209
Views
15
CrossRef citations to date
0
Altmetric
Review

New molecular insights into inflammatory bowel disease-induced diarrhea

, &
Pages 615-625 | Published online: 10 Jan 2014

References

  • Gismera CS, Aladren BS. Inflammatory bowel diseases: a disease(s) of modern times? Is incidence still increasing? World J. Gastroenterol.14(36), 5491–5498 (2008).
  • Shah SB, Hanauer SB. Treatment of diarrhea in patients with inflammatory bowel disease: concepts and cautions. Rev. Gastroenterol. Disord.7(Suppl. 3), S3–S10 (2007).
  • Payne CM, Fass R, Bernstein H et al. Pathogenesis of diarrhea in the adult: diagnostic challenges and life-threatening conditions. Eur. J. Gastroenterol. Hepatol.18(10), 1047–1051 (2006).
  • Seidler U, Lenzen H, Cinar A, Tessema T, Bleich A, Riederer B. Molecular mechanisms of disturbed electrolyte transport in intestinal inflammation. Ann. NY Acad. Sci.1072, 262–275 (2006).
  • Xavier RJ, Podolsky DK. Unravelling the pathogenesis of inflammatory bowel disease. Nature448(7152), 427–434 (2007).
  • Keighley MR, Stockbrugger RW. Inflammatory bowel disease. Aliment. Pharmacol. Ther.18(Suppl. 3), 66–70 (2003).
  • Binder HJ. Mechanisms of diarrhea in inflammatory bowel diseases. Ann. NY Acad. Sci.1165, 285–293 (2009).
  • Field M. Intestinal ion transport and the pathophysiology of diarrhea. J. Clin. Invest.111(7), 931–943 (2003).
  • Ivanov AI, Parkos CA, Nusrat A. Cytoskeletal regulation of epithelial barrier function during inflammation. Am. J. Pathol.177(2), 512–524 (2010).
  • Schulzke JD, Ploeger S, Amasheh M et al. Epithelial tight junctions in intestinal inflammation. Ann. NY Acad. Sci.1165, 294–300 (2009).
  • Mankertz J, Schulzke JD. Altered permeability in inflammatory bowel disease: pathophysiology and clinical implications. Curr. Opin. Gastroenterol.23(4), 379–383 (2007).
  • Harris J, Shields R. Absorption and secretion of water and electrolytes by the intact human colon in diffuse untreated proctocolitis. Gut11(1), 27–33 (1970).
  • Rask-Madsen J, Hammersgaard EA, Knudsen E. Rectal electrolyte transport and mucosal permeability in ulcerative colitis and Crohn’s disease. J. Lab. Clin. Med.81(3), 342–353 (1973).
  • Rask-Madsen J, Jensen PB. Electrolyte transport capacity and electrical potentials of the normal and the inflamed human rectum in vivo. Scand. J. Gastroenterol.8(2), 169–175 (1973).
  • Archampong EQ, Harris J, Clark CG. The absorption and secretion of water and electrolytes across the healthy and the diseased human colonic mucosa measured in vitro. Gut13(11), 880–886 (1972).
  • Hawker PC, McKay JS, Turnberg LA. Electrolyte transport across colonic mucosa from patients with inflammatory bowel disease. Gastroenterology79(3), 508–511 (1980).
  • Amasheh S, Barmeyer C, Koch CS et al. Cytokine-dependent transcriptional down-regulation of epithelial sodium channel in ulcerative colitis. Gastroenterology126(7), 1711–1720 (2004).
  • Yang H, Jiang W, Furth EE et al. Intestinal inflammation reduces expression of DRA, a transporter responsible for congenital chloride diarrhea. Am. J. Physiol.275(6 Pt 1), G1445–G1453 (1998).
  • Friswell M, Campbell B, Rhodes J. The role of bacteria in the pathogenesis of inflammatory bowel disease. Gut Liver4(3), 295–306 (2010).
  • Nell S, Suerbaum S, Josenhans C. The impact of the microbiota on the pathogenesis of IBD: lessons from mouse infection models. Nat. Rev. Microbiol.8(8), 564–577 (2010).
  • Hollander D. The intestinal permeability barrier. A hypothesis as to its regulation and involvement in Crohn’s disease. Scand. J. Gastroenterol.27(9), 721–726 (1992).
  • Clayburgh DR, Shen L, Turner JR. A porous defense: the leaky epithelial barrier in intestinal disease. Lab. Invest.84(3), 282–291 (2004).
  • Turner JR. Molecular basis of epithelial barrier regulation: from basic mechanisms to clinical application. Am. J. Pathol.169(6), 1901–1909 (2006).
