662
Views
192
CrossRef citations to date
0
Altmetric
Review

Calcium regulation of keratinocyte differentiation

, &
Pages 461-472 | Published online: 10 Jan 2014

References

  • Green KJ, Simpson CL. Desmosomes: new perspectives on a classic. J. Invest. Dermatol. 127(11), 2499–2515 (2007).
  • Yuki T, Haratake A, Koishikawa H, Morita K, Miyachi Y, Inoue S. Tight junction proteins in keratinocytes: localization and contribution to barrier function. Exp. Dermatol. 16(4), 324–330 (2007).
  • Marchisio PC, Bondanza S, Cremona O, Cancedda R, De Luca M. Polarized expression of integrin receptors (α 6 β 4, α 2 β 1, α 3 β 1, and α v β 5) and their relationship with the cytoskeleton and basement membrane matrix in cultured human keratinocytes. J. Cell Biol. 112(4), 761–773 (1991).
  • Peltonen J, Larjava H, Jaakkola S et al. Localization of integrin receptors for fibronectin, collagen, and laminin in human skin. Variable expression in basal and squamous cell carcinomas. J. Clin. Invest. 84(6), 1916–1923 (1989).
  • Guo M, Kim LT, Akiyama SK, Gralnick HR, Yamada KM, Grinnell F. Altered processing of integrin receptors during keratinocyte activation. Exp. Cell Res. 195(2), 315–322 (1991).
  • Müller EJ, Williamson L, Kolly C, Suter MM. Outside–in signaling through integrins and cadherins: a central mechanism to control epidermal growth and differentiation? J. Invest. Dermatol. 128(3), 501–516 (2008).
  • Moll R, Franke WW, Schiller DL, Geiger B, Krepler R. The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell 31(1), 11–24 (1982).
  • Eichner R, Sun TT, Aebi U. The role of keratin subfamilies and keratin pairs in the formation of human epidermal intermediate filaments. J. Cell Biol. 102(5), 1767–1777 (1986).
  • Warhol MJ, Roth J, Lucocq JM, Pinkus GS, Rice RH. Immuno-ultrastructural localization of involucrin in squamous epithelium and cultured keratinocytes. J. Histochem. Cytochem. 33(2), 141–149 (1985).
  • Thacher SM, Rice RH. Keratinocyte-specific transglutaminase of cultured human epidermal cells: relation to cross-linked envelope formation and terminal differentiation. Cell 40(3), 685–695 (1985).
  • Steven AC, Bisher ME, Roop DR, Steinert PM. Biosynthetic pathways of filaggrin and loricrin - two major proteins expressed by terminally differentiated epidermal keratinocytes. J. Struct. Biol. 104(1–3), 150–162 (1990).
  • Dale BA, Resing KA, Lonsdale-Eccles JD. Filaggrin: a keratin filament associated protein. Ann. NY Acad. Sci. 455, 330–342 (1985).
  • Mehrel T, Hohl D, Rothnagel JA et al. Identification of a major keratinocyte cell envelope protein, loricrin. Cell 61(6), 1103–1112 (1990).
  • Elias PM, Menon GK, Grayson S, Brown BE. Membrane structural alterations in murine stratum corneum: relationship to the localization of polar lipids and phospholipases. J. Invest. Dermatol. 91(1), 3–10 (1988).
  • Hohl D. Cornified cell envelope. Dermatologica 180(4), 201–211 (1990).
  • Menon GK, Grayson S, Elias PM. Ionic calcium reservoirs in mammalian epidermis: ultrastructural localization by ion-capture cytochemistry. J. Invest. Dermatol. 84(6), 508–512 (1985).
  • Celli A, Sanchez S, Behne M, Hazlett T, Gratton E, Mauro T. The epidermal Ca(2+) gradient: measurement using the phasor representation of fluorescent lifetime imaging. Biophys. J. 98(5), 911–921 (2010).
