228
Views
5
CrossRef citations to date
0
Altmetric
Review

Nanotechnology advances in upper gastrointestinal, liver and pancreatic cancer

, , &
Pages 343-356 | Published online: 10 Jan 2014

References

  • British Standards Institute. PAS 136. Terminology for Nanomaterials. BSI Standards, London, UK (2007).
  • Brenner H, Arndt V, Stegmaier C, Ziegler H, Rothenbacher D. Is Helicobacter pylori infection a necessary condition for noncardia gastric cancer? Am. J. Epidemiol. 159(3), 252–258 (2004).
  • Smith MG, Hold GL, Tahara E, El-Omar EM. Cellular and molecular aspects of gastric cancer. World J. Gastroenterol. 12(19), 2979–2990 (2006).
  • Wong BC, Lam SK, Wong WM et al.; China Gastric Cancer Study Group. Helicobacter pylori eradication to prevent gastric cancer in a high-risk region of China: a randomized controlled trial. JAMA 291(2), 187–194 (2004).
  • Malfertheiner P, Sipponen P, Naumann M et al.; Lejondal H. pylori–Gastric Cancer Task Force. Helicobacter pylori eradication has the potential to prevent gastric cancer: a state-of-the-art critique. Am. J. Gastroenterol. 100(9), 2100–2115 (2005).
  • Neoptolemos JP, Stocken DD, Bassi C et al.; European Study Group for Pancreatic Cancer. Adjuvant chemotherapy with fluorouracil plus folinic acid vs gemcitabine following pancreatic cancer resection: a randomized controlled trial. JAMA 304(10), 1073–1081 (2010).
  • Cunningham D, Chau I, Stocken DD et al. Phase III randomized comparison of gemcitabine versus gemcitabine plus capecitabine in patients with advanced pancreatic cancer. J. Clin. Oncol. 27(33), 5513–5518 (2009).
  • Salata O. Applications of nanoparticles in biology and medicine. J. Nanobiotechnology 2(1), 3 (2004).
  • Barbu E, Verestiuc L, Nevell TG, Tsibouklis J. Polymeric materials for ophthalmic drug delivery: trends and perspectives. J. Mater. Chem. 16(34), 3439 (2006).
  • Liu S, Lu F, Xing R, Zhu JJ. Structural effects of Fe3O4 nanocrystals on peroxidase-like activity. Chemistry 17(2), 620–625 (2011).
  • Adiga SP, Curtiss LA, Elam JW et al. Nanoporous materials for biomedical devices. JOM-J. Min. Met. Mat. S. 60(3), 26–32 (2008).
  • Barreto JA, O’Malley W, Kubeil M, Graham B, Stephan H, Spiccia L. Nanomaterials: applications in cancer imaging and therapy. Adv. Mater. Weinheim 23(12), H18–H40 (2011).
  • Lu J, Liong M, Li Z, Zink JI, Tamanoi F. Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals. Small 6(16), 1794–1805 (2010).
  • Wang H, Yang R, Yang L, Tan W. Nucleic acid conjugated nanomaterials for enhanced molecular recognition. ACS Nano 3(9), 2451–2460 (2009).
  • Nel AE, Mädler L, Velegol D et al. Understanding biophysicochemical interactions at the nano–bio interface. Nat. Mater. 8(7), 543–557 (2009).
  • Pradell T, Molera J, Bayés C, Roura P. Luster decoration of ceramics: mechanisms of metallic luster formation. Appl. Phys. A. 83(2), 203–208 (2006).
  • Freestone I, Meeks N, Sax M. The Lycurgus cup – a Roman nanotechnology. Gold Bull. 40(4), 270–277 (2007).
  • Binnig G, Rohrer H. Scanning tunneling microscopy. IBM J. Res. Dev. 30(4), 355–369 (1986).
  • Gradishar WJ, Tjulandin S, Davidson N et al. Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. J. Clin. Oncol. 23(31), 7794–7803 (2005).
  • Harisinghani MG, Barentsz J, Hahn PF et al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N. Engl. J. Med. 348(25), 2491–2499 (2003).
