122
Views
33
CrossRef citations to date
0
Altmetric
Review

The role of experimental models in developing new treatments for irritable bowel syndrome

, &
Pages 43-57 | Published online: 10 Jan 2014

References

  • Mayer EA, Collins SM. Evolving pathophysiologic models of functional gastrointestinal disorders. Gastroenterology122(7), 2032–2048 (2002).
  • Camilleri M. Is there a SERT-ain association with IBS? Gut53(10), 1396–1399 (2004).
  • Mayer EA, Naliboff BD, Chang L. Evolving pathophysiological model of functional gastrointestinal disorders: implications for treatment. Eur. J. Surg. Suppl.168(Suppl. 587), 3–9 (2002).
  • Langley CK, Aziz Q, Bountra C et al. Volunteer studies in pain research – opportunities and challenges to replace animal experiments: the report and recommendations of a Focus on Alternatives workshop. Neuroimage42(2), 467–473 (2008).
  • Hohoff C. Anxiety in mice and men: a comparison. J. Neural Transm.116(6), 679–687 (2009).
  • Mogil JS, Simmonds K, Simmonds MJ. Pain research from 1975 to 2007: a categorical and bibliometric meta-trend analysis of every research paper published in the journal, Pain. Pain142(1–2), 48–58 (2009).
  • Kellow JE, Azpiroz F, Delvaux M et al. Principles of applied neurogastroenterology: Physiology/motility-sensation. In: ROME III: The Functional Gastrointestinal Disorders. Degnon Associates, VA, USA, 89–160 (2006).
  • Camilleri M. Scintigraphic biomarkers for colonic dysmotility. Clin. Pharmacol. Ther.87(6), 748–753 (2010).
  • Horikawa Y, Mieno H, Inoue M, Kajiyama G. Gastrointestinal motility in patients with irritable bowel syndrome studied by using radioopaque markers. Scand. J. Gastroenterol.34(12), 1190–1195 (1999).
  • Cann PA, Read NW, Brown C, Hobson N, Holdsworth CD. Irritable bowel syndrome: relationship of disorders in the transit of a single solid meal to symptom patterns. Gut24(5), 405–411 (1983).
  • Bouchoucha M, Devroede G, Dorval E, Faye A, Arhan P, Arsac M. Different segmental transit times in patients with irritable bowel syndrome and ‘normal’ colonic transit time: is there a correlation with symptoms? Tech. Coloproctol.10(4), 287–296 (2006).
  • Camilleri M, Bueno L, De Ponti F, Fioramonti J, Lydiard RB, Tack J. Pharmacological and pharmacokinetic aspects of functional gastrointestinal disorders. Gastroenterology130(5), 1421–1434 (2006).
  • Mertz H. Review article: visceral hypersensitivity. Aliment. Pharmacol. Ther.17(5), 623–633 (2003).
  • Lembo T, Naliboff BD, Matin K et al. Irritable bowel syndrome patients show altered sensitivity to exogenous opioids. Pain87(2), 137–147 (2000).
  • Delvaux M, Louvel D, Lagier E, Scherrer B, Abitbol JL, Frexinos J. The κ agonist fedotozine relieves hypersensitivity to colonic distension in patients with irritable bowel syndrome. Gastroenterology116(1), 38–45 (1999).
  • Dapoigny M, Abitbol JL, Fraitag B. Efficacy of peripheral κ-agonist fedotozine versus placebo in treatment of irritable bowel syndrome: a multicenter dose-response study. Dig. Dis. Sci.40(10), 2244–2249 (1995).
  • Delvaux M, Beck A, Jacob J, Bouzamondo H, Weber FT, Frexinos J. Effect of asimadoline, a k opioid agonist, on pain induced by colonic distension in patients with irritable bowel syndrome. Aliment. Pharmacol. Ther.20(2), 237–246 (2004).
  • Delvaux M, Louvel D, Mamet JP, Campos-Oriola R, Frexinos J. Effect of alosetron on responses to colonic distension in patients with irritable bowel syndrome. Aliment. Pharmacol. Ther.12(9), 849–855 (1998).