  • Ivanov AI, Nusrat A, Parkos CA. Endocytosis of the apical junctional complex: mechanisms and possible roles in regulation of epithelial barriers. Bioessays27(4), 356–365 (2005).
  • Laukoetter MG, Bruewer M, Nusrat A. Regulation of the intestinal epithelial barrier by the apical junctional complex. Curr. Opin. Gastroenterol.22(2), 85–89 (2006).
  • Madara JL. Warner-Lambert/Parke-Davis Award lecture. Pathobiology of the intestinal epithelial barrier. Am. J. Pathol.137(6), 1273–1281 (1990).
  • Backhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. Host-bacterial mutualism in the human intestine. Science307(5717), 1915–1920 (2005).
  • Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R. Recognition of commensal microflora by Toll-like receptors is required for intestinal homeostasis. Cell118(2), 229–241 (2004).
  • Andoh A, Benno Y, Kanauchi O, Fujiyama Y. Recent advances in molecular approaches to gut microbiota in inflammatory bowel disease. Curr. Pharm. Des.15(18), 2066–2073 (2009).
  • Qin J, Li R, Raes J et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature464(7285), 59–65 (2010).
  • Salzman NH, de Jong H, Paterson Y, Harmsen HJ, Welling GW, Bos NA. Analysis of 16S libraries of mouse gastrointestinal microflora reveals a large new group of mouse intestinal bacteria. Microbiology148(Pt 11), 3651–3660 (2002).
  • Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl Acad. Sci. USA104(34), 13780–13785 (2007).
  • Chapman-Kiddell CA, Davies PS, Gillen L, Radford-Smith GL. Role of diet in the development of inflammatory bowel disease. Inflamm. Bowel Dis.16(1), 137–151 (2010).
  • Mutlu E, Keshavarzian A, Engen P, Forsyth CB, Sikaroodi M, Gillevet P. Intestinal dysbiosis: a possible mechanism of alcohol-induced endotoxemia and alcoholic steatohepatitis in rats. Alcohol Clin. Exp. Res.33(10), 1836–1846 (2009).
  • Gophna U, Sommerfeld K, Gophna S, Doolittle WF, Veldhuyzen van Zanten SJ. Differences between tissue-associated intestinal microfloras of patients with Crohn’s disease and ulcerative colitis. J. Clin. Microbiol.44(11), 4136–4141 (2006).
  • Bibiloni R, Mangold M, Madsen KL, Fedorak RN, Tannock GW. The bacteriology of biopsies differs between newly diagnosed, untreated, Crohn’s disease and ulcerative colitis patients. J. Med. Microbiol.55(Pt 8), 1141–1149 (2006).
  • Kassinen A, Krogius-Kurikka L, Makivuokko H et al. The fecal microbiota of irritable bowel syndrome patients differs significantly from that of healthy subjects. Gastroenterology133(1), 24–33 (2007).
  • Othman M, Aguero R, Lin HC. Alterations in intestinal microbial flora and human disease. Curr. Opin. Gastroenterol.24(1), 11–16 (2008).
  • Hoffmann C, Hill DA, Minkah N et al. Community-wide response of the gut microbiota to enteropathogenic Citrobacter rodentium infection revealed by deep sequencing. Infect. Immun.77(10), 4668–4678 (2009).
  • Lupp C, Robertson ML, Wickham ME et al. Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe2(2), 119–129 (2007).
  • Stecher B, Robbiani R, Walker AW et al.Salmonella enterica serovar typhimurium exploits inflammation to compete with the intestinal microbiota. PLoS Biol.5(10), 2177–2189 (2007).
  • Heimesaat MM, Fischer A, Siegmund B et al. Shift towards pro-inflammatory intestinal bacteria aggravates acute murine colitis via Toll-like receptors 2 and 4. PLoS One2(7), e662 (2007).
  • Garrett WS, Gallini CA, Yatsunenko T et al.Enterobacteriaceae act in concert with the gut microbiota to induce spontaneous and maternally transmitted colitis. Cell Host Microbe8(3), 292–300 (2010).
  • Walk ST, Blum AM, Ewing SA, Weinstock JV, Young VB. Alteration of the murine gut microbiota during infection with the parasitic helminth Heligmosomoides polygyrus. Inflamm. Bowel Dis.16(11), 1841–1849 (2010).
  • Willing BP, Dicksved J, Halfvarson J et al. A pyrosequencing study in twins shows that gastrointestinal microbial profiles vary with inflammatory bowel disease phenotypes. Gastroenterology139(6), 1844–1854 (2010).
  • Uronis JM, Arthur JC, Keku T et al. Gut microbial diversity is reduced by the probiotic VSL#3 and correlates with decreased TNBS-induced colitis. Inflamm. Bowel Dis.17(1), 289–297 (2010).
