2,850
Views
39
CrossRef citations to date
0
Altmetric
Review

Radioactive iodine-refractory differentiated thyroid cancer: unmet needs and future directions

, , , , &
Pages 541-554 | Published online: 10 Jan 2014

References

  • Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA. Cancer J. Clin. 61(2), 69–90 (2011).
  • Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA. Cancer J. Clin. 60(5), 277–300 (2010).
  • Hundahl SA, Fleming ID, Fremgen AM, Menck HR. A National Cancer Data Base report on 53,856 cases of thyroid carcinoma treated in the U.S., 1985–1995. Cancer 83(12), 2638–2648 (1998).
  • Venkatesh YS, Ordonez NG, Schultz PN, Hickey RC, Goepfert H, Samaan NA. Anaplastic carcinoma of the thyroid. A clinicopathologic study of 121 cases. Cancer 66(2), 321–330 (1990).
  • McIver B, Hay ID, Giuffrida DF et al. Anaplastic thyroid carcinoma: a 50-year experience at a single institution. Surgery 130(6), 1028–1034 (2001).
  • Byar DP, Green SB, Dor P et al. A prognostic index for thyroid carcinoma. A study of the E.O.R.T.C. Thyroid Cancer Cooperative Group. Eur. J. Cancer 15(8), 1033–1041 (1979).
  • Cady B, Rossi R. An expanded view of risk-group definition in differentiated thyroid carcinoma. Surgery 104(6), 947–953 (1988).
  • Sherman SI, Brierley JD, Sperling M et al. Prospective multicenter study of thyroiscarcinoma treatment: initial analysis of staging and outcome. National Thyroid Cancer Treatment Cooperative Study Registry Group. Cancer 83(5), 1012–1021 (1998).
  • Cooper DS, Doherty GM, Haugen BR et al; American Thyroid Association (ATA) Guidelines Taskforce on Thyroid Nodules and Differentiated Thyroid Cancer. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 19(11), 1167–1214 (2009).
  • Edge SB; American Joint Committee on Cancer. AJCC Cancer Staging Manual. Springer, New York, NY, USA (2010).
  • Hay ID, Bergstralh EJ, Goellner JR, Ebersold JR, Grant CS. Predicting outcome in papillary thyroid carcinoma: development of a reliable prognostic scoring system in a cohort of 1779 patients surgically treated at one institution during 1940 through 1989. Surgery 114(6), 1050–1057; discussion 1057 (1993).
  • Pacini F, Schlumberger M, Dralle H, Elisei R, Smit JW, Wiersinga W; European Thyroid Cancer Taskforce. European consensus for the management of patients with differentiated thyroid carcinoma of the follicular epithelium. Eur. J. Endocrinol. 154(6), 787–803 (2006).
  • Luster M, Clarke SE, Dietlein M et al.; European Association of Nuclear Medicine (EANM). Guidelines for radioiodine therapy of differentiated thyroid cancer. Eur. J. Nucl. Med. Mol. Imaging 35(10), 1941–1959 (2008).
  • Pitoia F, Ward L, Wohllk N et al. Recommendations of the Latin American Thyroid Society on diagnosis and management of differentiated thyroid cancer. Arq. Bras. Endocrinol. Metabol. 53(7), 884–887 (2009).
  • Takami H, Ito Y, Okamoto T, Yoshida A. Therapeutic strategy for differentiated thyroid carcinoma in Japan based on a newly established guideline managed by Japanese Society of Thyroid Surgeons and Japanese Association of Endocrine Surgeons. World J. Surg. 35(1), 111–121 (2011).
  • Ito Y, Uruno T, Nakano K et al. An observation trial without surgical treatment in patients with papillary microcarcinoma of the thyroid. Thyroid 13(4), 381–387 (2003).
  • Sugitani I, Toda K, Yamada K, Yamamoto N, Ikenaga M, Fujimoto Y. Three distinctly different kinds of papillary thyroid microcarcinoma should be recognized: our treatment strategies and outcomes. World J. Surg. 34(6), 1222–1231 (2010).