  • Leinonen PT, Hägg PM, Peltonen S et al. Reevaluation of the normal epidermal calcium gradient, and analysis of calcium levels and ATP receptors in Hailey–Hailey and Darier epidermis. J. Invest. Dermatol. 129(6), 1379–1387 (2009).
  • Dhitavat J, Cobbold C, Leslie N, Burge S, Hovnanian A. Impaired trafficking of the desmoplakins in cultured Darier’s disease keratinocytes. J. Invest. Dermatol. 121(6), 1349–1355 (2003).
  • Mauro T, Bench G, Sidderas-Haddad E, Feingold K, Elias P, Cullander C. Acute barrier perturbation abolishes the Ca2+ and K+ gradients in murine epidermis: quantitative measurement using PIXE. J. Invest. Dermatol. 111(6), 1198–1201 (1998).
  • Elias PM, Ahn SK, Denda M et al. Modulations in epidermal calcium regulate the expression of differentiation-specific markers. J. Invest. Dermatol. 119(5), 1128–1136 (2002).
  • Hennings H, Michael D, Cheng C, Steinert P, Holbrook K, Yuspa SH. Calcium regulation of growth and differentiation of mouse epidermal cells in culture. Cell 19(1), 245–254 (1980).
  • Hennings H, Holbrook KA. Calcium regulation of cell–cell contact and differentiation of epidermal cells in culture. An ultrastructural study. Exp. Cell Res. 143(1), 127–142 (1983).
  • Niessen CM. Tight junctions/adherens junctions: basic structure and function. J. Invest. Dermatol. 127(11), 2525–2532 (2007).
  • Zamansky GB, Nguyen U, Chou IN. An immunofluorescence study of the calcium-induced coordinated reorganization of microfilaments, keratin intermediate filaments, and microtubules in cultured human epidermal keratinocytes. J. Invest. Dermatol. 97(6), 985–994 (1991).
  • Inohara S, Tatsumi Y, Cho H, Tanaka Y, Sagami S. Actin filament and desmosome formation in cultured human keratinocytes. Arch. Dermatol. Res. 282(3), 210–212 (1990).
  • Yoneda K, Fujimoto T, Imanura S et al. Fodrin is localized in the cytoplasm of keratinocytes cultured in low calcium medium: immunoelectron microscopic study. Acta Histochem. Cytochem. 23, 139–148 (1990).
  • Pillai S, Bikle DD, Mancianti ML, Cline P, Hincenbergs M. Calcium regulation of growth and differentiation of normal human keratinocytes: modulation of differentiation competence by stages of growth and extracellular calcium. J. Cell. Physiol. 143(2), 294–302 (1990).
  • Rubin AL, Parenteau NL, Rice RH. Coordination of keratinocyte programming in human SCC-13 squamous carcinoma and normal epidermal cells. J. Cell. Physiol. 138(1), 208–214 (1989).
  • Su MJ, Bikle DD, Mancianti ML, Pillai S. 1,25-dihydroxyvitamin D3 potentiates the keratinocyte response to calcium. J. Biol. Chem. 269(20), 14723–14729 (1994).
  • Hohl D, Lichti U, Breitkreutz D, Steinert PM, Roop DR. Transcription of the human loricrin gene in vitro is induced by calcium and cell density and suppressed by retinoic acid. J. Invest. Dermatol. 96(4), 414–418 (1991).
  • Yuspa SH, Kilkenny AE, Steinert PM, Roop DR. Expression of murine epidermal differentiation markers is tightly regulated by restricted extracellular calcium concentrations in vitro. J. Cell Biol. 109(3), 1207–1217 (1989).
  • Ng DC, Su MJ, Kim R, Bikle DD. Regulation of involucrin gene expression by calcium in normal human keratinocytes. Front. Biosci. 1, a16–a24 (1996).
  • Huff CA, Yuspa SH, Rosenthal D. Identification of control elements 3′ to the human keratin 1 gene that regulate cell type and differentiation-specific expression. J. Biol. Chem. 268(1), 377–384 (1993).