  • El-Sayed IH. Nanotechnology in head and neck cancer: the race is on. Curr. Oncol. Rep. 12(2), 121–128 (2010).
  • Bhattacharyya S, Kudgus RA, Bhattacharya R, Mukherjee P. Inorganic nanoparticles in cancer therapy. Pharm. Res. 28(2), 237–259 (2011).
  • Bhattacharya R, Mukherjee P. Biological properties of ‘naked’ metal nanoparticles. Adv. Drug Deliv. Rev. 60(11), 1289–1306 (2008).
  • Sakkas LI, Chikanza IC, Vaughan RW, Welsh KI, Panayi GS. Gold induced nephropathy in rheumatoid arthritis and HLA class II genes. Ann. Rheum. Dis. 52(4), 300–301 (1993).
  • Chen YS, Hung YC, Liau I, Huang GS. Assessment of the in vivo toxicity of gold nanoparticles. Nanoscale Res. Lett. 4(8), 858–864 (2009).
  • Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 105(4), 1103–1169 (2005).
  • Widder KJ, Senyei AE, Scarpelli GD. Magnetic microspheres: a model system of site specific drug delivery in vivo. Proc. Soc. Exp. Biol. Med. 158(2), 141–146 (1978).
  • Alexiou C, Schmid RJ, Jurgons R et al. Targeting cancer cells: magnetic nanoparticles as drug carriers. Eur. Biophys. J. 35(5), 446–450 (2006).
  • Xie J, Liu G, Eden HS, Ai H, Chen X. Surface-engineered magnetic nanoparticle platforms for cancer imaging and therapy. Acc. Chem. Res. 44(10), 883–892 (2011).
  • Zuchini R, Tsai HW, Chen CY et al. Electromagnetic thermotherapy using fine needles for hepatoma treatment. Eur. J. Surg. Oncol. 37(7), 604–610 (2011).
  • Singh N, Jenkins GJ, Asadi R, Doak SH. Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano Rev. 1 (2010).
  • Reimer P, Balzer T. Ferucarbotran (Resovist): a new clinically approved RES-specific contrast agent for contrast-enhanced MRI of the liver: properties, clinical development, and applications. Eur. Radiol. 13(6), 1266–1276 (2003).
  • Yaghini E, Seifalian AM, MacRobert AJ. Quantum dots and their potential biomedical applications in photosensitization for photodynamic therapy. Nanomedicine (Lond.) 4(3), 353–363 (2009).
  • Ghaderi S, Ramesh B, Seifalian AM. Fluorescence nanoparticles ‘quantum dots’ as drug delivery system and their toxicity: a review. J. Drug Target. 19(7), 475–486 (2011).
  • Sinha R, Kim GJ, Nie S, Shin DM. Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery. Mol. Cancer Ther. 5(8), 1909–1917 (2006).
  • Olariu CI, Yiu HHP, Bouffier L et al. Multifunctional Fe3O4 nanoparticles for targeted bi-modal imaging of pancreatic cancer. J. Mater. Chem. 21(34), 12650–12659 (2011).
  • Libutti SK, Paciotti GF, Byrnes AA et al. Phase I and pharmacokinetic studies of CYT-6091, a novel PEGylated colloidal gold-rhTNF nanomedicine. Clin. Cancer Res. 16(24), 6139–6149 (2010).
  • Longmire M, Choyke PL, Kobayashi H. Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine (Lond.) 3(5), 703–717 (2008).
  • Devalapally H, Chakilam A, Amiji MM. Role of nanotechnology in pharmaceutical product development. J. Pharm. Sci. 96(10), 2547–2565 (2007).
  • Xu JP, Ji J, Chen WD, Shen JC. Novel biomimetic polymersomes as polymer therapeutics for drug delivery. J. Control. Release 107(3), 502–512 (2005).
  • Lewinski N, Colvin V, Drezek R. Cytotoxicity of nanoparticles. Small 4(1), 26–49 (2008).
  • Zanello LP, Zhao B, Hu H, Haddon RC. Bone cell proliferation on carbon nanotubes. Nano Lett. 6(3), 562–567 (2006).