  • Mazzaferri EL, Young RL. Papillary thyroid carcinoma: a 10 year follow-up report of the impact of therapy in 576 patients. Am. J. Med. 70(3), 511–518 (1981).
  • DeGroot LJ, Kaplan EL, McCormick M, Straus FH. Natural history, treatment, and course of papillary thyroid carcinoma. J. Clin. Endocrinol. Metab. 71(2), 414–424 (1990).
  • Samaan NA, Schultz PN, Hickey RC et al. The results of various modalities of treatment of well differentiated thyroid carcinomas: a retrospective review of 1599 patients. J. Clin. Endocrinol. Metab. 75(3), 714–720 (1992).
  • Bilimoria KY, Bentrem DJ, Ko CY et al. Extent of surgery affects survival for papillary thyroid cancer. Ann. Surg. 246(3), 375–81; discussion 381 (2007).
  • Tuttle RM, Vaisman F, Tronko MD. Clinical presentation and clinical outcomes in Chernobyl-related paediatric thyroid cancers: what do we know now? What can we expect in the future? Clin. Oncol. (R. Coll. Radiol). 23(4), 268–275 (2011).
  • Udelsman R, Lakatos E, Ladenson P. Optimal surgery for papillary thyroid carcinoma. World J. Surg. 20(1), 88–93 (1996).
  • Pattou F, Combemale F, Fabre S et al. Hypocalcemia following thyroid surgery: incidence and prediction of outcome. World J. Surg. 22(7), 718–724 (1998).
  • Salvatori M, Raffaelli M, Castaldi P et al. Evaluation of the surgical completeness after total thyroidectomy for differentiated thyroid carcinoma. Eur. J. Surg. Oncol. 33(5), 648–654 (2007).
  • Wong JB, Kaplan MM, Meyer KB, Pauker SG. Ablative radioactive iodine therapy for apparently localized thyroid carcinoma. A decision analytic perspective. Endocrinol. Metab. Clin. North Am. 19(3), 741–760 (1990).
  • Sawka AM, Thephamongkhol K, Brouwers M, Thabane L, Browman G, Gerstein HC. Clinical review 170: a systematic review and metaanalysis of the effectiveness of radioactive iodine remnant ablation for well-differentiated thyroid cancer. J. Clin. Endocrinol. Metab. 89(8), 3668–3676 (2004).
  • Verburg FA, Stokkel MP, Düren C et al. No survival difference after successful (131)I ablation between patients with initially low-risk and high-risk differentiated thyroid cancer. Eur. J. Nucl. Med. Mol. Imaging 37(2), 276–283 (2010).
  • Hackshaw A, Harmer C, Mallick U, Haq M, Franklyn JA. 131I activity for remnant ablation in patients with differentiated thyroid cancer: a systematic review. J. Clin. Endocrinol. Metab. 92(1), 28–38 (2007).
  • Pilli T, Brianzoni E, Capoccetti F et al. A comparison of 1850 (50 mCi) and 3700 MBq (100 mCi) 131-iodine administered doses for recombinant thyrotropin-stimulated postoperative thyroid remnant ablation in differentiated thyroid cancer. J. Clin. Endocrinol. Metab. 92(9), 3542–3546 (2007).
  • Rosario PW, Xavier AC. Recombinant human thyroid stimulating hormone in thyroid remnant ablation with 1.1 GBq 131iodine in low-risk patients. Am. J. Clin. Oncol. 35(2), 101–104 (2012).
  • Maxon HR 3rd, Englaro EE, Thomas SR et al. Radioiodine-131 therapy for well-differentiated thyroid cancer – a quantitative radiation dosimetric approach: outcome and validation in 85 patients. J. Nucl. Med. 33(6), 1132–1136 (1992).
  • Liel Y. Preparation for radioactive iodine administration in differentiated thyroid cancer patients. Clin. Endocrinol. (Oxf) 57(4), 523–527 (2002).
  • Robbins RJ, Larson SM, Sinha N et al. A retrospective review of the effectiveness of recombinant human TSH as a preparation for radioiodine thyroid remnant ablation. J. Nucl. Med. 43(11), 1482–1488 (2002).