  • Denning MF, Dlugosz AA, Williams EK, Szallasi Z, Blumberg PM, Yuspa SH. Specific protein kinase C isozymes mediate the induction of keratinocyte differentiation markers by calcium. Cell Growth Differ. 6(2), 149–157 (1995).
  • Deucher A, Efimova T, Eckert RL. Calcium-dependent involucrin expression is inversely regulated by protein kinase C (PKC)α and PKCdelta. J. Biol. Chem. 277(19), 17032–17040 (2002).
  • Ryynänen J, Jaakkola S, Engvall E, Peltonen J, Uitto J. Expression of β 4 integrins in human skin: comparison of epidermal distribution with β 1-integrin epitopes, and modulation by calcium and vitamin D3 in cultured keratinocytes. J. Invest. Dermatol. 97(3), 562–567 (1991).
  • Pillai S, Bikle DD. Role of intracellular-free calcium in the cornified envelope formation of keratinocytes: differences in the mode of action of extracellular calcium and 1,25 dihydroxyvitamin D3. J. Cell. Physiol. 146(1), 94–100 (1991).
  • Hennings H, Kruszewski FH, Yuspa SH, Tucker RW. Intracellular calcium alterations in response to increased external calcium in normal and neoplastic keratinocytes. Carcinogenesis 10(4), 777–780 (1989).
  • Kruszewski FH, Hennings H, Tucker RW, Yuspa SH. Differences in the regulation of intracellular calcium in normal and neoplastic keratinocytes are not caused by ras gene mutations. Cancer Res. 51(16), 4206–4212 (1991).
  • Bikle DD, Ratnam A, Mauro T, Harris J, Pillai S. Changes in calcium responsiveness and handling during keratinocyte differentiation. Potential role of the calcium receptor. J. Clin. Invest. 97(4), 1085–1093 (1996).
  • Pillai S, Bikle DD. Lanthanum influx into cultured human keratinocytes: effect on calcium flux and terminal differentiation. J. Cell. Physiol. 151(3), 623–629 (1992).
  • Reiss M, Lipsey LR, Zhou ZL. Extracellular calcium-dependent regulation of transmembrane calcium fluxes in murine keratinocytes. J. Cell. Physiol. 147(2), 281–291 (1991).
  • Galietta LJ, Barone V, De Luca M, Romeo G. Characterization of chloride and cation channels in cultured human keratinocytes. Pflugers Arch. 418(1–2), 18–25 (1991).
  • Mauro TM, Pappone PA, Isseroff RR. Extracellular calcium affects the membrane currents of cultured human keratinocytes. J. Cell. Physiol. 143(1), 13–20 (1990).
  • Mauro TM, Isseroff RR, Lasarow R, Pappone PA. Ion channels are linked to differentiation in keratinocytes. J. Membr. Biol. 132(3), 201–209 (1993).
  • Grando SA, Horton RM, Mauro TM, Kist DA, Lee TX, Dahl MV. Activation of keratinocyte nicotinic cholinergic receptors stimulates calcium influx and enhances cell differentiation. J. Invest. Dermatol. 107(3), 412–418 (1996).
  • Oda Y, Timpe LC, McKenzie RC, Sauder DN, Largman C, Mauro T. Alternatively spliced forms of the cGMP-gated channel in human keratinocytes. FEBS Lett. 414(1), 140–145 (1997).
  • Müller M, Essin K, Hill K et al. Specific TRPC6 channel activation, a novel approach to stimulate keratinocyte differentiation. J. Biol. Chem. 283(49), 33942–33954 (2008).
  • Tu CL, Chang W, Bikle DD. Phospholipase Cγ1 is required for activation of store-operated channels in human keratinocytes. J. Invest. Dermatol. 124(1), 187–197 (2005).
  • Cai S, Fatherazi S, Presland RB et al. Evidence that TRPC1 contributes to calcium-induced differentiation of human keratinocytes. Pflugers Arch. 452(1), 43–52 (2006).