  • Rose DJ, Venema K, Keshavarzian A, Hamaker BR. Starch-entrapped microspheres show a beneficial fermentation profile and decrease in potentially harmful bacteria during in vitro fermentation in faecal microbiota obtained from patients with inflammatory bowel disease. Br. J. Nutr.103(10), 1514–1524 (2010).
  • Komiyama Y, Andoh A, Fujiwara D et al. New prebiotics from rice bran ameliorate inflammation in murine colitis models through the modulation of intestinal homeostasis and the mucosal immune system. Scand. J. Gastroenterol.46(1), 40–52 (2010).
  • Petersen AM, Nielsen EM, Litrup E, Brynskov J, Mirsepasi H, Krogfelt KA. A phylogenetic group of Escherichia coli associated with active left-sided inflammatory bowel disease. BMC Microbiol.9, 171 (2009).
  • Packey CD, Sartor RB. Commensal bacteria, traditional and opportunistic pathogens, dysbiosis and bacterial killing in inflammatory bowel diseases. Curr. Opin. Infect. Dis.22(3), 292–301 (2009).
  • Chow J, Mazmanian SK. A pathobiont of the microbiota balances host colonization and intestinal inflammation. Cell Host Microbe7(4), 265–276 (2010).
  • Sokol H, Seksik P, Furet JP et al. Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflamm. Bowel Dis.15(8), 1183–1189 (2009).
  • Sokol H, Pigneur B, Watterlot L et al.Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl Acad. Sci. USA105(43), 16731–16736 (2008).
  • Darfeuille-Michaud A, Neut C, Barnich N et al. Presence of adherent Escherichia coli strains in ileal mucosa of patients with Crohn’s disease. Gastroenterology115(6), 1405–1413 (1998).
  • Boudeau J, Glasser AL, Masseret E, Joly B, Darfeuille-Michaud A. Invasive ability of an Escherichia coli strain isolated from the ileal mucosa of a patient with Crohn’s disease. Infect. Immun.67(9), 4499–4509 (1999).
  • Lodes MJ, Cong Y, Elson CO et al. Bacterial flagellin is a dominant antigen in Crohn disease. J. Clin. Invest.113(9), 1296–1306 (2004).
  • Miller H, Zhang J, Kuolee R, Patel GB, Chen W. Intestinal M cells: the fallible sentinels? World J. Gastroenterol.13(10), 1477–1486 (2007).
  • Garside P, Millington O, Smith KM. The anatomy of mucosal immune responses. Ann. NY Acad. Sci.1029, 9–15 (2004).
  • Lamb-Rosteski JM, Kalischuk LD, Inglis GD, Buret AG. Epidermal growth factor inhibits Campylobacter jejuni-induced claudin-4 disruption, loss of epithelial barrier function, and Escherichia coli translocation. Infect. Immun.76(8), 3390–3398 (2008).
  • Rhee SH, Im E, Riegler M, Kokkotou E, O’Brien M, Pothoulakis C. Pathophysiological role of Toll-like receptor 5 engagement by bacterial flagellin in colonic inflammation. Proc. Natl Acad. Sci. USA102(38), 13610–13615 (2005).
  • Martin HM, Campbell BJ, Hart CA et al. Enhanced Escherichia coli adherence and invasion in Crohn’s disease and colon cancer. Gastroenterology127(1), 80–93 (2004).
  • Geier MS, Butler RN, Howarth GS. Inflammatory bowel disease: current insights into pathogenesis and new therapeutic options; probiotics, prebiotics and synbiotics. Int. J. Food Microbiol.115(1), 1–11 (2007).
  • van Vliet MJ, Harmsen HJ, de Bont ES, Tissing WJ. The role of intestinal microbiota in the development and severity of chemotherapy-induced mucositis. PLoS Pathog.6(5), e1000879 (2010).
  • Hooper LV, Gordon JI. Commensal host-bacterial relationships in the gut. Science292(5519), 1115–1118 (2001).
  • Blumberg RS, Li L, Nusrat A, Parkos CA, Rubin DC, Carrington JL. Recent insights into the integration of the intestinal epithelium within the mucosal environment in health and disease. Mucosal Immunol.1(5), 330–334 (2008).
  • Turner JR. Intestinal mucosal barrier function in health and disease. Nat. Rev. Immunol.9(11), 799–809 (2009).
  • Murphy MS, Eastham EJ, Nelson R, Pearson AD, Laker MF. Intestinal permeability in Crohn’s disease. Arch. Dis. Child64(3), 321–325 (1989).
  • Wyatt J, Vogelsang H, Hubl W, Waldhoer T, Lochs H. Intestinal permeability and the prediction of relapse in Crohn’s disease. Lancet341(8858), 1437–1439 (1993).
