induced hypertension in humans. Clin. Exp. Pharmacol. Physiol. 25(11), 945–946 (1998).
  • Scoggins BA, Allen KJ, Coghlan JP et al. Haemodynamics of ACTH-induced hypertension in sheep. Clin. Sci. 57(Suppl. 5), 333S–336S (1979).
  • Turner SW, Wen C, Li M, Fraser TB, Whitworth JA. Adrenocorticotrophin dose-response relationships in the rat: haemodynamic, metabolic and hormonal effects. J. Hypertens. 16(5), 593–600 (1998).
  • Whitworth JA. Adrenocorticotrophin and steroid-induced hypertension in humans. Kidney Int. Suppl. 37, S34–S37 (1992).
  • Hu L, Zhang Y, Lim PS et al. Apocynin but not L-arginine prevents and reverses dexamethasone-induced hypertension in the rat. Am. J. Hypertens. 19(4), 413–418 (2006).
  • Zhang Y, Croft KD, Mori TA, Schyvens CG, McKenzie KU, Whitworth JA. The antioxidant tempol prevents and partially reverses dexamethasone-induced hypertension in the rat. Am. J. Hypertens. 17(3), 260–265 (2004).
  • Krug S, Zhang Y, Mori TA et al. N-Acetylcysteine prevents but does not reverse dexamethasone-induced hypertension. Clin. Exp. Pharmacol. Physiol. 35(8), 979–981 (2008).
  • Nakamoto H, Suzuki H, Kageyama Y et al. Characterization of alterations of hemodynamics and neuroendocrine hormones in dexamethasone induced hypertension in dogs. Clin. Exp. Hypertens. A. 13(4), 587–606 (1991).
  • Nakamoto H, Suzuki H, Kageyama Y et al. Depressor systems contribute to hypertension induced by glucocorticoid excess in dogs. J. Hypertens. 10(6), 561–569 (1992).
  • Pirpiris M, Sudhir K, Yeung S, Jennings G, Whitworth JA. Pressor responsiveness in corticosteroid-induced hypertension in humans. Hypertension 19(6 Pt 1), 567–574 (1992).
  • Stewart PM, Walker BR, Holder G, O'Halloran D, Shackleton CH. 11 beta-Hydroxysteroid dehydrogenase activity in Cushing's syndrome: explaining the mineralocorticoid excess state of the ectopic adrenocorticotropin syndrome. J. Clin. Endocrinol. Metab. 80(12), 3617–3620 (1995).
  • Montrella-Waybill M, Clore JN, Schoolwerth AC, Watlington CO. Evidence that high dose cortisol-induced Na+ retention in man is not mediated by the mineralocorticoid receptor. J. Clin. Endocrinol. Metab. 72(5), 1060–1066 (1991).
  • Williamson PM, Kelly JJ, Whitworth JA. Dose-response relationships and mineralocorticoid activity in cortisol-induced hypertension in humans. J. Hypertens. Suppl. 14(5), S37–S41 (1996).
  • Li M, Wen C, Fraser T, Whitworth JA. Adrenocorticotrophin-induced hypertension: effects of mineralocorticoid and glucocorticoid receptor antagonism. J. Hypertens. 17(3), 419–426 (1999).
  • Whitworth JA, Gordon D, Andrews J, Scoggins BA. The hypertensive effect of synthetic glucocorticoids in man: role of sodium and volume. J. Hypertens. 7(7), 537–549 (1989).
  • Whitworth JA, Saines D, Scoggins BA. Potentiation of ACTH hypertension in man with salt loading. Clin. Exp. Pharmacol. Physiol. 12(3), 239–243 (1985).
  • Saruta T. Mechanism of glucocorticoid-induced hypertension. Hypertens. Res. 19(1), 1–8 (1996).
  • Sessa WC. Molecular control of blood flow and angiogenesis: role of nitric oxide. J. Thromb. Haemost. 7(Suppl. 1), 35–37 (2009).