  • Gannon CJ, Cherukuri P, Yakobson BI et al. Carbon nanotube-enhanced thermal destruction of cancer cells in a noninvasive radiofrequency field. Cancer 110(12), 2654–2665 (2007).
  • Bianco A, Kostarelos K, Prato M. Applications of carbon nanotubes in drug delivery. Curr. Opin. Chem. Biol. 9(6), 674–679 (2005).
  • Lam CW, James JT, McCluskey R, Arepalli S, Hunter RL. A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Crit. Rev. Toxicol. 36(3), 189–217 (2006).
  • Semberova J, De Paoli Lacerda SH, Simakova O, Holada K, Gelderman MP, Simak J. Carbon nanotubes activate blood platelets by inducing extracellular Ca2+ influx sensitive to calcium entry inhibitors. Nano Lett. 9(9), 3312–3317 (2009).
  • Singh P, Gonzalez MJ, Manchester M. Viruses and their uses in nanotechnology. Drug Dev. Res. 67(1), 23–41 (2006).
  • Crosbie EJ, Kitchener HC. Cervarix – a bivalent L1 virus-like particle vaccine for prevention of human papillomavirus type 16- and 18-associated cervical cancer. Expert Opin. Biol. Ther. 7(3), 391–396 (2007).
  • Breitbach CJ, Burke J, Jonker D et al. Intravenous delivery of a multi-mechanistic cancer-targeted oncolytic poxvirus in humans. Nature 477(7362), 99–102 (2011).
  • Marshall E. Gene therapy death prompts review of adenovirus vector. Science 286(5448), 2244–2245 (1999).
  • National Institutes of Health Recombinant DNA Advisory Committee. Assessment of adenoviral vector safety and toxicity: report of the National Institutes of Health Recombinant DNA Advisory Committee. Hum. Gene Ther. 13(1), 3–13 (2002).
  • Hacein-Bey-Abina S, von Kalle C, Schmidt M et al. A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N. Engl. J. Med. 348(3), 255–256 (2003).
  • Thomas CE, Ehrhardt A, Kay MA. Progress and problems with the use of viral vectors for gene therapy. Nat. Rev. Genet. 4(5), 346–358 (2003).
  • Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 113(7), 823–839 (2005).
  • Xia T, Li N, Nel AE. Potential health impact of nanoparticles. Annu. Rev. Public Health 30, 137–150 (2009).
  • Strober W. Trypan blue exclusion test of cell viability. Curr. Protoc. Immunol. Appendix A3B.1–A3B.2 (1997).
  • Marquis BJ, Love SA, Braun KL, Haynes CL. Analytical methods to assess nanoparticle toxicity. Analyst 134(3), 425–439 (2009).
  • Bass DA, Parce JW, Dechatelet LR, Szejda P, Seeds MC, Thomas M. Flow cytometric studies of oxidative product formation by neutrophils: a graded response to membrane stimulation. J. Immunol. 130(4), 1910–1917 (1983).
  • Kattan J, Droz JP, Couvreur P et al. Phase I clinical trial and pharmacokinetic evaluation of doxorubicin carried by polyisohexylcyanoacrylate nanoparticles. Invest. New Drugs 10(3), 191–199 (1992).
  • Moghimi SM, Szebeni J. Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog. Lipid Res. 42(6), 463–478 (2003).
  • Rosenholm JM, Peuhu E, Eriksson JE, Sahlgren C, Lindén M. Targeted intracellular delivery of hydrophobic agents using mesoporous hybrid silica nanoparticles as carrier systems. Nano Lett. 9(9), 3308–3311 (2009).
  • Cho K, Wang X, Nie S, Chen ZG, Shin DM. Therapeutic nanoparticles for drug delivery in cancer. Clin. Cancer Res. 14(5), 1310–1316 (2008).
  • Yuan F, Dellian M, Fukumura D et al. Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res. 55(17), 3752–3756 (1995).
  • Firth JA. Endothelial barriers: from hypothetical pores to membrane proteins. J. Anat. 200(6), 541–548 (2002).