  • Pillai S, Bikle DD, Mancianti ML, Hincenbergs M. Uncoupling of the calcium-sensing mechanism and differentiation in squamous carcinoma cell lines. Exp. Cell Res. 192(2), 567–573 (1991).
  • Holladay K, Fujiki H, Bowden GT. Okadaic acid induces the expression of both early and secondary response genes in mouse keratinocytes. Mol. Carcinog. 5(1), 16–24 (1992).
  • Bollag WB, Xiong Y, Ducote J, Harmon CS. Regulation of FOS-LACZ fusion gene expression in primary mouse epidermal keratinocytes isolated from transgenic mice. Biochem. J. 300(Pt 1), 263–270 (1994).
  • Pillai S, Bikle DD. Adenosine triphosphate stimulates phosphoinositide metabolism, mobilizes intracellular calcium, and inhibits terminal differentiation of human epidermal keratinocytes. J. Clin. Invest. 90(1), 42–51 (1992).
  • Jaken S, Yuspa SH. Early signals for keratinocyte differentiation: role of Ca 2+-mediated inositol lipid metabolism in normal and neoplastic epidermal cells. Carcinogenesis 9(6), 1033–1038 (1988).
  • Tang W, Ziboh VA, Isseroff R, Martinez D. Turnover of inositol phospholipids in cultured murine keratinocytes: possible involvement of inositol triphosphate in cellular differentiation. J. Invest. Dermatol. 90(1), 37–43 (1988).
  • Moscat J, Fleming TP, Molloy CJ, Lopez-Barahona M, Aaronson SA. The calcium signal for Balb/MK keratinocyte terminal differentiation induces sustained alterations in phosphoinositide metabolism without detectable protein kinase C activation. J. Biol. Chem. 264(19), 11228–11235 (1989).
  • Lee E, Yuspa SH. Aluminum fluoride stimulates inositol phosphate metabolism and inhibits expression of differentiation markers in mouse keratinocytes. J. Cell. Physiol. 148(1), 106–115 (1991).
  • Pillai S, Bikle DD, Su MJ, Ratnam A, Abe J. 1,25-dihydroxyvitamin D3 upregulates the phosphatidylinositol signaling pathway in human keratinocytes by increasing phospholipase C levels. J. Clin. Invest. 96(1), 602–609 (1995).
  • Xie Z, Bikle DD. Phospholipase C-γ1 is required for calcium-induced keratinocyte differentiation. J. Biol. Chem. 274(29), 20421–20424 (1999).
  • Carpenter G, Ji Q. Phospholipase C-γ as a signal-transducing element. Exp. Cell Res. 253(1), 15–24 (1999).
  • Falasca M, Logan SK, Lehto VP, Baccante G, Lemmon MA, Schlessinger J. Activation of phospholipase C γ by PI 3-kinase-induced PH domain-mediated membrane targeting. EMBO J. 17(2), 414–422 (1998).
  • Rameh LE, Rhee SG, Spokes K, Kazlauskas A, Cantley LC, Cantley LG. Phosphoinositide 3-kinase regulates phospholipase Cγ-mediated calcium signaling. J. Biol. Chem. 273(37), 23750–23757 (1998).
  • Bae YS, Cantley LG, Chen CS, Kim SR, Kwon KS, Rhee SG. Activation of phospholipase C-γ by phosphatidylinositol 3,4,5-trisphosphate. J. Biol. Chem. 273(8), 4465–4469 (1998).
  • Kim HK, Kim JW, Zilberstein A et al. PDGF stimulation of inositol phospholipid hydrolysis requires PLC-γ 1 phosphorylation on tyrosine residues 783 and 1254. Cell 65(3), 435–441 (1991).
  • Xie Z, Singleton PA, Bourguignon LY, Bikle DD. Calcium-induced human keratinocyte differentiation requires Src- and Fyn-mediated phosphatidylinositol 3-kinase-dependent activation of phospholipase C-γ1. Mol. Biol. Cell 16(7), 3236–3246 (2005).