  • Matovic MD, Jankovic SM, Jeremic M, Tasic Z, Vlajkovic M. Unexpected effect of furosemide on radioiodine urinary excretion in patients with differentiated thyroid carcinomas treated with iodine 131. Thyroid 19(8), 843–848 (2009).
  • Schlumberger M, Sherman SI. Approach to the patient with advanced differentiated thyroid cancer. Eur. J. Endocrinol. 166(1), 5–11 (2012).
  • Jonklaas J, Sarlis NJ, Litofsky D et al. Outcomes of patients with differentiated thyroid carcinoma following initial therapy. Thyroid 16(12), 1229–1242 (2006).
  • Pfister DG, Fagin JA. Refractory thyroid cancer: a paradigm shift in treatment is not far off. J. Clin. Oncol. 26(29), 4701–4704 (2008).
  • Eisenhauer EA, Therasse P, Bogaerts J et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer 45(2), 228–247 (2009).
  • O’Connell ME, A’Hern RP, Harmer CL. Results of external beam radiotherapy in differentiated thyroid carcinoma: a retrospective study from the Royal Marsden Hospital. Eur. J. Cancer 30A(6), 733–739 (1994).
  • Schwartz DL, Lobo MJ, Ang KK et al. Postoperative external beam radiotherapy for differentiated thyroid cancer: outcomes and morbidity with conformal treatment. Int. J. Radiat. Oncol. Biol. Phys. 74(4), 1083–1091 (2009).
  • Sherman SI. Cytotoxic chemotherapy for differentiated thyroid carcinoma. Clin. Oncol. (R. Coll. Radiol). 22(6), 464–468 (2010).
  • Carter SK, Blum RH. New chemotherapeutic agents – bleomycin and adriamycin. CA. Cancer J. Clin. 24(6), 322–331 (1974).
  • Gottlieb JA, Hill CS Jr. Chemotherapy of thyroid cancer with adriamycin. Experience with 30 patients. N. Engl. J. Med. 290(4), 193–197 (1974).
  • Haugen BR. Management of the patient with progressive radioiodine non-responsive disease. Semin. Surg. Oncol. 16(1), 34–41 (1999).
  • Matuszczyk A, Petersenn S, Bockisch A et al. Chemotherapy with doxorubicin in progressive medullary and thyroid carcinoma of the follicular epithelium. Horm. Metab. Res. 40(3), 210–213 (2008).
  • Shimaoka K, Schoenfeld DA, DeWys WD, Creech RH, DeConti R. A randomized trial of doxorubicin versus doxorubicin plus cisplatin in patients with advanced thyroid carcinoma. Cancer 56(9), 2155–2160 (1985).
  • Biganzoli L, Gebbia V, Maiorino L, Caraci P, Iirillo A. Thyroid cancer: different outcomes to chemotherapy according to tumour histology. Eur. J. Cancer 31A(13–14), 2423–2424 (1995).
  • Argiris A, Agarwala SS, Karamouzis MV, Burmeister LA, Carty SE. A Phase II trial of doxorubicin and interferon a 2b in advanced, non-medullary thyroid cancer. Invest. New Drugs 26(2), 183–188 (2008).
  • Ikeda M, Tanaka K, Sonoo H et al. Docetaxel administration for radioiodine-resistant patients with metastatic papillary thyroid carcinoma. Gan To Kagaku Ryoho. 34(6), 933–936 (2007).
  • Matuszczyk A, Petersenn S, Voigt W et al. Chemotherapy with paclitaxel and gemcitabine in progressive medullary and thyroid carcinoma of the follicular epithelium. Horm. Metab. Res. 42(1), 61–64 (2010).
  • Fagin JA, Mitsiades N. Molecular pathology of thyroid cancer: diagnostic and clinical implications. Best Pract. Res. Clin. Endocrinol. Metab. 22(6), 955–969 (2008).
  • Ciampi R, Nikiforov YE. RET/PTC rearrangements and BRAF mutations in thyroid tumorigenesis. Endocrinology 148(3), 936–941 (2007).
  • Liu ZM, Wu TT, van Hasselt CA, Chen GG. Carcinogenesis and therapeutic strategies in thyroid cancer. Curr. Drug Targets 11(6), 716–732 (2010).