  • Camilleri M, Mayer EA, Drossman DA et al. Improvement in pain and bowel function in female irritable bowel patients with alosetron, a 5-HT 3 receptor antagonist. Aliment. Pharmacol. Ther.13(9), 1149–1159 (1999).
  • Thumshirn M, Coulie B, Camilleri M, Zinsmeister AR, Burton DD, Van Dyke C. Effects of alosetron on gastrointestinal transit time and rectal sensation in patients with irritable bowel syndrome. Aliment. Pharmacol. Ther.14(7), 869–878 (2000).
  • Zighelboim J, Talley NJ, Phillips SF, Harmsen WS, Zinsmeister AR. Visceral perception in irritable bowel syndrome. Dig. Dis. Sci.40(4), 819–827 (1995).
  • Steadman CJ, Talley NJ, Phillips SF, Zinsmeister AR. Selective 5-hydroxytryptamine type 3 receptor antagonism with ondansetron as treatment for diarrhea-predominant irritable bowel syndrome: a pilot study. Mayo Clinic Proc.67, 732–738 (1992).
  • Goldberg PA, Kamm MA, Setti-Carraro P, van der Sijp JR, Roth C. Modification of visceral sensitivity and pain in irritable bowel syndrome by 5-HT3 antagonism (ondansetron). Digestion57(6), 478–483 (1996).
  • Hammer J, Phillips SF, Talley NJ, Camilleri M. Effect of a 5-HT3-antagonist (ondansetron) on rectal sensitivity and compliance in health and the irritable bowel syndrome. Aliment. Pharmacol. Ther.7(5), 543–551 (1993).
  • Prior A, Read NW. Reduction of rectal sensitivity and post-prandial motility by granisetron, a 5 HT3-receptor antagonist, in patients with irritable bowel syndrome. Aliment. Pharmacol. Ther.7, 175–180 (1993).
  • Brandt LJ, Prather CM, Quigley EM, Schiller LR, Schoenfeld P, Talley NJ. Systematic review on the management of chronic constipation in North America. Am. J. Gastroenterol.100(Suppl. 1), S5–S21 (2005).
  • Evans BW, Clark WK, Moore DJ, Whorwell PJ. Tegaserod for the treatment of irritable bowel syndrome. Cochrane Database Syst. Rev. (1), CD003960 (2004).
  • Poitras P, Riberdy Poitras M, Plourde V, Boivin M, Verrier P. Evolution of visceral sensitivity in patients with irritable bowel syndrome. Dig. Dis. Sci.47(4), 914–920 (2002).
  • Rajagopalan M, Kurian G, John J. Symptom relief with amitriptyline in the irritable bowel syndrome. J. Gastroenterol. Hepatol.13, 738–741 (1998).
  • Kuiken SD, Tytgat GN, Boeckxstaens GE. The selective serotonin reuptake inhibitor fluoxetine does not change rectal sensistivity and symptoms in patients with irritable bowel syndrome: a double blind, randomized, placebo-controlled study. Clin. Gastroenterol. Hepatol.1(3), 219–228 (2003).
  • Lee KJ, Kim JH, Cho SW. Gabapentin reduces rectal mechanosensitivity and increases rectal compliance in patients with diarrhoea-predominant irritable bowel syndrome. Aliment. Pharmacol. Ther.22(10), 981–988 (2005).
  • Houghton LA, Fell C, Whorwell PJ, Jones I, Sudworth DP, Gale JD. Effect of a second-generation α2δ ligand (pregabalin) on visceral sensation in hypersensitive patients with irritable bowel syndrome. Gut56(9), 1218–1225 (2007).
  • Bradette M, Delvaux M, Staumont G, Fioramonti J, Bueno L, Frexinos J. Octreotide increases thresholds of colonic visceral perception in IBS patients without modifying muscle tone. Dig. Dis. Sci.39(6), 1171–1178 (1994).