  • Xie Z, Chen Y, Lias E-Y, Jian Y, Liu F-Y, Pennypacker SD. Phospholipase C-γ1 is required for the epidermal growth factor receptor-induced squamous cell carcinoma cell mitogenesis. Biochem. Biophy. Res. Comm. 397, 296–300 (2010).
  • Hawley-Nelson P, Stanley JR, Schmidt J, Gullino M, Yuspa SH. The tumor promoter, 12-O-tetradecanoylphorbol-13-acetate accelerates keratinocyte differentiation and stimulates growth of an unidentified cell type in cultured human epidermis. Exp. Cell Res. 137(1), 155–167 (1982).
  • Yuspa SH, Ben T, Hennings H, Lichti U. Divergent responses in epidermal basal cells exposed to the tumor promoter 12-O-tetradecanoylphorbol-13-acetate. Cancer Res. 42(6), 2344–2349 (1982).
  • Kitajima Y, Inoue S, Nagao S, Nagata K, Yaoita H, Nozawa Y. Biphasic effects of 12-O-tetradecanoylphorbol-13-acetate on the cell morphology of low calcium-grown human epidermal carcinoma cells: involvement of translocation and down regulation of protein kinase C. Cancer Res. 48(4), 964–970 (1988).
  • Rice RH, Rong XH, Chakravarty R. Suppression of keratinocyte differentiation in SSC-9 human squamous carcinoma cells by benzo[a]pyrene, 12-O-tetradecanoylphorbol-13-acetate and hydroxyurea. Carcinogenesis 9(10), 1885–1890 (1988).
  • Yuspa SH, Ben T, Hennings H. The induction of epidermal transglutaminase and terminal differentiation by tumor promoters in cultured epidermal cells. Carcinogenesis 4(11), 1413–1418 (1983).
  • Dlugosz AA, Yuspa SH. Protein kinase C regulates keratinocyte transglutaminase (TGK) gene expression in cultured primary mouse epidermal keratinocytes induced to terminally differentiate by calcium. J. Invest. Dermatol. 102(4), 409–414 (1994).
  • Matsui MS, Illarda I, Wang N, DeLeo VA. Protein kinase C agonist and antagonist effects in normal human epidermal keratinocytes. Exp. Dermatol. 2(6), 247–256 (1993).
  • Dlugosz AA, Yuspa SH. Coordinate changes in gene expression which mark the spinous to granular cell transition in epidermis are regulated by protein kinase C. J. Cell Biol. 120(1), 217–225 (1993).
  • Ng DC, Shafaee S, Lee D, Bikle DD. Requirement of an AP-1 site in the calcium response region of the involucrin promoter. J. Biol. Chem. 275(31), 24080–24088 (2000).
  • Filvaroff E, Stern DF, Dotto GP. Tyrosine phosphorylation is an early and specific event involved in primary keratinocyte differentiation. Mol. Cell. Biol. 10(3), 1164–1173 (1990).
  • Chakravarthy BR, Isaacs RJ, Morley P, Durkin JP, Whitfield JF. Stimulation of protein kinase C during Ca(2+)-induced keratinocyte differentiation. Selective blockade of MARCKS phosphorylation by calmodulin. J. Biol. Chem. 270(3), 1362–1368 (1995).
  • Punnonen K, Denning M, Lee E, Li L, Rhee SG, Yuspa SH. Keratinocyte differentiation is associated with changes in the expression and regulation of phospholipase C isoenzymes. J. Invest. Dermatol. 101(5), 719–726 (1993).
  • Hepler JR, Earp HS, Harden TK. Long-term phorbol ester treatment down-regulates protein kinase C and sensitizes the phosphoinositide signaling pathway to hormone and growth factor stimulation. Evidence for a role of protein kinase C in agonist-induced desensitization. J. Biol. Chem. 263(16), 7610–7619 (1988).
  • Kojima I, Shibata H, Ogata E. Phorbol ester inhibits angiotensin-induced activation of phospholipase C in adrenal glomerulosa cells. Its implication in the sustained action of angiotensin. Biochem. J. 237(1), 253–258 (1986).