  • Zeissig S, Burgel N, Gunzel D et al. Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn’s disease. Gut56(1), 61–72 (2007).
  • Rosenstiel P, Fantini M, Brautigam K et al. TNF-α and IFN-γ regulate the expression of the NOD2 (CARD15) gene in human intestinal epithelial cells. Gastroenterology124(4), 1001–1009 (2003).
  • Buhner S, Buning C, Genschel J et al. Genetic basis for increased intestinal permeability in families with Crohn’s disease: role of CARD15 3020insC mutation? Gut55(3), 342–347 (2006).
  • D’Inca R, Annese V, di Leo V et al. Increased intestinal permeability and NOD2 variants in familial and sporadic Crohn’s disease. Aliment. Pharmacol. Ther.23(10), 1455–1461 (2006).
  • Musch MW, Clarke LL, Mamah D et al. T cell activation causes diarrhea by increasing intestinal permeability and inhibiting epithelial Na+/K+-ATPase. J. Clin. Invest.110(11), 1739–1747 (2002).
  • Clayburgh DR, Barrett TA, Tang Y et al. Epithelial myosin light chain kinase-dependent barrier dysfunction mediates T cell activation-induced diarrhea in vivo. J. Clin. Invest.115(10), 2702–2715 (2005).
  • Clayburgh DR, Musch MW, Leitges M, Fu YX, Turner JR. Coordinated epithelial NHE3 inhibition and barrier dysfunction are required for TNF-mediated diarrhea in vivo. J. Clin. Invest.116(10), 2682–2694 (2006).
  • Mauri DN, Ebner R, Montgomery RI et al. LIGHT, a new member of the TNF superfamily, and lymphotoxin α are ligands for herpesvirus entry mediator. Immunity8(1), 21–30 (1998).
  • Tang Y, Clayburgh DR, Mittal N et al. Epithelial NF-κB enhances transmucosal fluid movement by altering tight junction protein composition after T cell activation. Am. J. Pathol.176(1), 158–167 (2010).
  • Amin MR, Orenuga T, Tyagi S, Dudeja PK, Ramaswamy K, Malakooti J. Tumor necrosis factor-α represses the expression of NHE2 through NF-κB activation in intestinal epithelial cell model, C2BBe1. Inflamm. Bowel Dis.17(3), 720–731 (2010).
  • Carthew RW. Gene regulation by microRNAs. Curr. Opin. Genet. Dev.16(2), 203–208 (2006).
  • Ambros V. The functions of animal microRNAs. Nature431(7006), 350–355 (2004).
  • Krutzfeldt J, Stoffel M. MicroRNAs: a new class of regulatory genes affecting metabolism. Cell Metab.4(1), 9–12 (2006).
  • Krutzfeldt J, Poy MN, Stoffel M. Strategies to determine the biological function of microRNAs. Nat. Genet.38(Suppl.), S14–S19 (2006).
  • Gauthier BR, Wollheim CB. MicroRNAs: ‘ribo-regulators’ of glucose homeostasis. Nat. Med.12(1), 36–38 (2006).
  • Fasseu M, Treton X, Guichard C et al. Identification of restricted subsets of mature microRNA abnormally expressed in inactive colonic mucosa of patients with inflammatory bowel disease. PLoS One5(10), e13160 (2010).
  • Wu F, Zhang S, Dassopoulos T et al. Identification of microRNAs associated with ileal and colonic Crohn’s disease. Inflamm. Bowel Dis.16(10), 1729–1738 (2010).
  • Wu F, Zikusoka M, Trindade A et al. MicroRNAs are differentially expressed in ulcerative colitis and alter expression of macrophage inflammatory peptide-2 α. Gastroenterology135(5), 1624–1635.e1624 (2008).
  • Tang Y, Banan A, Forsyth CB et al. Effect of alcohol on miR-212 expression in intestinal epithelial cells and its potential role in alcoholic liver disease. Alcohol Clin. Exp. Res.32(2), 355–364 (2008).
  • Blow MJ, Grocock RJ, van Dongen S et al. RNA editing of human microRNAs. Genome Biol.7(4), R27 (2006).
  • Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res.34(Database issue), D140–D144 (2006).
  • Kapeller J, Houghton LA, Monnikes H et al. First evidence for an association of a functional variant in the microRNA-510 target site of the serotonin receptor-type 3E gene with diarrhea predominant irritable bowel syndrome. Hum. Mol. Genet.17(19), 2967–2977 (2008).
  • Cho JH, Brant SR. Recent insights into the genetics of inflammatory bowel disease. Gastroenterology140(6), 1704–1712 (2010).
  • Hering NA, Schulzke JD. Therapeutic options to modulate barrier defects in inflammatory bowel disease. Dig. Dis.27(4), 450–454 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.