  • Klooker TK, Beaumont H, Kuiken SD, Lei A, Boeckxstaens GE. Octreotide as potential treatment for patients with non-constipated irritable bowel syndrome. Gastroenterology128(4 Suppl. 2), A93–A94 (2005).
  • Hasler WL, Soudah HC, Owyang C. A somatostatin analogue inhibits afferent pathways mediating perception of rectal distention. Gastroenterology104(5), 1390–1397 (1993).
  • Schwetz I, Naliboff B, Munakata J et al. Anti-hyperalgesic effect of octreotide in patients with irritable bowel syndrome. Aliment. Pharmacol. Ther.19(1), 123–131 (2004).
  • Dukes GE, Dewit OE, Sanger GJ et al. Lack of effect of the NK3 receptor antagonist, talnetant SB223242 on symptoms of IBS: results of 2 randomized, double-blind, placebo-controlled dose ranging trials. Gastroenterology132(4 Suppl. 2) (2007).
  • Houghton LA, Atkinson W, Lockhart C, Whorwell PJ, Keevil B. Sigmoid-colonic motility in health and irritable bowel syndrome: a role for 5-hydroxytryptamine. Neurogastroenterol. Motil.19(9), 724–731 (2007).
  • Gebhart GJ, Sengupta JN, Gaginella TS. Evaluation of visceral pain. In: Handbook of Methods in Gastrointestinal Pharmacology. CRC Press, FL, USA, 359–374 (1996).
  • De Winter BY, Boeckxstaens GE, De Man JG, Moreels TG, Herman AG, Pelckmans PA. Effects of µ- and κ-opioid receptors on postoperative ileus in rats. Eur. J. Pharmacol.339(1), 63–67 (1997).
  • Friese N, Chevalier E, Angel F et al. Reversal by κ-agonists of peritoneal irritation-induced ileus and visceral pain in rats. Life Sci.60(9), 625–634 (1997).
  • Langlois A, Diop L, Friese N et al. Fedotozine blocks hypersensitive visceral pain in conscious rats: action at peripheral κ-opioid receptors. Eur. J. Pharmacol.324(2–3), 211–217 (1997).
  • Langlois A, Diop L, Rivišre PJ, Pascaud X, Junien JL. Effect of fedotozine on the cardiovascular pain reflex induced by distension of the irritated colon in the anesthetized rat. Eur. J. Pharmacol.271(2–3), 245–251 (1994).
  • Diop L, Riviere PJ, Pascaud X, Junien JL. Peripheral κ-opioid receptors mediate the antinociceptive effect of fedotozine (correction of fetodozine) on the duodenal pain reflex in rat. Eur. J. Pharmacol.271(1), 65–71 (1994).
  • Coffin B, Bouhassira D, Chollet R et al. Effect of the κ agonist fedotozine on perception of gastric distension in healthy humans. Aliment. Pharmacol. Ther.10(6), 919–925 (1996).
  • Pol O, Ferrer I, Puig MM. Diarrhea associated with intestinal inflammation increases the potency of µ and δ opioids on the inhibition of gastrointestinal transit in mice. J. Pharmacol. Exp. Ther.270(1), 386–391 (1994).
  • Pol O, Valle L, Sanchez-Blazquez P, Garzon J, Puig MM. Antibodies and antisense oligodeoxynucleotides to µ-opioid receptors, selectively block the effects of µ-opioid agonists on intestinal transit and permeability in mice. Br. J. Pharmacol.127(2), 397–404 (1999).
  • Topcu I, Ekici NZ, Isik R, Sakarya M. The effects of tramadol and fentanyl on gastrointestinal motility in septic rats. Anesth. Analg.102(3), 876–881 (2006).
  • Arvidsson S, Larsson M, Larsson H, Lindstrom E, Martinez V. Assessment of visceral pain-related pseudo-affective responses to colorectal distension in mice by intracolonic manometric recordings. J. Pain7(2), 108–118 (2006).
  • Larsson M, Arvidsson S, Ekman C, Bayati A. A model for chronic quantitative studies of colorectal sensitivity using balloon distension in conscious mice – effects of opioid receptor agonists. Neurogastroenterol. Motil.15(4), 371–381 (2003).