  • Wisse E, Braet F, Luo D et al. Structure and function of sinusoidal lining cells in the liver. Toxicol. Pathol. 24(1), 100–111 (1996).
  • Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature 407(6801), 249–257 (2000).
  • Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol. Rev. 53(2), 283–318 (2001).
  • Perrault SD, Walkey C, Jennings T, Fischer HC, Chan WC. Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett. 9(5), 1909–1915 (2009).
  • Devalapally H, Shenoy D, Little S, Langer R, Amiji M. Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs: part 3. Therapeutic efficacy and safety studies in ovarian cancer xenograft model. Cancer Chemother. Pharmacol. 59(4), 477–484 (2007).
  • Dai J, Nagai T, Wang X, Zhang T, Meng M, Zhang Q. pH-sensitive nanoparticles for improving the oral bioavailability of cyclosporine A. Int. J. Pharm. 280(1–2), 229–240 (2004).
  • Sarkar N, Banerjee J, Hanson AJ et al. Matrix metalloproteinase-assisted triggered release of liposomal contents. Bioconjug. Chem. 19(1), 57–64 (2008).
  • Schiemann BJ, Neil JR, Schiemann WP. SPARC inhibits epithelial cell proliferation in part through stimulation of the transforming growth factor-beta-signaling system. Mol. Biol. Cell 14(10), 3977–3988 (2003).
  • Bhirde AA, Patel V, Gavard J et al. Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery. ACS Nano 3(2), 307–316 (2009).
  • Chen J, Wu H, Han D, Xie C. Using anti-VEGF McAb and magnetic nanoparticles as double-targeting vector for the radioimmunotherapy of liver cancer. Cancer Lett. 231(2), 169–175 (2006).
  • Dancer J, Takei H, Ro JY, Lowery-Nordberg M. Coexpression of EGFR and HER-2 in pancreatic ductal adenocarcinoma: a comparative study using immunohistochemistry correlated with gene amplification by fluorescencent in situ hybridization. Oncol. Rep. 18(1), 151–155 (2007).
  • El-Sayed IH, Huang X, El-Sayed MA. Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett. 239(1), 129–135 (2006).
  • Leamon CP, Reddy JA. Folate-targeted chemotherapy. Adv. Drug Deliv. Rev. 56(8), 1127–1141 (2004).
  • Alexiou C, Schmidt A, Klein R, Hulin P, Bergemann C, Arnold W. Magnetic drug targeting: biodistribution and dependency on magnetic field strength. J. Magn. Magn. Mater. 252, 363–366 (2002).
  • Rosensweig R. Heating magnetic fluid with alternating magnetic field. J. Magn. Magn. Mater. 252, 370–374 (2002).
  • Dennis CL, Jackson AJ, Borchers JA et al. Nearly complete regression of tumors via collective behavior of magnetic nanoparticles in hyperthermia. Nanotechnology 20(39), 395103 (2009).
  • Thiesen B, Jordan A. Clinical applications of magnetic nanoparticles for hyperthermia. Int. J. Hyperthermia 24(6), 467–474 (2008).
  • Ishiyama K, Motoyama S, Tomura N et al. Visualization of lymphatic basin from the tumor using magnetic resonance lymphography with superparamagnetic iron oxide in patients with thoracic esophageal cancer. J. Comput. Assist. Tomogr. 30(2), 270–275 (2006).
  • Nishimura H, Tanigawa N, Hiramatsu M, Tatsumi Y, Matsuki M, Narabayashi I. Preoperative esophageal cancer staging: magnetic resonance imaging of lymph node with ferumoxtran-10, an ultrasmall superparamagnetic iron oxide. J. Am. Coll. Surg. 202(4), 604–611 (2006).
  • Pultrum BB, van der Jagt EJ, van Westreenen HL et al. Detection of lymph node metastases with ultrasmall superparamagnetic iron oxide (USPIO)-enhanced magnetic resonance imaging in oesophageal cancer: a feasibility study. Cancer Imaging 9, 19–28 (2009).