  • Govers R, Rabelink TJ. Cellular regulation of endothelial nitric oxide synthase. Am. J. Physiol. Renal Physiol. 280(2), F193–F206 (2001).
  • Katusic ZS. Vascular endothelial dysfunction: does tetrahydrobiopterin play a role? Am. J. Physiol. Heart Circ. Physiol. 281(3), H981–H986 (2001).
  • Stroes E, Hijmering M, van Zandvoort M, Wever R, Rabelink TJ, van Faassen EE. Origin of superoxide production by endothelial nitric oxide synthase. FEBS Lett. 438(3), 161–164 (1998).
  • Mangos GJ, Turner SW, Fraser TB, Whitworth JA. The role of corticosterone in corticotrophin (ACTH)-induced hypertension in the rat. J. Hypertens. 18(12), 1849–1855 (2000).
  • Zhang Y, Chan MM, Andrews MC et al. Apocynin but not allopurinol prevents and reverses adrenocorticotropic hormone-induced hypertension in the rat. Am. J. Hypertens. 18(7), 910–916 (2005).
  • Zhang Y, Jang R, Mori TA et al. The anti-oxidant Tempol reverses and partially prevents adrenocorticotrophic hormone-induced hypertension in the rat. J. Hypertens. 21(8), 1513–1518 (2003).
  • Zhang Y, Miao Y, Whitworth JA. Aspirin prevents and partially reverses adrenocorticotropic hormone-induced hypertension in the rat. Am. J. Hypertens. 20(11), 1222–1228 (2007).
  • Tonolo G, Fraser R, Connell JM, Kenyon CJ. Chronic low-dose infusions of dexamethasone in rats: effects on blood pressure, body weight and plasma atrial natriuretic peptide. J. Hypertens. 6(1), 25–31 (1988).
  • Ong SL, Zhang Y, Sutton M, Whitworth JA. Hemodynamics of dexamethasone-induced hypertension in the rat. Hypertens. Res. 32(10), 889–894 (2009).
  • Whitworth JA, Coghlan JP, Denton DA, Graham WF, Humphery TJ, Scoggins BA. Comparison of the effects of ‘glucocorticoid’ and ‘mineralocorticoid’ infusions on blood pressure in sheep. Clin. Exp. Hypertens. 1(5), 649–663 (1979).
  • Wen C, Li M, Fraser T, Wang J, Turner SW, Whitworth JA. L-arginine partially reverses established adrenocorticotrophin-induced hypertension and nitric oxide deficiency in the rat. Blood Press. 9(5), 298–304 (2000).
  • Wallerath T, Witte K, Schäfer SC et al. Down-regulation of the expression of endothelial NO synthase is likely to contribute to glucocorticoid-mediated hypertension. Proc. Natl Acad. Sci. USA 96(23), 13357–13362 (1999).
  • Andrews MC, Schyvens CG, Zhang Y, McKenzie KU, Whitworth JA. Nitric oxide donation lowers blood pressure in adrenocorticotrophic hormone-induced hypertensive rats. Clin. Exp. Hypertens. 26(6), 499–509 (2004).
  • Zhang Y, Wu JH, Vickers JJ et al. The role of 20-hydroxyeicosatetraenoic acid in adrenocorticotrophic hormone and dexamethasone-induced hypertension. J. Hypertens. 27(8), 1609–1616 (2009).
  • Mangos GJ, Walker BR, Kelly JJ, Lawson JA, Webb DJ, Whitworth JA. Cortisol inhibits cholinergic vasodilation in the human forearm. Am. J. Hypertens. 13(11), 1155–1160 (2000).
  • Kelly JJ, Tam SH, Williamson PM, Whitworth JA. Decreased threshold for the nitric oxide donor glyceryl trinitrate in cortisol-induced hypertension in humans. Clin. Exp. Pharmacol. Physiol. 34(12), 1317–1318 (2007).