  • Xing M. Genetic alterations in the phosphatidylinositol-3 kinase/Akt pathway in thyroid cancer. Thyroid 20(7), 697–706 (2010).
  • Indo Y, Mardy S, Tsuruta M, Karim MA, Matsuda I. Structure and organization of the human TRKA gene encoding a high affinity receptor for nerve growth factor. Jpn. J. Hum. Genet. 42(2), 343–351 (1997).
  • Wang H, Hughes I, Planer W et al. The timing and location of glial cell line-derived neurotrophic factor expression determine enteric nervous system structure and function. J. Neurosci. 30(4), 1523–1538 (2010).
  • Santoro M, Grieco M, Melillo RM, Fusco A, Vecchio G. Molecular defects in thyroid carcinomas: role of the RET oncogene in thyroid neoplastic transformation. Eur. J. Endocrinol. 133(5), 513–522 (1995).
  • Bongarzone I, Vigneri P, Mariani L, Collini P, Pilotti S, Pierotti MA. RET/NTRK1 rearrangements in thyroid gland tumors of the papillary carcinoma family: correlation with clinicopathological features. Clin. Cancer Res. 4(1), 223–228 (1998).
  • Adjei AA. Blocking oncogenic Ras signaling for cancer therapy. J. Natl Cancer Inst. 93(14), 1062–1074 (2001).
  • Zhu Z, Gandhi M, Nikiforova MN, Fischer AH, Nikiforov YE. Molecular profile and clinical–pathologic features of the follicular variant of papillary thyroid carcinoma. An unusually high prevalence of ras mutations. Am. J. Clin. Pathol. 120(1), 71–77 (2003).
  • Lupi C, Giannini R, Ugolini C et al. Association of BRAF V600E mutation with poor clinicopathological outcomes in 500 consecutive cases of papillary thyroid carcinoma. J. Clin. Endocrinol. Metab. 92(11), 4085–4090 (2007).
  • Elisei R, Ugolini C, Viola D et al. BRAF(V600E) mutation and outcome of patients with papillary thyroid carcinoma: a 15-year median follow-up study. J. Clin. Endocrinol. Metab. 93(10), 3943–3949 (2008).
  • Xing M. Prognostic utility of BRAF mutation in papillary thyroid cancer. Mol. Cell. Endocrinol. 321(1), 86–93 (2010).
  • Ito Y, Yoshida H, Maruo R et al. BRAF mutation in papillary thyroid carcinoma in a Japanese population: its lack of correlation with high-risk clinicopathological features and disease-free survival of patients. Endocr. J. 56(1), 89–97 (2009).
  • Viglietto G, Chiappetta G, Martinez-Tello FJ et al. RET/PTC oncogene activation is an early event in thyroid carcinogenesis. Oncogene 11(6), 1207–1210 (1995).
  • Giannini R, Ugolini C, Lupi C et al. The heterogeneous distribution of BRAF mutation supports the independent clonal origin of distinct tumor foci in multifocal papillary thyroid carcinoma. J. Clin. Endocrinol. Metab. 92(9), 3511–3516 (2007).
  • Ugolini C, Giannini R, Lupi C et al. Presence of BRAF V600E in very early stages of papillary thyroid carcinoma. Thyroid 17(5), 381–388 (2007).
  • Henderson YC, Shellenberger TD, Williams MD et al. High rate of BRAF and RET/PTC dual mutations associated with recurrent papillary thyroid carcinoma. Clin. Cancer Res. 15(2), 485–491 (2009).
  • He H, Jazdzewski K, Li W et al. The role of microRNA genes in papillary thyroid carcinoma. Proc. Natl Acad. Sci. USA 102(52), 19075–19080 (2005).
  • Hu S, Liu D, Tufano RP et al. Association of aberrant methylation of tumor suppressor genes with tumor aggressiveness and BRAF mutation in papillary thyroid cancer. Int. J. Cancer 119(10), 2322–2329 (2006).
  • Gudmundsson J, Sulem P, Gudbjartsson DF et al. Common variants on 9q22.33 and 14q13.3 predispose to thyroid cancer in European populations. Nat. Genet. 41(4), 460–464 (2009).