  • Fendt M, Mucha RF. Anxiogenic-like effects of opiate withdrawal seen in the fear-potentiated startle test, an interdisciplinary probe for drug-related motivational states. Psychopharmacology155(3), 242–250 (2001).
  • Narita M, Kaneko C, Miyoshi K et al. Chronic pain induces anxiety with concomitant changes in opioidergic function in the amygdala. Neuropsychopharmacology31(4), 739–750 (2006).
  • Corazziari E. Role of opioid ligands in the irritable bowel syndrome. Can. J. Gastroenterol.13(Suppl. A), A71–A75 (1999).
  • Gershon MD. Review article: serotonin receptors and transporters – roles in normal and abnormal gastrointestinal motility. Aliment. Pharmacol. Ther.20(Suppl. 7), 3–14 (2004).
  • Bradesi S, Lao L, McLean PG et al. Dual role of 5-HT(3) receptors in a rat model of delayed stress-induced visceral hyperalgesia. Pain130(1), 56–65 (2007).
  • Miranda A, Peles S, McLean PG, Sengupta JN. Effects of the 5-HT3 receptor antagonist, alosetron, in a rat model of somatic and visceral hyperalgesia. Pain126(1–3), 54–63 (2006).
  • Houghton LA, Foster JM, Whorwell PJ. Alosetron, a 5-HT3 receptor antagonist, delays colonic transit in patients with irritable bowel syndrome and healthy volunteers. Aliment. Pharmacol. Ther.14(6), 775–782 (2000).
  • Mayer EA, Berman SM, Derbyshire SWG et al. The effect of the 5-HT 3 receptor antagonist alosetron on regional brain activation in IBS patients is not dependent on activation of nociceptive visceral afferents: a H 2 15 O PET study. Gastroenterology120, A67 (2001).
  • Galligan JJ, Vanner S. Basic and clinical pharmacology of new motility promoting agents. Neurogastroenterol. Motil.17(5), 643–653 (2005).
  • Jiao HM, Xie PY. Tegaserod inhibits noxious rectal distention induced responses and limbic system c-Fos expression in rats with visceral hypersensitivity. World J. Gastroenterol.10(19), 2836–2841 (2004).
  • Liang LX, Zhang Q, Qian W, Hou XH. Antinociceptive property of tegaserod in a rat model of chronic visceral hypersensitivity. Chin. J. Dig. Dis.6(1), 21–25 (2005).
  • Prather CM, Camilleri M, Zinsmeister AR, McKinzie S, Thomforde G. Tegaserod accelerates orocecal transit in patients with constipation-predominant irritable bowel syndrome. Gastroenterology118, 463–468 (2000).
  • Naliboff BD, Chang L, Crowell MD et al. Tegaserod increases sigmoid accommodation in female irritable bowel syndrome (IBS) patients. Gastroenterology126(4 Suppl. 2), A101 (2004).
  • Camilleri M. Review article: tegaserod. Aliment. Pharmacol. Ther.15(3), 277–289 (2001).
  • Kilpatrick L, Labus J, Berman SM et al. A course of tegaserod treatment modulates CNS processing of visceral afferent information. Gastroenterology130(4 Suppl. 2), A289–A290 (2006).
  • Muller-Lissner SA, Fumagalli I, Bardhan KD et al. Tegaserod, a 5-HT(4) receptor partial agonist, relieves symptoms in irritable bowel syndrome patients with abdominal pain, bloating and constipation. Aliment. Pharmacol. Ther.15(10), 1655–1666 (2001).
  • Lindstrom E, Ravnefjord A, Brusberg M, Hjorth S, Larsson H, Martinez V. The selective 5-hydroxytryptamine 1A antagonist, AZD7371 [3(R)-(N,N-dicyclobutylamino)-8-fluoro-3,4-dihydro-2H-1-benzopyran-5-carboxamide (R,R)-tartrate monohydrate] (robalzotan tartrate monohydrate), inhibits visceral pain-related visceromotor, but not autonomic cardiovascular, responses to colorectal distension in rats. J. Pharmacol. Exp. Ther.329(3), 1048–1055 (2009).
