473
Views
68
CrossRef citations to date
0
Altmetric
Review

The Wnt/β-catenin signaling pathway in liver biology and disease

Pages 745-756 | Published online: 10 Jan 2014

References

  • Sharma RP, Chopra VL. Effect of the Wingless (wg1) mutation on wing and haltere development in Drosophila melanogaster. Dev. Biol.48(2), 461–465 (1976).
  • Nusse R, Varmus HE. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell31(1), 99–109 (1982).
  • Rijsewijk F, Schuermann M, Wagenaar E et al. The Drosophila homolog of the mouse mammary oncogene int-1 is identical to the segment polarity gene wingless. Cell50(4), 649–657 (1987).
  • Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu. Rev. Cell. Dev. Biol.20, 781–810 (2004).
  • Gordon MD, Nusse R. Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors. J. Biol. Chem.281(32), 22429–22433 (2006).
  • He X, Semenov M, Tamai K, Zeng X. LDL receptor-related proteins 5 and 6 in Wnt/β-catenin signaling: arrows point the way. Development131(8), 1663–1677 (2004).
  • MacDonald BT, Tamai K, He X. Wnt/β-catenin signaling: components, mechanisms, and diseases. Dev. Cell.17(1), 9–26 (2009).
  • Zeng G, Awan F, Otruba W et al. Wnt’er in liver: expression of Wnt and Frizzled genes in mouse. Hepatology45(1), 195–204 (2007).
  • Panakova D, Sprong H, Marois E, Thiele C, Eaton S. Lipoprotein particles are required for Hedgehog and Wingless signalling. Nature435(7038), 58–65 (2005).
  • Franch-Marro X, Marchand O, Piddini E et al. Glypicans shunt the Wingless signal between local signalling and further transport. Development132(4), 659–666 (2005).
  • Nelson WJ, Nusse R. Convergence of Wnt, β-catenin, and cadherin pathways. Science303(5663), 1483–1487 (2004).
  • Drees F, Pokutta S, Yamada S, Nelson WJ, Weis WI. α-catenin is a molecular switch that binds E-cadherin-β-catenin and regulates actin-filament assembly. Cell123(5), 903–915 (2005).
  • Yamada S, Pokutta S, Drees F, Weis WI, Nelson WJ. Deconstructing the cadherin–catenin–actin complex. Cell123(5), 889–901 (2005).
  • Kam Y, Quaranta V. Cadherin-bound β-catenin feeds into the Wnt pathway upon adherens junctions dissociation: evidence for an intersection between β-catenin pools. PLoS ONE4(2), e4580 (2009).
  • Monga SP, Mars WM, Pediaditakis P et al. Hepatocyte growth factor induces Wnt-independent nuclear translocation of β-catenin after Met-β-catenin dissociation in hepatocytes. Cancer Res.62(7), 2064–2071 (2002).
  • Zeng G, Apte U, Micsenyi A, Bell A, Monga SP. Tyrosine residues 654 and 670 in β-catenin are crucial in regulation of Met-β-catenin interactions. Exp. Cell. Res.312(18), 3620–3630 (2006).
  • Semenov MV, Habas R, Macdonald BT, He X. SnapShot: noncanonical Wnt signaling pathways. Cell131(7), 1378 (2007).
  • Tada M, Kai M. Noncanonical Wnt/PCP signaling during vertebrate gastrulation. Zebrafish6(1), 29–40 (2009).
  • Jessen JR. Noncanonical Wnt signaling in tumor progression and metastasis. Zebrafish6(1), 21–28 (2009).
  • Wada H, Okamoto H. Roles of noncanonical Wnt/PCP pathway genes in neuronal migration and neurulation in zebrafish. Zebrafish6(1), 3–8 (2009).
  • Nusslein-Volhard C, Wieschaus E. Mutations affecting segment number and polarity in Drosophila. Nature287(5785), 795–801 (1980).
  • Nejak-Bowen K, Monga SP. Wnt/β-catenin signaling in hepatic organogenesis. Organogenesis4(2), 92–99 (2008).