  • Dlugosz AA, Mischak H, Mushinski JF, Yuspa SH. Transcripts encoding protein kinase C-α, Δ, ε, ζ, and η are expressed in basal and differentiating mouse keratinocytes in vitro and exhibit quantitative changes in neoplastic cells Mol. Carcinog. 5(4), 286–292 (1992).
  • Denning MF, Dlugosz AA, Howett MK, Yuspa SH. Expression of an oncogenic rasHa gene in murine keratinocytes induces tyrosine phosphorylation and reduced activity of protein kinase C delta. J. Biol. Chem. 268(35), 26079–26081 (1993).
  • Reynolds NJ, Baldassare JJ, Henderson PA et al. Translocation and downregulation of protein kinase C isoenzymes-α and -epsilon by phorbol ester and bryostatin-1 in human keratinocytes and fibroblasts. J. Invest. Dermatol. 103(3), 364–369 (1994).
  • Fisher GJ, Tavakkol A, Leach K et al. Differential expression of protein kinase C isoenzymes in normal and psoriatic adult human skin: reduced expression of protein kinase C-β II in psoriasis. J. Invest. Dermatol. 101(4), 553–559 (1993).
  • Goodnight J, Mischak H, Mushinski JF. Selective involvement of protein kinase C isozymes in differentiation and neoplastic transformation. Adv. Cancer Res. 64, 159–209 (1994).
  • Yang LC, Ng DC, Bikle DD. Role of protein kinase C α in calcium induced keratinocyte differentiation: defective regulation in squamous cell carcinoma. J. Cell. Physiol. 195(2), 249–259 (2003).
  • Downward J, Waterfield MD, Parker PJ. Autophosphorylation and protein kinase C phosphorylation of the epidermal growth factor receptor. Effect on tyrosine kinase activity and ligand binding affinity. J. Biol. Chem. 260(27), 14538–14546 (1985).
  • Schlessinger J. Allosteric regulation of the epidermal growth factor receptor kinase. J. Cell Biol. 103(6 Pt 1), 2067–2072 (1986).
  • Kolch W, Heidecker G, Kochs G et al. Protein kinase C α activates RAF-1 by direct phosphorylation. Nature 364(6434), 249–252 (1993).
  • Goode N, Hughes K, Woodgett JR, Parker PJ. Differential regulation of glycogen synthase kinase-3 β by protein kinase C isotypes. J. Biol. Chem. 267(24), 16878–16882 (1992).
  • Yaar M, Gilani A, DiBenedetto PJ, Harkness DD, Gilchrest BA. Gene modulation accompanying differentiation of normal versus malignant keratinocytes. Exp. Cell Res. 206(2), 235–243 (1993).
  • Stanwell C, Denning MF, Rutberg SE, Cheng C, Yuspa SH, Dlugosz AA. Staurosporine induces a sequential program of mouse keratinocyte terminal differentiation through activation of PKC isozymes. J. Invest. Dermatol. 106(3), 482–489 (1996).
  • Welter JF, Eckert RL. Differential expression of the Fos and Jun family members c-Fos, FosB, Fra-1, Fra-2, c-Jun, JunB and JunD during human epidermal keratinocyte differentiation. Oncogene 11(12), 2681–2687 (1995).
  • Welter JF, Crish JF, Agarwal C, Eckert RL. Fos-related antigen (Fra-1), JunB, and JunD activate human involucrin promoter transcription by binding to proximal and distal AP1 sites to mediate phorbol ester effects on promoter activity. J. Biol. Chem. 270(21), 12614–12622 (1995).
  • Forman BM, Casanova J, Raaka BM, Ghysdael J, Samuels HH. Half-site spacing and orientation determines whether thyroid hormone and retinoic acid receptors and related factors bind to DNA response elements as monomers, homodimers, or heterodimers. Mol. Endocrinol. 6(3), 429–442 (1992).