  • Drossman DA, Danilewitz M, Naesdal J, Hwang C, Adler J, Silberg DG. Randomized, double-blind, placebo-controlled trial of the 5-HT1A receptor antagonist AZD7371 tartrate monohydrate (robalzotan tartrate monohydrate) in patients with irritable bowel syndrome. Am. J. Gastroenterol.103(10), 2562–2569 (2008).
  • Smedh U, Kaplan JM, Bjorkstrand E, Uvnas-Moberg K. Dual effects of somatostatin analog octreotide on gastric emptying during and after intragastric fill. Am. J. Physiol.277(5 Pt 2), R1291–R1296 (1999).
  • Su X, Burton MB, Gebhart GF. Effects of octreotide on responses to noxious colorectal distension in the rat. Gut48(5), 676–682 (2001).
  • Meyer BM, Werth BA, Beglinger C et al. Role of cholecystokinin in regulation of gastrointestinal motor functions. Lancet2(8653), 12–15 (1989).
  • Chey WD, Beydoun A, Roberts DJ, Hasler WL, Owyang C. Octreotide reduces perception of rectal electrical stimulation by spinal afferent pathway inhibition. Am. J. Physiol. Gastrointest. Liver Physiol.269(6 Pt 1), G821–G826 (1995).
  • Mertz H, Walsh JH, Sytnik B, Mayer EA. The effect of octreotide on human gastric compliance and sensory perception. Neurogastroenterol. Motil.7, 175–185 (1995).
  • Hasler WL, Soudah HC, Owyang C. Somatostatin analog inhibits afferent response to rectal distension in diarrhea-predominant irritable bowel patients. J. Pharmacol. Exp. Ther.268(3), 1206–1211 (1994).
  • Klooker TK, Kuiken SD, Lei A, Boeckxstaens GE. Effect of long-term treatment with octreotide on rectal sensitivity in patients with non-constipated irritable bowel syndrome. Aliment. Pharmacol. Ther.26(4), 605–615 (2007).
  • Varga G, Balint A, Burghardt B, D’Amato M. Involvement of endogenous CCK and CCK1 receptors in colonic motor function. Br. J. Pharmacol.141(8), 1275–1284 (2004).
  • Bonnafous C, Bueno L, Griffin PH, Schneier H, Rovati LC, D’Amato M. Influence of dexloxiglumide on visceromotor and pain response induced by rectal distension in rats. Gastroenterology122(4), A527 (2002).
  • Cremonini F, Camilleri M, McKinzie S et al. Effect of CCK-1 antagonist, dexloxiglumide, in female patients with irritable bowel syndrome: a pharmacodynamic and pharmacogenomic study. Am. J. Gastroenterol.100(3), 652–663 (2005).
  • Sanger GJ. Neurokinin NK1 and NK3 receptors as targets for drugs to treat gastrointestinal motility disorders and pain. Br. J. Pharmacol.141(8), 1303–1312 (2004).
  • Salome N, Stemmelin J, Cohen C, Griebel G. Selective blockade of NK2 or NK3 receptors produces anxiolytic- and antidepressant-like effects in gerbils. Pharmacol. Biochem. Behav.83(4), 533–539 (2006).
  • Diop L, Raymond F, Fargeau H, Petoux F, Chovet M, Doherty AM. Pregabalin (CI-1008) inhibits the trinitrobenzene sulfonic acid-induced chronic colonic allodynia in the rat. J. Pharmacol. Exp. Ther.302(3), 1013–1022 (2002).
  • Ravnefjord A, Brusberg M, Larsson H, Lindstrom E, Martinez V. Effects of pregabalin on visceral pain responses and colonic compliance in rats. Br. J. Pharmacol.155(3), 407–416 (2008).
  • Mayer EA, Collins SM. Evolving pathophysiologic models of functional gastrointestinal disorders. Gastroenterology122(7), 2032–2048 (2002).
