109
Views
26
CrossRef citations to date
0
Altmetric
Review

Pathological interactions between hematopoietic stem cells and their niche revealed by mouse models of primary myelofibrosis

, &
Pages 315-334 | Published online: 10 Jan 2014

References

  • Ahmed A, Chang CC. Chronic idiopathic myelofibrosis: clinicopathologic features, pathogenesis, and prognosis. Arch. Pathol. Lab. Med.130(8), 1133–1143 (2006).
  • Dameshek W. Some speculations on the myeloproliferative syndromes. Blood6(4), 372–375 (1951).
  • Tefferi A, Vardiman JW. Classification and diagnosis of myeloproliferative neoplasms: the 2008 World Health Organization criteria and point-of-care diagnostic algorithms. Leukemia22(1), 14–22 (2008).
  • Orazi A, Germing U. The myelodysplastic/myeloproliferative neoplasms: myeloproliferative diseases with dysplastic features. Leukemia22(7), 1308–1319 (2008).
  • Nowell PC, Hungerford DA. Chromosome studies on normal and leukemic human leukocytes. J. Natl Cancer Inst.25, 85–109 (1960).
  • Groffen J, Stephenson JR, Heisterkamp N et al. Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22. Cell36(1), 93–99 (1984).
  • Shtivelman E, Lifshitz B, Gale RP, Canaani E. Fused transcript of abl and bcr genes in chronic myelogenous leukaemia. Nature315(6020), 550–554 (1985).
  • Hallek M, Danhauser-Riedl S, Herbst R et al. Interaction of the receptor tyrosine kinase p145c-kit with the p210bcr/abl kinase in myeloid cells. Br. J. Haematol.94(1), 5–16 (1996).
  • Druker BJ, Tamura S, Buchdunger E et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr–Abl positive cells. Nat. Med.2(5), 561–566 (1996).
  • Tefferi A, Thiele J, Orazi A et al. Proposals and rationale for revision of the World Health Organization diagnostic criteria for polycythemia vera, essential thrombocythemia, and primary myelofibrosis: recommendations from an ad hoc international expert panel. Blood110(4), 1092–1097 (2007).
  • Abdel-Wahab OI, Levine RL. Primary myelofibrosis: update on definition, pathogenesis, and treatment. Annu. Rev. Med. (2008).
  • Barosi G, Hoffman R. Idiopathic myelofibrosis. Semin. Hematol.42(4), 248–258 (2005).
  • Reilly JT. Idiopathic myelofibrosis: pathogenesis to treatment. Hematol. Oncol.24(2), 56–63 (2006).
  • Thiele J, Kvasnicka HM. Myelofibrosis in chronic myeloproliferative disorders – dynamics and clinical impact. Histol. Histopathol.21(12), 1367–1378 (2006).
  • Cervantes F. Myelofibrosis: biology and treatment options. Eur. J. Haematol. Suppl.68, 13–17 (2007).
  • Tefferi A. Primary myelofibrosis. Cancer Treat. Res.142, 29–49 (2008).
  • Lundberg LG, Lerner R, Sundelin P et al. Bone marrow in polycythemia vera, chronic myelocytic leukemia, and myelofibrosis has an increased vascularity. Am. J. Pathol.157(1), 15–19 (2000).
  • Visani G, Finelli C, Castelli U et al. Myelofibrosis with myeloid metaplasia: clinical and haematological parameters predicting survival in a series of 133 patients. Br. J. Haematol.75(1), 4–9 (1990).
  • Mesa RA, Silverstein MN, Jacobsen SJ, Wollan PC, Tefferi A. Population-based incidence and survival figures in essential thrombocythemia and agnogenic myeloid metaplasia: an Olmsted County Study, 1976–1995. Am. J. Hematol.61(1), 10–15 (1999).
  • Zhao R, Xing S, Li Z et al. Identification of an acquired JAK2 mutation in polycythemia vera. J. Biol. Chem.280(24), 22788–22792 (2005).
  • Kralovics R, Passamonti F, Buser AS et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N. Engl. J. Med.352(17), 1779–1790 (2005).
  • Levine RL, Wadleigh M, Cools J et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell7(4), 387–397 (2005).
  • James C, Ugo V, Le Couedic JP et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature434(7037), 1144–1148 (2005).
  • Baxter EJ, Scott LM, Campbell PJ et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet365(9464), 1054–1061 (2005).
  • Kilpivaara O, Levine RL. JAK2 and MPL mutations in myeloproliferative neoplasms: discovery and science. Leukemia22(10), 1813–1817 (2008).