  • Troyanovsky S. Cadherin dimers in cell–cell adhesion. Eur. J. Cell Biol. 84(2–3), 225–233 (2005).
  • van Roy F, Berx G. The cell–cell adhesion molecule E-cadherin. Cell. Mol. Life Sci. 65(23), 3756–3788 (2008).
  • Calautti E, Cabodi S, Stein PL, Hatzfeld M, Kedersha N, Paolo Dotto G. Tyrosine phosphorylation and Src family kinases control keratinocyte cell–cell adhesion. J. Cell Biol. 141(6), 1449–1465 (1998).
  • Calautti E, Grossi M, Mammucari C et al. Fyn tyrosine kinase is a downstream mediator of Rho/PRK2 function in keratinocyte cell–cell adhesion. J. Cell Biol. 156(1), 137–148 (2002).
  • Calautti E, Li J, Saoncella S, Brissette JL, Goetinck PF. Phosphoinositide 3-kinase signaling to Akt promotes keratinocyte differentiation versus death. J. Biol. Chem. 280(38), 32856–32865 (2005).
  • Pece S, Chiariello M, Murga C, Gutkind JS. Activation of the protein kinase Akt/PKB by the formation of E-cadherin-mediated cell–cell junctions. Evidence for the association of phosphatidylinositol 3-kinase with the E-cadherin adhesion complex. J. Biol. Chem. 274(27), 19347–19351 (1999).
  • Pang JH, Kraemer A, Stehbens SJ, Frame MC, Yap AS. Recruitment of phosphoinositide 3-kinase defines a positive contribution of tyrosine kinase signaling to E-cadherin function. J. Biol. Chem. 280(4), 3043–3050 (2005).
  • Xie Z, Bikle DD. The recruitment of phosphatidylinositol 3-kinase to the E-cadherin–catenin complex at the plasma membrane is required for calcium-induced phospholipase C-γ1 activation and human keratinocyte differentiation. J. Biol. Chem. 282(12), 8695–8703 (2007).
  • Xie Z, Chang SM, Pennypacker SD, Liao EY, Bikle DD. Phosphatidylinositol-4-phosphate 5-kinase 1α mediates extracellular calcium-induced keratinocyte differentiation. Mol. Biol. Cell 20(6), 1695–1704 (2009).
  • Perez-Moreno M, Jamora C, Fuchs E. Sticky business: orchestrating cellular signals at adherens junctions. Cell 112(4), 535–548 (2003).
  • Braga VM, Machesky LM, Hall A, Hotchin NA. The small GTPases Rho and Rac are required for the establishment of cadherin-dependent cell–cell contacts. J. Cell Biol. 137(6), 1421–1431 (1997).
  • Furukawa F, Fujii K, Horiguchi Y et al. Roles of E- and P-cadherin in the human skin. Microsc. Res. Tech. 38(4), 343–352 (1997).
  • Young P, Boussadia O, Halfter H et al. E-cadherin controls adherens junctions in the epidermis and the renewal of hair follicles. EMBO J. 22(21), 5723–5733 (2003).
  • Tinkle CL, Lechler T, Pasolli HA, Fuchs E. Conditional targeting of E-cadherin in skin: insights into hyperproliferative and degenerative responses. Proc. Natl Acad. Sci. USA 101(2), 552–557 (2004).
  • Tunggal JA, Helfrich I, Schmitz A et al. E-cadherin is essential for in vivo epidermal barrier function by regulating tight junctions. EMBO J. 24(6), 1146–1156 (2005).
  • Tu CL, Chang W, Bikle DD. The calcium-sensing receptor-dependent regulation of cell–cell adhesion and keratinocyte differentiation requires Rho and filamin A. J. Invest. Dermatol. 131(5), 1119–1128 (2011).
  • Pokutta S, Weis WI. Structure and mechanism of cadherins and catenins in cell–cell contacts. Annu. Rev. Cell Dev. Biol. 23, 237–261 (2007).