  • Turner SW, Wen C, Li M, Whitworth JA. l-arginine prevents corticotropin-induced increases in blood pressure in the rat. Hypertension 27(2), 184–189 (1996).
  • Levillain O. Expression and function of arginine-producing and consuming-enzymes in the kidney. Amino Acids 42(4), 1237–1252 (2012).
  • Tan YK, Zhang Y, Vickers JJ et al. The role of arginase in ACTH-induced hypertension in rats. Hypertension 52(1), 178 (2008) (Abstract 071).
  • Morel F, Hus-Citharel A, Levillain O. Biochemical heterogeneity of arginine metabolism along kidney proximal tubules. Kidney Int. 49(6), 1608–1610 (1996).
  • Kelly JJ, Williamson P, Martin A, Whitworth JA. Effects of oral l-arginine on plasma nitrate and blood pressure in cortisol-treated humans. J. Hypertens. 19(2), 263–268 (2001).
  • Greene B, Pacitti AJ, Souba WW. Characterization of L-arginine transport by pulmonary artery endothelial cells. Am. J. Physiol. 264(4 Pt 1), L351–L356 (1993).
  • Zharikov SI, Block ER. Characterization of l-arginine uptake by plasma membrane vesicles isolated from cultured pulmonary artery endothelial cells. Biochim. Biophys. Acta 1369(1), 173–183 (1998).
  • Zani BG, Bohlen HG. Transport of extracellular l-arginine via cationic amino acid transporter is required during in vivo endothelial nitric oxide production. Am. J. Physiol. Heart Circ. Physiol. 289(4), H1381–H1390 (2005).
  • Simmons WW, Ungureanu-Longrois D, Smith GK, Smith TW, Kelly RA. Glucocorticoids regulate inducible nitric oxide synthase by inhibiting tetrahydrobiopterin synthesis and l-arginine transport. J. Biol. Chem. 271(39), 23928–23937 (1996).
  • Schäfer SC, Wallerath T, Closs EI et al. Dexamethasone suppresses eNOS and CAT-1 and induces oxidative stress in mouse resistance arterioles. Am. J. Physiol. Heart Circ. Physiol. 288(1), H436–H444 (2005).
  • Chin-Dusting JP, Ahlers BA, Kaye DM, Kelly JJ, Whitworth JA. l-arginine transport in humans with cortisol-induced hypertension. Hypertension 41(6), 1336–1340 (2003).
  • Rogers KM, Bonar CA, Estrella JL, Yang S. Inhibitory effect of glucocorticoid on coronary artery endothelial function. Am. J. Physiol. Heart Circ. Physiol. 283(5), H1922–H1928 (2002).
  • Liu Y, Mladinov D, Pietrusz JL, Usa K, Liang M. Glucocorticoid response elements and 11 beta-hydroxysteroid dehydrogenases in the regulation of endothelial nitric oxide synthase expression. Cardiovasc. Res. 81(1), 140–147 (2009).
  • Lou YK, Wen C, Li M et al. Decreased renal expression of nitric oxide synthase isoforms in adrenocorticotropin-induced and corticosterone-induced hypertension. Hypertension 37(4), 1164–1170 (2001).
  • Wallerath T, Gödecke A, Molojavyi A, Li H, Schrader J, Förstermann U. Dexamethasone lacks effect on blood pressure in mice with a disrupted endothelial NO synthase gene. Nitric Oxide 10(1), 36–41 (2004).
  • Tayeh MA, Marletta MA. Macrophage oxidation of l-arginine to nitric oxide, nitrite, and nitrate. Tetrahydrobiopterin is required as a cofactor. J. Biol. Chem. 264(33), 19654–19658 (1989).
  • Vásquez-Vivar J, Kalyanaraman B, Martásek P et al. Superoxide generation by endothelial nitric oxide synthase: the influence of cofactors. Proc. Natl Acad. Sci. USA 95(16), 9220–9225 (1998).