  • Jazdzewski K, de la Chapelle A. Genomic sequence matters: a SNP in microRNA-146a can turn anti-apoptotic. Cell Cycle 8(11), 1642–1643 (2009).
  • Canzian F, Amati P, Harach HR et al. A gene predisposing to familial thyroid tumors with cell oxyphilia maps to chromosome 19p13.2. Am. J. Hum. Genet. 63(6), 1743–1748 (1998).
  • Malchoff CD, Sarfarazi M, Tendler B et al. Papillary thyroid carcinoma associated with papillary renal neoplasia: genetic linkage analysis of a distinct heritable tumor syndrome. J. Clin. Endocrinol. Metab. 85(5), 1758–1764 (2000).
  • McKay JD, Lesueur F, Jonard L et al. Localization of a susceptibility gene for familial nonmedullary thyroid carcinoma to chromosome 2q21. Am. J. Hum. Genet. 69(2), 440–446 (2001).
  • Capezzone M, Cantara S, Marchisotta S et al. Telomere length in neoplastic and nonneoplastic tissues of patients with familial and sporadic papillary thyroid cancer. J. Clin. Endocrinol. Metab. 96(11), e1852–e1856 (2011).
  • Di Palma T, Conti A, de Cristofaro T, Scala S, Nitsch L, Zannini M. Identification of novel Pax8 targets in FRTL-5 thyroid cells by gene silencing and expression microarray analysis. PLoS ONE 6(9), e25162 (2011).
  • Koenig RJ. Detection of the PAX8-PPARγ fusion protein in thyroid tumors. Clin. Chem. 56(3), 331–333 (2010).
  • Marques AR, Espadinha C, Catarino AL et al. Expression of PAX8-PPAR gamma 1 rearrangements in both follicular thyroid carcinomas and adenomas. J. Clin. Endocrinol. Metab. 87(8), 3947–3952 (2002).
  • Terrier P, Sheng ZM, Schlumberger M et al. Structure and expression of c-myc and c-fos proto-oncogenes in thyroid carcinomas. Br. J. Cancer 57(1), 43–47 (1988).
  • Lemoine NR, Mayall ES, Wyllie FS et al. High frequency of ras oncogene activation in all stages of human thyroid tumorigenesis. Oncogene 4(2), 159–164 (1989).
  • Wright PA, Lemoine NR, Mayall ES et al. Papillary and follicular thyroid carcinomas show a different pattern of ras oncogene mutation. Br. J. Cancer 60(4), 576–577 (1989).
  • Wu G, Mambo E, Guo Z et al. Uncommon mutation, but common amplifications, of the PIK3CA gene in thyroid tumors. J. Clin. Endocrinol. Metab. 90(8), 4688–4693 (2005).
  • Liu Z, Hou P, Ji M et al. Highly prevalent genetic alterations in receptor tyrosine kinases and phosphatidylinositol 3-kinase/akt and mitogen-activated protein kinase pathways in anaplastic and follicular thyroid cancers. J. Clin. Endocrinol. Metab. 93(8), 3106–3116 (2008).
  • Xing M, Cohen Y, Mambo E et al. Early occurrence of RASSF1A hypermethylation and its mutual exclusion with BRAF mutation in thyroid tumorigenesis. Cancer Res. 64(5), 1664–1668 (2004).
  • Gild ML, Bullock M, Robinson BG, Clifton-Bligh R. Multikinase inhibitors: a new option for the treatment of thyroid cancer. Nat. Rev. Endocrinol. 7(10), 617–624 (2011).
  • Sherman SI. Tyrosine kinase inhibitors and the thyroid. Best Pract. Res. Clin. Endocrinol. Metab. 23(6), 713–722 (2009).
  • Ye L, Santarpia L, Gagel RF. The evolving field of tyrosine kinase inhibitors in the treatment of endocrine tumors. Endocr. Rev. 31(4), 578–599 (2010).
  • Xing M, Westra WH, Tufano RP et al. BRAF mutation predicts a poorer clinical prognosis for papillary thyroid cancer. J. Clin. Endocrinol. Metab. 90(12), 6373–6379 (2005).