  • Si-Tayeb K, Lemaigre FP, Duncan SA. Organogenesis and development of the liver. Dev. Cell.18(2), 175–189 (2010).
  • Chu J, Sadler KC. New school in liver development: lessons from zebrafish. Hepatology50(5), 1656–1663 (2009).
  • Lemaigre FP. Mechanisms of liver development: concepts for understanding liver disorders and design of novel therapies. Gastroenterology137(1), 62–79 (2009).
  • Sekine S, Gutierrez PJ, Lan BY, Feng S, Hebrok M. Liver-specific loss of β-catenin results in delayed hepatocyte proliferation after partial hepatectomy. Hepatology45(2), 361–368 (2007).
  • Tan X, Behari J, Cieply B, Michalopoulos GK, Monga SP. Conditional deletion of β-catenin reveals its role in liver growth and regeneration. Gastroenterology131(5), 1561–1572 (2006).
  • Tan X, Apte U, Micsenyi A et al. Epidermal growth factor receptor: a novel target of the Wnt/β-catenin pathway in liver. Gastroenterology129(1), 285–302 (2005).
  • Nejak-Bowen KN, Thompson MD, Singh S et al. Accelerated liver regeneration and hepatocarcinogenesis in mice overexpressing serine-45 mutant β-catenin. Hepatology51(5), 1603–1613 (2010).
  • Apte U, Singh S, Zeng G et al. β-catenin activation promotes liver regeneration after acetaminophen-induced injury. Am. J. Pathol.175(3), 1056–1065 (2009).
  • Jungermann K, Katz N. Functional hepatocellular heterogeneity. Hepatology2(3), 385–395 (1982).
  • Jungermann K, Katz N. Functional specialization of different hepatocyte populations. Physiol. Rev.69(3), 708–764 (1989).
  • Katz NR. Metabolic heterogeneity of hepatocytes across the liver acinus. J. Nutr.122(3 Suppl.), 843–849 (1992).
  • Brosnan ME, Brosnan JT. Hepatic glutamate metabolism: a tale of 2 hepatocytes. Am. J. Clin. Nutr.90(3), 857S–861S (2009).
  • Loeppen S, Schneider D, Gaunitz F et al. Overexpression of glutamine synthetase is associated with β-catenin-mutations in mouse liver tumors during promotion of hepatocarcinogenesis by phenobarbital. Cancer Res.62(20), 5685–5688 (2002).
  • Nicholes K, Guillet S, Tomlinson E et al. A mouse model of hepatocellular carcinoma: ectopic expression of fibroblast growth factor 19 in skeletal muscle of transgenic mice. Am. J. Pathol.160(6), 2295–2307 (2002).
  • Benhamouche S, Decaens T, Godard C et al. Apc tumor suppressor gene is the ‘zonation-keeper’ of mouse liver. Dev. Cell.10(6), 759–770 (2006).
  • Sekine S, Lan BY, Bedolli M, Feng S, Hebrok M. Liver-specific loss of β-catenin blocks glutamine synthesis pathway activity and cytochrome p450 expression in mice. Hepatology43(4), 817–825 (2006).
  • Burke ZD, Reed KR, Phesse TJ et al. Liver zonation occurs through a β-catenin-dependent, c-Myc-independent mechanism. Gastroenterology136(7), 2316–2324, e2311–e2313 (2009).
  • Colletti M, Cicchini C, Conigliaro A et al. Convergence of Wnt signaling on the HNF4α-driven transcription in controlling liver zonation. Gastroenterology137(2), 660–672 (2009).
  • Danielson PB. The cytochrome P450 superfamily: biochemistry, evolution and drug metabolism in humans. Curr. Drug Metab.3(6), 561–597 (2002).
  • Kohle C, Bock KW. Coordinate regulation of human drug-metabolizing enzymes, and conjugate transporters by the Ah receptor, pregnane X receptor and constitutive androstane receptor. Biochem. Pharmacol.77(4), 689–699 (2009).