  • Thöny B, Auerbach G, Blau N. Tetrahydrobiopterin biosynthesis, regeneration and functions. Biochem. J. 347(Pt 1), 1–16 (2000).
  • Alp NJ, Channon KM. Regulation of endothelial nitric oxide synthase by tetrahydrobiopterin in vascular disease. Arterioscler. Thromb. Vasc. Biol. 24(3), 413–420 (2004).
  • Mitchell BM, Dorrance AM, Webb RC. GTP cyclohydrolase 1 downregulation contributes to glucocorticoid hypertension in rats. Hypertension 41(3 Pt 2), 669–674 (2003).
  • Zhang Y, Pang T, Earl J, Schyvens CG, McKenzie KU, Whitworth JA. Role of tetrahydrobiopterin in adrenocorticotropic hormone-induced hypertension in the rat. Clin. Exp. Hypertens. 26(3), 231–241 (2004).
  • Miao Y, Zhang Y, Lim PS et al. Folic acid prevents and partially reverses glucocorticoid-induced hypertension in the rat. Am. J. Hypertens. 20(3), 304–310 (2007).
  • Thida M, Earl J, Zhao Y et al. Effects of sepiapterin supplementation and NOS inhibition on glucocorticoid-induced hypertension. Am. J. Hypertens. 23(5), 569–574 (2010).
  • Wen C, Li M, Whitworth JA. Role of nitric oxide in adrenocorticotrophin-induced hypertension: l-arginine effects reversed by N-nitro-l-arginine. Clin. Exp. Pharmacol. Physiol. 27(11), 887–890 (2000).
  • Miyata N, Roman RJ. Role of 20-hydroxyeicosatetraenoic acid (20-HETE) in vascular system. J. Smooth Muscle Res. 41(4), 175–193 (2005).
  • Cheng J, Ou JS, Singh H et al. 20-hydroxyeicosatetraenoic acid causes endothelial dysfunction via eNOS uncoupling. Am. J. Physiol. Heart Circ. Physiol. 294(2), H1018–H1026 (2008).
  • Wang JS, Singh H, Zhang F et al. Endothelial dysfunction and hypertension in rats transduced with CYP4A2 adenovirus. Circ. Res. 98(7), 962–969 (2006).
  • Morgan ET, Ullrich V, Daiber A et al. Cytochromes P450 and flavin monooxygenases – targets and sources of nitric oxide. Drug Metab. Dispos. 29(11), 1366–1376 (2001).
  • Alonso-Galicia M, Drummond HA, Reddy KK, Falck JR, Roman RJ. Inhibition of 20-HETE production contributes to the vascular responses to nitric oxide. Hypertension 29(1 Pt 2), 320–325 (1997).
  • Sun CW, Alonso-Galicia M, Taheri MR, Falck JR, Harder DR, Roman RJ. Nitric oxide-20-hydroxyeicosatetraenoic acid interaction in the regulation of K+ channel activity and vascular tone in renal arterioles. Circ. Res. 83(11), 1069–1079 (1998).
  • Oyekan AO, Youseff T, Fulton D, Quilley J, McGiff JC. Renal cytochrome P450 omega-hydroxylase and epoxygenase activity are differentially modified by nitric oxide and sodium chloride. J. Clin. Invest. 104(8), 1131–1137 (1999).
  • Liu X, Zhao Y, Wang L et al. Overexpression of cytochrome P450 4F2 in mice increases 20-hydroxyeicosatetraenoic acid production and arterial blood pressure. Kidney Int. 75(12), 1288–1296 (2009).
  • Singh H, Cheng J, Deng H et al. Vascular cytochrome P450 4A expression and 20-hydroxyeicosatetraenoic acid synthesis contribute to endothelial dysfunction in androgen-induced hypertension. Hypertension 50(1), 123–129 (2007).
  • Muthalif MM, Karzoun NA, Gaber L et al. Angiotensin II-induced hypertension: contribution of Ras GTPase/mitogen-activated protein kinase and cytochrome P450 metabolites. Hypertension 36(4), 604–609 (2000).