  • Sabb FW, Bearden CE, Glahn DC, Parker DS, Freimer N, Bilder RM. A collaborative knowledge base for cognitive phenomics. Mol. Psychiatr.13(4), 350–360 (2008).
  • Saito YA, Mitra N, Mayer EA. Genetic approaches to functional gastrointestinal disorders. Gastroenterology138(4), 1276–1285 (2010).
  • Diatchenko L, Nackley AG, Tchivileva IE, Shabalina SA, Maixner W. Genetic architecture of human pain perception. Trends Genet.23(12), 605–613 (2007).
  • North CS, Hong BA, Alpers DH. Relationship of functional gastrointestinal disorders and psychiatric disorders: Implications for treatment. World J. Gastroenterol.13(14), 2020–2027 (2007).
  • Price DD, Zhou Q, Moshiree B, Robinson ME, Verne GN. Peripheral and central contributions to hyperalgesia in irritable bowel syndrome. J. Pain7(8), 529–535 (2006).
  • Borsook D, Moulton EA, Schmidt KF, Becerra LR. Neuroimaging revolutionizes therapeutic approaches to chronic pain. Mol. Pain3, 25 (2007).
  • Borsook D, Bleakman D, Hargreaves R, Upadhyay J, Schmidt KF, Becerra L. A ‘BOLD’ experiment in defining the utility of fMRI in drug development. Neuroimage42(2), 461–466 (2008).
  • Mayer EA, Aziz Q, Coen S et al. Brain imaging approaches to the study of functional GI disorders: a Rome working team report. Neurogastroenterol. Motil.21(6), 579–596 (2009).
  • Traub RJ, Silva E, Gebhart GF, Solodkin A. Noxious colorectal distention induced-c-Fos protein in limbic brain structures in the rat. Neurosci. Lett.215(3), 165–168 (1996).
  • Stam R, Ekkelenkamp K, Frankhuijzen AC, Bruijnzeel AW, Akkermans LM, Wiegant VM. Long-lasting changes in central nervous system responsivity to colonic distention after stress in rats. Gastroenterology123(4), 1216–1225 (2002).
  • Monnikes H, Ruter J, Konig M et al. Differential induction of c-Fos expression in brain nuclei by noxious and non-noxious colonic distension: role of afferent C-fibers and 5-HT3 receptors. Brain Res.966(2), 253–264 (2003).
  • Martinez V, Wang L, Tache Y. Proximal colon distension induces Fos expression in the brain and inhibits gastric emptying through capsaicin-sensitive pathways in conscious rats. Brain Res.1086(1), 168–180 (2006).
  • Monnikes H, Ruter J, Konig M et al. Differential induction of c-Fos expression in brain nuclei by noxious and non-noxious colonic distension: role of afferent C-fibers and 5-HT3 receptors. Brain Res.21(966), 253–264 (2003).
  • Lazovic J, Wrzos HF, Yang QX et al. Regional activation in the rat brain during visceral stimulation detected by c-Fos expression and fMRI. Neurogastroenterol. Motil.17(4), 548–556 (2005).
  • Zhai QZ, Traub RJ. The NMDA receptor antagonist MK-801 attenuates c-Fos expression in the lumbosacral spinal cord following repetitive noxious and non-noxious colorectal distention. Pain83(2), 321–329 (1999).
  • Traub RJ, Stitt S, Gebhart GF. Attenuation of c-Fos expression in the rat lumbosacral spinal cord by morphine or tramadol following noxious colorectal distention. Brain Res.701(1–2), 175–182 (1995).
  • Kozlowski CM, Green A, Grundy D, Boissonade FM, Bountra C. The 5-HT 3 receptor antagonist alosetron inhibits the colorectal distention induced depressor response and spinal c-Fos expression in the anaesthetised rat. Gut46(4), 474–480 (2000).
  • Gao J, Wu X, Owyang C, Li Y. Enhanced responses of the anterior cingulate cortex neurones to colonic distension in viscerally hypersensitive rats. J. Physiol.570(Pt 1), 169–183 (2006).