  • Loeppen S, Koehle C, Buchmann A, Schwarz M. A β-catenin-dependent pathway regulates expression of cytochrome P450 isoforms in mouse liver tumors. Carcinogenesis26(1), 239–248 (2005).
  • Gooding PE, Chayen J, Sawyer B, Slater TF. Cytochrome P-450 distribution in rat liver and the effect of sodium phenobarbitone administration. Chem. Biol. Interact.20(3), 299–310 (1978).
  • Bühler R, Lindros KO, Nordling A, Johansson I, Ingelman-Sundberg M. Zonation of cytochrome P450 isozyme expression and induction in rat liver. Eur. J. Biochem.204(1), 407–412 (1992).
  • Hailfinger S, Jaworski M, Braeuning A, Buchmann A, Schwarz M. Zonal gene expression in murine liver: lessons from tumors. Hepatology43(3), 407–414 (2006).
  • Braeuning A, Sanna R, Huelsken J, Schwarz M. Inducibility of drug-metabolizing enzymes by xenobiotics in mice with liver-specific knockout of Ctnnb1. Drug Metab. Dispos.37(5), 1138–1145 (2009).
  • Giera S, Braeuning A, Kohle C et al. Wnt/β-catenin signaling activates and determines hepatic zonal expression of glutathione S-transferases in mouse liver. Toxicol. Sci.115(1), 22–33 (2010).
  • Gebhardt R. Metabolic zonation of the liver: regulation and implications for liver function. Pharmacol. Ther.53(3), 275–354 (1992).
  • Audard V, Grimber G, Elie C et al. Cholestasis is a marker for hepatocellular carcinomas displaying β-catenin mutations. J. Pathol.212(3), 345–352 (2007).
  • Behari J, Yeh TH, Krauland L et al. Liver-specific β-catenin knockout mice exhibit defective bile acid and cholesterol homeostasis and increased susceptibility to diet-induced steatohepatitis. Am. J. Pathol.176(2), 744–753 (2010).
  • Yeh TH, Krauland L, Singh V et al. Liver-specific β-catenin knockout mice have bile canalicular abnormalities, bile secretory defect and intrahepatic cholestasis. Hepatology52(4), 1410–1419 (2010).
  • Amasheh S, Meiri N, Gitter AH et al. Claudin-2 expression induces cation-selective channels in tight junctions of epithelial cells. J. Cell. Science115(Pt 24), 4969–4976 (2002).
  • Son S, Kojima T, Decaens C et al. Knockdown of tight junction protein claudin-2 prevents bile canalicular formation in WIF-B9 cells. Histochem. Cell Biol.131(3), 411–424 (2009).
  • Theard D, Steiner M, Kalicharan D, Hoekstra D, van Ijzendoorn SC. Cell polarity development and protein trafficking in hepatocytes lacking E-cadherin/β-catenin-based adherens junctions. Mol. Biol. Cell18(6), 2313–2321 (2007).
  • Nejak-Bowen KN, Zeng G, Tan X, Cieply B, Monga SP. β-catenin regulates vitamin C biosynthesis and cell survival in murine liver. J. Biol. Chem.284(41), 28115–28127 (2009).
  • Kondo Y, Inai Y, Sato Y et al. Senescence marker protein 30 functions as gluconolactonase in L-ascorbic acid biosynthesis, and its knockout mice are prone to scurvy. Proc. Natl Acad. Sci. USA103(15), 5723–5728 (2006).
  • Rubinfeld B, Souza B, Albert I et al. Association of the APC gene product with β-catenin. Science262(5140), 1731–1734 (1993).
  • Monga SP. Role of Wnt/β-catenin signaling in liver metabolism and cancer. Int. J. Biochem. Cell. Biol. DOI: 10.1016/j.biocel.2009.09.001 (2009) (Epub ahead of print).
  • Takigawa Y, Brown AM. Wnt signaling in liver cancer. Curr. Drug Targets9(11), 1013–1024 (2008).
  • Cavard C, Colnot S, Audard V et al. Wnt/β-catenin pathway in hepatocellular carcinoma pathogenesis and liver physiology. Future Oncol.4(5), 647–660 (2008).