  • Tuttle RM, Fleisher M, Francis GL, Robbins RJ. Serum vascular endothelial growth factor levels are elevated in metastatic differentiated thyroid cancer but not increased by short-term TSH stimulation. J. Clin. Endocrinol. Metab. 87(4), 1737–1742 (2002).
  • O’Neill CJ, Oucharek J, Learoyd D, Sidhu SB. Standard and emerging therapies for metastatic differentiated thyroid cancer. Oncologist 15(2), 146–156 (2010).
  • Riley LB, Desai DC. The molecular basis of cancer and the development of targeted therapy. Surg. Clin. North Am. 89(1), 1–15, vii (2009).
  • Sherman SI. Targeted therapies for thyroid tumors. Mod. Pathol. 24(Suppl. 2), S44–S52 (2011).
  • Deshpande HA, Gettinger SN, Sosa JA. Targeted therapy for thyroid cancer: an updated review of investigational agents. Curr. Opin. Investig. Drugs 11(6), 661–668 (2010).
  • Cabanillas ME, Waguespack SG, Bronstein Y et al. Treatment with tyrosine kinase inhibitors for patients with differentiated thyroid cancer: the M. D. Anderson experience. J. Clin. Endocrinol. Metab. 95(6), 2588–2595 (2010).
  • FDA. In: Guidance for industry: clinical trial endpoints for the approval of cancer drugs and biologics. FDA, MD, USA, (2007).
  • Wells SA Jr, Robinson BG, Gagel RF et al. Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: a randomized, double-blind Phase III trial. J. Clin. Oncol. 30(2), 134–141 (2012).
  • Kim A, Balis FM, Widemann BC. Sorafenib and sunitinib. Oncologist 14(8), 800–805 (2009).
  • Gupta-Abramson V, Troxel AB, Nellore A et al. Phase II trial of sorafenib in advanced thyroid cancer. J. Clin. Oncol. 26(29), 4714–4719 (2008).
  • Keefe SM, Troxel AB, Rhee S et al. Phase II trial of sorafenib in patients with advanced thyroid cancer J. Clin. Oncol. 29(Suppl. 15), abstract 5562 (2011).
  • Kloos RT, Ringel MD, Knopp MV et al. Phase II trial of sorafenib in metastatic thyroid cancer. J. Clin. Oncol. 27(10), 1675–1684 (2009).
  • Ahmed M, Barbachano Y, Riddell A et al. Analysis of the efficacy and toxicity of sorafenib in thyroid cancer: a Phase II study in a UK based population. Eur. J. Endocrinol. 165(2), 315–322 (2011).
  • Hoftijzer H, Heemstra KA, Morreau H et al. Beneficial effects of sorafenib on tumor progression, but not on radioiodine uptake, in patients with differentiated thyroid carcinoma. Eur. J. Endocrinol. 161(6), 923–931 (2009).
  • Capdevila J, Iglesias L, Halperin I et al. Sorafenib in metastatic thyroid cancer. Endocr. Relat. Cancer 19(2), 209–216 (2012).
  • Brose MS, Nutting CM, Sherman SI et al. Rationale and design of decision: a double-blind, randomized, placebo-controlled Phase III trial evaluating the efficacy and safety of sorafenib in patients with locally advanced or metastatic radioactive iodine (RAI)-refractory, differentiated thyroid cancer. BMC Cancer 11, 349 (2011).
  • Glen H, Mason S, Patel H, Macleod K, Brunton VG. E7080, a multi-targeted tyrosine kinase inhibitor suppresses tumor cell migration and invasion. BMC Cancer 11, 309 (2011).
  • Sherman SI, Jarzab B, Cabanillas ME et al. A Phase II trial of the multitargeted kinase inhibitor E7080 in advanced radioiodine (RAI)-refractory differentiated thyroid cancer (DTC). J. Clin. Oncol. 29(Suppl. 15), abstract 5503 (2011).
  • Kim DW, Jo YS, Jung HS et al. An orally administered multitarget tyrosine kinase inhibitor, SU11248, is a novel potent inhibitor of thyroid oncogenic RET/papillary thyroid cancer kinases. J. Clin. Endocrinol. Metab. 91(10), 4070–4076 (2006).