  • Al-Chaer ED, Lawand NB, Westlund KN, Willis WD. Visceral nociceptive input into the ventral posterolateral nucleus of the thalamus: a new function for the dorsal column pathway. J. Neurophysiol.76(4), 2661–2674 (1996).
  • Ohashi K, Ichikawa K, Chen L, Callahan M, Zasadny K, Kurebayashi Y. MicroPET detection of regional brain activation induced by colonic distention in a rat model of visceral hypersensitivity. J. Vet. Med. Sci.70(1), 43–49 (2008).
  • Wang Z, Bradesi S, Maarek J-MI et al. Regional brain activation in conscious, unrestrained rats in response to visceral pain. Pain138(1), 233–243 (2008).
  • Wang Z, Guo Y, Bradesi S et al. Sex differences in functional brain activation during noxious visceral stimulation in rats. Pain145(1–2), 120–128 (2009).
  • Craig AD. A rat is not a monkey is not a human: comment on Mogil (Nature Rev. Neurosci. 10, 283–294 (2009)). Nat. Rev. Neurosci.10(6), 466 (2009).
  • Bradesi S, Eutamene H, Fioramonti J, Bueno L. Acute restraint stress activates functional NK1 receptor in the colon of female rats: involvement of steroids. Gut50(3), 349–354 (2002).
  • Bradesi S, Schwetz I, Ennes HS et al. Repeated exposure to water avoidance stress in rats: A new model for sustained visceral hyperalgesia. Am. J. Physiol. Gastrointest. Liver Physiol.289(1), G42–G53 (2005).
  • LaGraize SC, Borzan J, Peng YB, Fuchs PN. Selective regulation of pain affect following activation of the opioid anterior cingulate cortex system. Exp. Neurol.197(1), 22–30 (2006).
  • Peyron R, Laurent B, Garcia-Larrea L. Functional imaging of brain responses to pain. A review and meta-analysis (2000). Neurophysiol. Clin.30(5), 263–288 (2000).
  • Berman SM, Naliboff BD, Suyenobu B et al. Sex differences in regional brain response to aversive pelvic visceral stimuli. Am. J. Physiol. Regul. Integr. Comp. Physiol.291(2), R268–R276 (2006).
  • Naliboff BD, Berman S, Chang L et al. Sex-related differences in IBS patients: central processing of visceral stimuli. Gastroenterology124(7), 1738–1747 (2003).
  • Berman S, Munakata J, Naliboff BD et al. Gender differences in regional brain response to visceral pressure in IBS patients. Eur. J. Pain4(2), 157–172 (2000).
  • Wang Z, Bradesi S, Maarek JM et al. Regional brain activation in conscious, nonrestrained rats in response to noxious visceral stimulation. Pain138(1), 233–243 (2008).
  • Wang Z BS, Charles J, Pang R et al. Assessment of functional brain activation in expectation of visceral pain in a rat step-down passive avoidance model. Gastroenterology134(4 Suppl. 1), A-120 (2008).
  • Berman SM, Naliboff BD, Suyenobu B et al. Reduced brainstem inhibition during anticipated pelvic visceral pain correlates with enhanced brain response to the visceral stimulus in women with irritable bowel syndrome. J. Neurosci.28(2), 349–359 (2008).
  • Sivarao DV, Langdon S, Bernard C, Lodge N. Colorectal distension-induced pseudoaffective changes as indices of nociception in the anesthetized female rat: morphine and strain effects on visceral sensitivity. J. Pharmacol. Toxicol. Methods56(1), 43–50 (2007).
  • Gibney SM, Gosselin RD, Dinan TG, Cryan JF. Colorectal distension-induced prefrontal cortex activation in the Wistar-Kyoto rat: implications for irritable bowel syndrome. Neuroscience165(3), 675–683 (2010).
  • Irwin C, Falsetti SA, Lydiard RB, Ballenger JC, Brock CD, Brener W. Comorbidity of posttraumatic stress disorder and irritable bowel syndrome. J. Clin. Psychiatr.57(12), 576–578 (1996).