  • Ihara A, Koizumi H, Hashizume R, Uchikoshi T. Expression of epithelial cadherin and α- and β-catenins in nontumoral livers and hepatocellular carcinomas. Hepatology23(6), 1441–1447 (1996).
  • de La Coste A, Romagnolo B, Billuart P et al. Somatic mutations of the β-catenin gene are frequent in mouse and human hepatocellular carcinomas. Proc. Natl Acad. Sci. USA95(15), 8847–8851 (1998).
  • Kondo Y, Kanai Y, Sakamoto M et al. β-catenin accumulation and mutation of exon 3 of the β-catenin gene in hepatocellular carcinoma. Jpn. J. Cancer Res.90(12), 1301–1309 (1999).
  • Legoix P, Bluteau O, Bayer J et al. β-catenin mutations in hepatocellular carcinoma correlate with a low rate of loss of heterozygosity. Oncogene18(27), 4044–4046 (1999).
  • Wong CM, Fan ST, Ng IO. β-catenin mutation and overexpression in hepatocellular carcinoma: clinicopathologic and prognostic significance. Cancer92(1), 136–145 (2001).
  • Kim M, Lee HC, Tsedensodnom O et al. Functional interaction between Wnt3 and Frizzled-7 leads to activation of the Wnt/β-catenin signaling pathway in hepatocellular carcinoma cells. J. Hepatol.48(5), 780–791 (2008).
  • Nhieu JT, Renard CA, Wei Y et al. Nuclear accumulation of mutated β-catenin in hepatocellular carcinoma is associated with increased cell proliferation. Am. J. Pathol.155(3), 703–710 (1999).
  • Huang H, Fujii H, Sankila A et al. β-catenin mutations are frequent in human hepatocellular carcinomas associated with hepatitis C virus infection. Am. J. Pathol.155(6), 1795–1801 (1999).
  • Laurent-Puig P, Legoix P, Bluteau O et al. Genetic alterations associated with hepatocellular carcinomas define distinct pathways of hepatocarcinogenesis. Gastroenterology120(7), 1763–1773 (2001).
  • Cieply B, Zeng G, Proverbs-Singh T, Geller DA, Monga SP. Unique phenotype of hepatocellular cancers with exon-3 mutations in b-catenin gene. Hepatology49(3), 821–831 (2009).
  • Mao TL, Chu JS, Jeng YM, Lai PL, Hsu HC. Expression of mutant nuclear β-catenin correlates with non-invasive hepatocellular carcinoma, absence of portal vein spread, and good prognosis. J. Pathol.193(1), 95–101 (2001).
  • Hsu HC, Jeng YM, Mao TL et al. β-catenin mutations are associated with a subset of low-stage hepatocellular carcinoma negative for hepatitis B virus and with favorable prognosis. Am. J. Pathol.157(3), 763–770 (2000).
  • Yuzugullu H, Benhaj K, Ozturk N et al. Canonical Wnt signaling is antagonized by noncanonical Wnt5a in hepatocellular carcinoma cells. Mol. Cancer8, 90 (2009).
  • Toyama T, Lee HC, Koga H, Wands JR, Kim M. Noncanonical Wnt11 inhibits hepatocellular carcinoma cell proliferation and migration. Mol. Cancer Res.8(2), 254–265 (2010).
  • Colnot S, Decaens T, Niwa-Kawakita M et al. Liver-targeted disruption of APC in mice activates β-catenin signaling and leads to hepatocellular carcinomas. Proc. Natl Acad. Sci. USA101(49), 17216–17221 (2004).
  • Cadoret A, Ovejero C, Terris B et al. New targets of β-catenin signaling in the liver are involved in the glutamine metabolism. Oncogene21(54), 8293–8301 (2002).
  • Harada N, Miyoshi H, Murai N et al. Lack of tumorigenesis in the mouse liver after adenovirus-mediated expression of a dominant stable mutant of β-catenin. Cancer Res.62(7), 1971–1977 (2002).