  • Tokuhara T, Tanigawa N, Matsuki M et al. Evaluation of lymph node metastases in gastric cancer using magnetic resonance imaging with ultrasmall superparamagnetic iron oxide (USPIO): diagnostic performance in post-contrast images using new diagnostic criteria. Gastric Cancer 11(4), 194–200 (2008).
  • Parungo CP, Ohnishi S, Kim SW et al. Intraoperative identification of esophageal sentinel lymph nodes with near-infrared fluorescence imaging. J. Thorac. Cardiovasc. Surg. 129(4), 844–850 (2005).
  • Hosein P, Lopes G Jr, Gomez C, Pastorini V. A Phase II trial of nab-paclitaxel (NP) in patients with advanced pancreatic cancer (PC) who have progressed on gemcitabine-based therapy. J. Clin. Oncol. 28(15 Suppl.), 4120 (2010).
  • Sloat BR, Sandoval MA, Li D et al. In vitro and in vivo anti-tumor activities of a gemcitabine derivative carried by nanoparticles. Int. J. Pharm. 409(1–2), 278–288 (2011).
  • Shenoy D, Fu W, Li J et al. Surface functionalization of gold nanoparticles using hetero-bifunctional poly(ethylene glycol) spacer for intracellular tracking and delivery. Int. J. Nanomedicine 1(1), 51–57 (2006).
  • Yang L, Mao H, Cao Z et al. Molecular imaging of pancreatic cancer in an animal model using targeted multifunctional nanoparticles. Gastroenterology 136(5), 1514–25.e2 (2009).
  • Gao X, Cui Y, Levenson RM, Chung LW, Nie S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 22(8), 969–976 (2004).
  • Kim TW, Chung PW, Slowing II, Tsunoda M, Yeung ES, Lin VS. Structurally ordered mesoporous carbon nanoparticles as transmembrane delivery vehicle in human cancer cells. Nano. Lett. 8(11), 3724–3727 (2008).
  • Steinmetz NF, Cho CF, Ablack A, Lewis JD, Manchester M. Cowpea mosaic virus nanoparticles target surface vimentin on cancer cells. Nanomedicine (Lond.) 6(2), 351–364 (2011).
  • Powis G, Kirkpatrick L. Hypoxia inducible factor-1alpha as a cancer drug target. Mol. Cancer Ther. 3(5), 647–654 (2004).
  • Wang K, Ruan J, Qian Q et al. BRCAA1 monoclonal antibody conjugated fluorescent magnetic nanoparticles for in vivo targeted magnetofluorescent imaging of gastric cancer. J. Nanobiotechnol. 9, 23 (2011).
  • Wu Y, Wang W, Chen Y et al. The investigation of polymer–siRNA nanoparticle for gene therapy of gastric cancer in vitro. Int. J. Nanomedicine 5, 129–136 (2010).
  • McElroy M, Kaushal S, Luiken GA et al. Imaging of primary and metastatic pancreatic cancer using a fluorophore-conjugated anti-CA19-9 antibody for surgical navigation. World J. Surg. 32(6), 1057–1066 (2008).
  • Huang M, Qiao Z, Miao F, Jia N, Shen H. Biofunctional magnetic nanoparticles as contrast agents for magnetic resonance imaging of pancreas cancer. Microchim. Acta 167(1-2), 27–34 (2009).
  • Kaushal S, McElroy MK, Luiken GA et al. Fluorophore-conjugated anti-CEA antibody for the intraoperative imaging of pancreatic and colorectal cancer. J. Gastrointest. Surg. 12(11), 1938–1950 (2008).
  • Liu T, Zhang G, Chen YH et al. Tissue specific expression of suicide genes delivered by nanoparticles inhibits gastric carcinoma growth. Cancer Biol. Ther. 5(12), 1683–1690 (2006).
  • Park JO, Stephen Z, Sun C et al. Glypican-3 targeting of liver cancer cells using multifunctional nanoparticles. Mol. Imaging 10(1), 69–77 (2011).
  • Seymour LW, Ferry DR, Kerr DJ et al. Phase II studies of polymer-doxorubicin (PK1, FCE28068) in the treatment of breast, lung and colorectal cancer. Int. J. Oncol. 34(6), 1629–1636 (2009).