  • Levy RL, Cain KC, Jarrett M, Heitkemper MM. The relationship between daily life stress and gastrointestinal symptoms in women with irritable bowel syndrome. J. Behav. Med.20(2), 177–193 (1997).
  • Ross CA. Childhood sexual abuse and psychosomatic symptoms in irritable bowel syndrome. J. Child. Sex. Abus.14(1), 27–38 (2005).
  • Walker EA, Katon WJ, Roy-Byrne PP, Jemelka RP, Russo J. Histories of sexual victimization in patients with irritable bowel syndrome or inflammatory bowel disease. Am. J. Psychiatr.150, 1502–1506 (1993).
  • Walter SA, Aardal-Eriksson E, Thorell LH, Bodemar G, Hallbook O. Pre-experimental stress in patients with irritable bowel syndrome: high cortisol values already before symptom provocation with rectal distensions. Neurogastroenterol. Motil.18(12), 1069–1077 (2006).
  • Posserud I, Agerforz P, Ekman R, Bjornsson ES, Abrahamsson H, Simren M. Altered visceral perceptual and neuroendocrine response in patients with irritable bowel syndrome during mental stress. Gut53(8), 1102–1108 (2004).
  • Dickhaus B, Mayer EA, Firooz N et al. Irritable bowel syndrome patients show enhanced modulation of visceral perception by auditory stress. Am. J. Gastroenterol.98(1), 135–143 (2003).
  • Mayer EA, Naliboff BD, Chang L, Coutinho SV. Stress and the gastrointestinal tract: V. Stress and irritable bowel syndrome. Am. J. Physiol. Gastrointest. Liver Physiol.280(4), G519–G524 (2001).
  • Murray CD, Flynn J, Ratcliffe L, Jacyna MR, Kamm MA, Emmanuel AV. Effect of acute physical and psychological stress on gut autonomic innervation in irritable bowel syndrome. Gastroenterology127(6), 1695–1703 (2004).
  • Wang Z, Pang RD, Guo Y, Bradesi S, Mayer EA, Holschneider DP. Functional brain mapping of visceral hypersensitivity induced by chronic water avoidance stress in rats. Presented at: Annual Meeting of the Society for Neuroscience. San Diego, CA, USA, 13–17 November 2010 (Abstract 682.11/UU3).
  • McIntosh AR, Gonzalez-Lima F. Large-scale functional connectivity in associate learning: Interrelations of the rat auditory, visual, and limbic systems. J. Neurophysiol.80(6), 3148–3162 (1998).
  • Labus JS, Naliboff BN, Fallon J et al. Sex differences in brain activity during aversive visceral stimulation and its expectation in patients with chronic abdominal pain: a network analysis. Neuroimage41(3), 1032–1043 (2008).
  • Borsook D, Becerra L. Phenotyping central nervous system circuitry in chronic pain using functional MRI: considerations and potential implications in the clinic. Curr. Pain Headache Rep.11(3), 201–207 (2007).
  • Wise RG, Tracey I. The role of fMRI in drug discovery. J. Magn. Reson. Imaging23(6), 862–876 (2006).
  • Hess A, Sergejeva M, Budinsky L, Zeilhofer HU, Brune K. Imaging of hyperalgesia in rats by functional MRI. Eur. J. Pain11(1), 109–119 (2007).
  • Becerra L, Harter K, Gonzalez RG, Borsook D. Functional magnetic resonance imaging measures of the effects of morphine on central nervous system circuitry in opioid-naive healthy volunteers. Anesth. Analg.103(1), 208–216 (2006).
  • Moylan Governo RJ, Morris PG, Prior MJ, Marsden CA, Chapman V. Capsaicin-evoked brain activation and central sensitization in anaesthetised rats: a functional magnetic resonance imaging study. Pain126(1–3), 35–45 (2006).
  • Tuor UI, McKenzie E, Tomanek B. Functional magnetic resonance imaging of tonic pain and vasopressor effects in rats. Magn. Reson. Imaging20(10), 707–712 (2002).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.