  • Zhang XF, Tan X, Zeng G et al. Conditional β-catenin loss in mice promotes chemical hepatocarcinogenesis: role of oxidative stress and platelet-derived growth factor receptor α/phosphoinositide 3-kinase signaling. Hepatology52(3), 954–965 (2010).
  • Lucero OM, Dawson DW, Moon RT, Chien AJ. A Re-evaluation of the “oncogenic” nature of Wnt/β-catenin signaling in melanoma and other cancers. Curr. Oncol. Rep.12(5), 314–318 (2010).
  • Behari J, Zeng G, Otruba W et al. R-etodolac decreases β-catenin levels along with survival and proliferation of hepatoma cells. J. Hepatol.46(5), 849–857 (2007).
  • Koch A, Denkhaus D, Albrecht S et al. Childhood hepatoblastomas frequently carry a mutated degradation targeting box of the β-catenin gene. Cancer Res.59(2), 269–273 (1999).
  • Taniguchi K, Roberts LR, Aderca IN et al. Mutational spectrum of β-catenin, AXIN1, and AXIN2 in hepatocellular carcinomas and hepatoblastomas. Oncogene21(31), 4863–4871 (2002).
  • Wei Y, Fabre M, Branchereau S et al. Activation of β-catenin in epithelial and mesenchymal hepatoblastomas. Oncogene19(4), 498–504 (2000).
  • Zimmermann A. The emerging family of hepatoblastoma tumours: from ontogenesis to oncogenesis. Eur. J. Cancer41(11), 1503–1514 (2005).
  • Cairo S, Armengol C, De Reynies A et al. Hepatic stem-like phenotype and interplay of Wnt/β-catenin and Myc signaling in aggressive childhood liver cancer. Cancer Cell14(6), 471–484 (2008).
  • Bioulac-Sage P, Rebouissou S, Thomas C et al. Hepatocellular adenoma subtype classification using molecular markers and immunohistochemistry. Hepatology46(3), 740–748 (2007).
  • Rebouissou S, Amessou M, Couchy G et al. Frequent in-frame somatic deletions activate gp130 in inflammatory hepatocellular tumours. Nature457(7226), 200–204 (2009).
  • Rebouissou S, Couchy G, Libbrecht L et al. The β-catenin pathway is activated in focal nodular hyperplasia but not in cirrhotic FNH-like nodules. J. Hepatol.49(1), 61–71 (2008).
  • Bioulac-Sage P, Laumonier H, Rullier A et al. Over-expression of glutamine synthetase in focal nodular hyperplasia: a novel easy diagnostic tool in surgical pathology. Liver Int.29(3), 459–465 (2009).
  • Essers MA, de Vries-Smits LM, Barker N et al. Functional interaction between β-catenin and FOXO in oxidative stress signaling. Science308(5725), 1181–1184 (2005).
  • Funato Y, Michiue T, Asashima M, Miki H. The thioredoxin-related redox-regulating protein nucleoredoxin inhibits Wnt-β-catenin signalling through dishevelled. Nat. Cell. Biol.8(5), 501–508 (2006).
  • Almeida M, Han L, Martin-Millan M, O’Brien CA, Manolagas SC. Oxidative stress antagonizes Wnt signaling in osteoblast precursors by diverting β-catenin from T cell factor- to forkhead box O-mediated transcription. J. Biol. Chem.282(37), 27298–27305 (2007).
  • Jiang F, Parsons CJ, Stefanovic B. Gene expression profile of quiescent and activated rat hepatic stellate cells implicates Wnt signaling pathway in activation. J. Hepatol.45(3), 401–409 (2006).
  • Cheng JH, She H, Han YP et al. Wnt antagonism inhibits hepatic stellate cell activation and liver fibrosis. Am. J. Physiol. Gastrointest. Liver Physiol.294(1), G39–G49 (2008).
  • Gebhardt R, Hovhannisyan A. Organ patterning in the adult stage: the role of Wnt/β-catenin signaling in liver zonation and beyond. Dev. Dyn.239(1), 45–55 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.