  • Zhang Y, Hu L, Mori TA, Barden A, Croft KD, Whitworth JA. Arachidonic acid metabolism in glucocorticoid-induced hypertension. Clin. Exp. Pharmacol. Physiol. 35(5–6), 557–562 (2008).
  • Mondo CK, Zhang Y, de Macedo Possamai V et al. N-acetylcysteine antagonizes the development but does not reverse ACTH-induced hypertension in the rat. Clin. Exp. Hypertens. 28(2), 73–84 (2006).
  • Mondo CK, Yang WS, Su JZ, Huang TG. Atorvastatin prevented and reversed dexamethasone-induced hypertension in the rat. Clin. Exp. Hypertens. 28(5), 499–509 (2006).
  • Mondo CK, Yang WS, Zhang N, Huang TG. Anti-oxidant effects of atorvastatin in dexamethasone-induced hypertension in the rat. Clin. Exp. Pharmacol. Physiol. 33(11), 1029–1034 (2006).
  • Ong SL, Vickers JJ, Zhang Y, McKenzie KU, Walsh CE, Whitworth JA. Role of xanthine oxidase in dexamethasone-induced hypertension in rats. Clin. Exp. Pharmacol. Physiol. 34(5–6), 517–519 (2007).
  • Ong SLH, Vohra H, Sutton M, Zhang Y, Whitworth JA. Mitochondrial superoxide production in glucocorticoid-induced hypertension in the rat. J. Hypertens. 26, S66–S66 (2008).
  • Briones AM, Touyz RM. Oxidative stress and hypertension: current concepts. Curr. Hypertens. Rep. 12(2), 135–142 (2010).
  • Wen C, Fraser T, Li M, Turner SW, Whitworth JA. Haemodynamic mechanisms of corticotropin (ACTH)-induced hypertension in the rat. J. Hypertens. 17(12 Pt 1), 1715–1723 (1999).
  • He Y. Angiotensin II Receptor Blockade in Glucocorticoid-Induced Hypertension in Rats. Bachelor of Medical Sciences with Honours Thesis. The John Curtin School of Medical Research, The Australian National University, Canberra, Australia, 1–123 (2008).
  • Krakoff LR, Elijovich F. Cushing's syndrome and exogenous glucocorticoid hypertension. Clin. Endocrinol. Metab. 10(3), 479–488 (1981).
  • Suzuki H, Handa M, Kondo K, Saruta T. Role of renin-angiotensin system in glucocorticoid hypertension in rats. Am. J. Physiol. 243(1), E48–E51 (1982).
  • Ong SLH, Zhang Y, Whitworth JA. Mechanism of dexamethasone-induced hypertension. Curr. Hypertens. Rev. 5(1), 61–74 (2009).
  • Ong SLH. Mechanism of Dexamethasone-Induced Hypertension. Doctor of Philosophy PhD Thesis. The John Curtin School of Medical Research, The Australian National University, Canberra, Australia, 1–383 (2010).
  • Colao A, Pivonello R, Spiezia S et al. Persistence of increased cardiovascular risk in patients with Cushing's disease after five years of successful cure. J. Clin. Endocrinol. Metab. 84(8), 2664–2672 (1999).
  • Mishra AK, Agarwal A, Gupta S, Agarwal G, Verma AK, Mishra SK. Outcome of adrenalectomy for Cushing's syndrome: experience from a tertiary care center. World J. Surg. 31(7), 1425–1432 (2007).
  • Fallo F, Sonino N, Barzon L et al. Effect of surgical treatment on hypertension in Cushing's syndrome. Am. J. Hypertens. 9(1), 77–80 (1996).
  • Whitworth JA, Williamson PM, Ramsey D. Haemodynamic response to cortisol in man: effects of felodipine. Hypertens. Res. 17, 137–142 (1994).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.