  • Tu CL, Chang W, Xie Z, Bikle DD. Inactivation of the calcium sensing receptor inhibits E-cadherin-mediated cell–cell adhesion and calcium-induced differentiation in human epidermal keratinocytes. J. Biol. Chem. 283(6), 3519–3528 (2008).
  • Anastasiadis PZ. p120-ctn: a nexus for contextual signaling via Rho GTPases. Biochim. Biophys. Acta 1773(1), 34–46 (2007).
  • Perez-Moreno M, Davis MA, Wong E, Pasolli HA, Reynolds AB, Fuchs E. p120-catenin mediates inflammatory responses in the skin. Cell 124(3), 631–644 (2006).
  • Wheelock MJ, Johnson KR. Cadherins as modulators of cellular phenotype. Annu. Rev. Cell Dev. Biol. 19, 207–235 (2003).
  • Fry MJ. Phosphoinositide 3-kinase signalling in breast cancer: how big a role might it play? Breast Cancer Res. 3(5), 304–312 (2001).
  • Nemeth EF, Scarpa A. Rapid mobilization of cellular Ca 2+ in bovine parathyroid cells evoked by extracellular divalent cations. Evidence for a cell surface calcium receptor. J. Biol. Chem. 262(11), 5188–5196 (1987).
  • Brown EM, Gamba G, Riccardi D et al. Cloning and characterization of an extracellular Ca(2+)-sensing receptor from bovine parathyroid. Nature 366(6455), 575–580 (1993).
  • Garrett JE, Capuano IV, Hammerland LG et al. Molecular cloning and functional expression of human parathyroid calcium receptor cDNAs. J. Biol. Chem. 270(21), 12919–12925 (1995).
  • Oda Y, Tu CL, Pillai S, Bikle DD. The calcium sensing receptor and its alternatively spliced form in keratinocyte differentiation. J. Biol. Chem. 273(36), 23344–23352 (1998).
  • Oda Y, Tu CL, Chang W et al. The calcium sensing receptor and its alternatively spliced form in murine epidermal differentiation. J. Biol. Chem. 275(2), 1183–1190 (2000).
  • Tu CL, Chang W, Bikle DD. The extracellular calcium-sensing receptor is required for calcium-induced differentiation in human keratinocytes. J. Biol. Chem. 276(44), 41079–41085 (2001).
  • Ratnam AV, Cho JK, Bikle DD. 1,25-dihydroxyvitamin D3 enhances the calcium response of keratinocytes. J. Invest. Dermatol. 106, 910 (1996).
  • Chang W, Tu C, Chen TH, Bikle D, Shoback D. The extracellular calcium-sensing receptor (CaSR) is a critical modulator of skeletal development. Sci. Signal. 1(35), ra1 (2008).
  • Tu C-L, Crumrine D, Man M-Q et al. Ablation of the calcium-sensing receptor in keratinocytes impairs epidermal differentiation and barrier function. J. Invest. Dermatol. (2012) (In Press).
  • Turksen K, Troy TC. Overexpression of the calcium sensing receptor accelerates epidermal differentiation and permeability barrier formation in vivo. Mech. Dev. 120(6), 733–744 (2003).
  • Tu CL, Chang W, Bikle DD. The role of the calcium sensing receptor in regulating intracellular calcium handling in human epidermal keratinocytes. J. Invest. Dermatol. 127(5), 1074–1083 (2007).
  • Hu Z, Bonifas JM, Beech J et al. Mutations in ATP2C1, encoding a calcium pump, cause Hailey–Hailey disease. Nat. Genet. 24(1), 61–65 (2000).
  • Sakuntabhai A, Ruiz-Perez V, Carter S et al. Mutations in ATP2A2, encoding a Ca2+ pump, cause Darier disease. Nat. Genet. 21(3), 271–277 (1999).
  • Bikle DD. Vitamin D: role in skin and hair. In: Vitamin D (Volume 1, 2nd Edition). Feldman D, Pike W, Glorieux F (Eds). Elsevier Academic Press, CA, USA, 609–630 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.