  • Dawson SJ, Conus NM, Toner GC et al. Sustained clinical responses to tyrosine kinase inhibitor sunitinib in thyroid carcinoma. Anticancer Drugs 19(5), 547–552 (2008).
  • Cohen EE, Needles BM, Cullen KJ, et al. Phase 2 study of sunitinib in refractory thyroid cancer. J. Clin. Oncol. 26(Suppl. 15), abstract 6025 (2008).
  • Ravaud A, de la Fouchardière C, Asselineau J et al. Efficacy of sunitinib in advanced medullary thyroid carcinoma: intermediate results of Phase II THYSU. Oncologist 15(2), 212–213; author reply 214 (2010).
  • Carr LL, Mankoff DA, Goulart BH et al. Phase II study of daily sunitinib in FDG-PET-positive, iodine-refractory differentiated thyroid cancer and metastatic medullary carcinoma of the thyroid with functional imaging correlation. Clin. Cancer Res. 16(21), 5260–5268 (2010).
  • Kumar R, Knick VB, Rudolph SK et al. Pharmacokinetic-pharmacodynamic correlation from mouse to human with pazopanib, a multikinase angiogenesis inhibitor with potent antitumor and antiangiogenic activity. Mol. Cancer Ther. 6(7), 2012–2021 (2007).
  • Bible KC, Suman VJ, Molina JR et al.; Endocrine Malignancies Disease Oriented Group; Mayo Clinic Cancer Center; Mayo Phase 2 Consortium. Efficacy of pazopanib in progressive, radioiodine-refractory, metastatic differentiated thyroid cancers: results of a Phase 2 consortium study. Lancet Oncol. 11(10), 962–972 (2010).
  • Chapman PB, Hauschild A, Robert C et al; BRIM-3 Study Group. Improved survival with vemurafenib in melamona with BRAF V600E mutation. N. Engl. J. Med. 364(26), 2507–2616 (2011).
  • Salerno P, De Falco V, Tamburrino A et al. Cytostatic activity of adenosine triphosphate-completitive kinase inhibitors in BRAF mutant thyroid carcinoma cells. J. Clin. Endocrinol. Metab. 95(1), 450–455 (2010).
  • Wakeling AE, Guy SP, Woodburn JR et al. ZD1839 (Iressa): an orally active inhibitor of epidermal growth factor signaling with potential for cancer therapy. Cancer Res. 62(20), 5749–5754 (2002).
  • Pennell NA, Daniels GH, Haddad RI et al. A Phase II study of gefitinib in patients with advanced thyroid cancer. Thyroid 18(3), 317–323 (2008).
  • Cohen EE, Rosen LS, Vokes EE et al. Axitinib is an active treatment for all histologic subtypes of advanced thyroid cancer: results from a Phase II study. J. Clin. Oncol. 26(29), 4708–4713 (2008).
  • Sherman SI, Wirth LJ, Droz JP et al.; Motesanib Thyroid Cancer Study Group. Motesanib diphosphate in progressive differentiated thyroid cancer. N. Engl. J. Med. 359(1), 31–42 (2008).
  • Schwartz GK, Robertson S, Shen A et al. A Phase I study of XL281, a selective oral RAF kinase inhibitor, in patients (Pts) with advanced solid tumors. J. Clin. Oncol. 27(Suppl. 15), abstract 3513 (2009).
  • Catalano MG, Pugliese M, Gargantini E et al. Cytotoxic activity of the histone deacetylase inhibitor panobinostat (LBH589) in anaplastic thyroid cancer in vitro and in vivo. Int. J. Cancer 130(3), 694–704 (2012).
  • Kurzrock R, Sherman SI, Ball DW et al. Activity of XL184 (Cabozantinib), an oral tyrosine kinase inhibitor, in patients with medullary thyroid cancer. J. Clin. Oncol. 29(19), 2660–2666 (2011).
  • Houvras Y, Wirth LJ. Cabozantinib in medullary thyroid carcinoma: time to focus the spotlight on this rare disease. J. Clin. Oncol. 29(19), 2616–2618 (2011).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.