  • Haglund C. Tumor marker antigen CA125 in pancreatic cancer: a comparison with CA19-9 and CEA. Br. J. Cancer 54(6), 897–901 (1986).
  • Chanda N, Kattumuri V, Shukla R et al. Bombesin functionalized gold nanoparticles show in vitro and in vivo cancer receptor specificity. Proc. Natl Acad. Sci. USA 107(19), 8760–8765 (2010).
  • Montet X, Weissleder R, Josephson L. Imaging pancreatic cancer with a peptide-nanoparticle conjugate targeted to normal pancreas. Bioconjug. Chem. 17(4), 905–911 (2006).
  • Phillips MA, Gran ML, Peppas NA. Targeted nanodelivery of drugs and diagnostics. Nano. Today 5(2), 143–159 (2010).
  • Bloomston M, Bhardwaj A, Ellison EC, Frankel WL. Epidermal growth factor receptor expression in pancreatic carcinoma using tissue microarray technique. Dig. Surg. 23(1–2), 74–79 (2006).
  • Maeng JH, Lee DH, Jung KH et al. Multifunctional doxorubicin loaded superparamagnetic iron oxide nanoparticles for chemotherapy and magnetic resonance imaging in liver cancer. Biomaterials 31(18), 4995–5006 (2010).
  • Kato K, Chin K, Yoshikawa T et al. Phase II study of NK105, a paclitaxel-incorporating micellar NP, for previously treated advanced or recurrent gastric cancer. Invest. New Drugs doi:10.1007/s10637-011-9709-2 (2011) (Epub ahead of print).
  • Yang J, Li ZH, Zhou JJ et al. Preparation and antitumor effects of nanovaccines with MAGE-3 peptides in transplanted gastric cancer in mice. Chin. J. Cancer 29(4), 359–364 (2010).
  • Li H, Wang J, Zhou T, Zhang Y, Zhang Z. An investigation of the effects of nanosize delivery system for antisense oligonucleotide on esophageal squamous cancer cells. Cancer Biol. Ther. 7(11), 1852–1859 (2008).
  • Stinchcombe TE, Socinski MA, Lee CB et al. Phase I trial of nanoparticle albumin-bound paclitaxel in combination with gemcitabine in patients with thoracic malignancies. J. Thorac. Oncol. 3(5), 521–526 (2008).
  • Ashley CE, Carnes EC, Phillips GK et al. The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers. Nat. Mater. 10(5), 389–397 (2011).
  • Yu H, Zhu G, Xu R, Niu H, Lu Q, Li G. Arterial embolization hyperthermia using As2O3 nanoparticles in VX2 carcinoma-induced liver tumors. PLoS ONE 6(3), e17926 (2011).
  • Li L, Tang F, Liu H et al. In vivo delivery of silica nanorattle encapsulated docetaxel for liver cancer therapy with low toxicity and high efficacy. ACS Nano. 4(11), 6874–6882 (2010).
  • Yong KT, Ding H, Roy I et al. Imaging pancreatic cancer using bioconjugated InP quantum dots. ACS Nano. 3(3), 502–510 (2009).
  • Glazer ES, Massey KL, Zhu C, Curley SA. Pancreatic carcinoma cells are susceptible to noninvasive radio frequency fields after treatment with targeted gold nanoparticles. Surgery 148(2), 319–324 (2010).
  • Glazer ES, Zhu C, Massey KL et al. Noninvasive radiofrequency field destruction of pancreatic adenocarcinoma xenografts treated with targeted gold nanoparticles. Clin. Cancer Res. 16(23), 5712–5721 (2010).
  • Lu J, Li Z, Zink JI, Tamanoi F. In vivo tumor suppression efficacy of mesoporous silica nanoparticles-based drug-delivery system: enhanced efficacy by folate modification. Nanomedicine 8(2), 212–220 (2012).
  • Yang F, Jin C, Yang D et al. Magnetic functionalised carbon nanotubes as drug vehicles for cancer lymph node metastasis treatment. Eur. J. Cancer 47(12), 1873–1882 (2011).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.