  • Mercher T, Wernig G, Moore SA et al. JAK2T875N is a novel activating mutation that results in myeloproliferative disease with features of megakaryoblastic leukemia in a murine bone marrow transplantation model. Blood108(8), 2770–2779 (2006).
  • Bersenev A, Wu C, Balcerek J, Tong W. Lnk controls mouse hematopoietic stem cell self-renewal and quiescence through direct interactions with JAK2. J. Clin. Invest.118(8), 2832–2844 (2008).
  • Royer Y, Staerk J, Costuleanu M, Courtoy PJ, Constantinescu SN. Janus kinases affect thrombopoietin receptor cell surface localization and stability. J. Biol. Chem.280(29), 27251–27261 (2005).
  • Grebien F, Kerenyi MA, Kovacic B et al. Stat5 activation enables erythropoiesis in the absence of EpoR and Jak2. Blood111(9), 4511–4522 (2008).
  • Funakoshi-Tago M, Pelletier S, Moritake H, Parganas E, Ihle JN. Jak2 FERM domain interaction with the erythropoietin receptor regulates Jak2 kinase activity. Mol. Cell. Biol.28(5), 1792–1801 (2008).
  • Funakoshi-Tago M, Tago K, Kasahara T, Parganas E, Ihle JN. Negative regulation of Jak2 by its auto-phosphorylation at tyrosine 913 via the Epo signaling pathway. Cell. Signal.20(11), 1995–2001 (2008).
  • Wang L, Xue J, Zadorozny EV, Robinson LJ. G-CSF stimulates Jak2-dependent Gab2 phosphorylation leading to Erk1/2 activation and cell proliferation. Cell. Signal.20(10), 1890–1899 (2008).
  • Radosevic N, Winterstein D, Keller JR et al. JAK2 contributes to the intrinsic capacity of primary hematopoietic cells to respond to stem cell factor. Exp. Hematol.32(2), 149–156 (2004).
  • Drayer AL, Boer AK, Los EL, Esselink MT, Vellenga E. Stem cell factor synergistically enhances thrombopoietin-induced STAT5 signaling in megakaryocyte progenitors through JAK2 and Src kinase. Stem Cells23(2), 240–251 (2005).
  • Arcasoy MO, Jiang X. Co-operative signalling mechanisms required for erythroid precursor expansion in response to erythropoietin and stem cell factor. Br. J. Haematol.130(1), 121–129 (2005).
  • Tefferi A. JAK and MPL mutations in myeloid malignancies. Leuk. Lymphoma49(3), 388–397 (2008).
  • Lu X, Huang LJ, Lodish HF. Dimerization by a cytokine receptor is necessary for constitutive activation of JAK2 V617F. J. Biol. Chem.283(9), 5258–5266 (2008).
  • Tefferi A, Gilliland DG. JAK2 in myeloproliferative disorders is not just another kinase. Cell Cycle4(8), 1053–1056 (2005).
  • Zhao ZJ, Vainchenker W, Krantz SB, Casadevall N, Constantinescu SN. Role of tyrosine kinases and phosphatases in polycythemia vera. Semin. Hematol.42(4), 221–229 (2005).
  • Scott LM, Tong W, Levine RL et al.JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N. Engl. J. Med.356(5), 459–468 (2007).
  • Cramer K, Nieborowska-Skorska M, Koptyra M et al. BCR/ABL and other kinases from chronic myeloproliferative disorders stimulate single-strand annealing, an unfaithful DNA double-strand break repair. Cancer Res.68(17), 6884–6888 (2008).
  • Tomasson MH, Williams IR, Li S et al. Induction of myeloproliferative disease in mice by tyrosine kinase fusion oncogenes does not require granulocyte–macrophage colony-stimulating factor or interleukin-3. Blood97(5), 1435–1441 (2001).
  • Schwaller J, Frantsve J, Aster J et al. Transformation of hematopoietic cell lines to growth-factor independence and induction of a fatal myelo- and lymphoproliferative disease in mice by retrovirally transduced TEL/JAK2 fusion genes. EMBO J.17(18), 5321–5333 (1998).
  • Lacronique V, Boureux A, Valle VD et al. A TEL–JAK2 fusion protein with constitutive kinase activity in human leukemia. Science278(5341), 1309–1312 (1997).
  • Pardanani AD, Levine RL, Lasho T et al. MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. Blood108(10), 3472–3476 (2006).
  • Pikman Y, Lee BH, Mercher T et al. MPL W515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med.3(7), e270 (2006).
  • Yoshihara H, Arai F, Hosokawa K et al. Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche. Cell Stem Cell1(6), 685–697 (2007).
  • Adams GB, Scadden DT. The hematopoietic stem cell in its place. Nat. Immunol.7(4), 333–337 (2006).
  • Moore KA, Lemischka IR. Stem cells and their niches. Science311(5769), 1880–1885 (2006).
  • Migliaccio AR, Rana RA, Vannucchi AM, Manzoli FA. Role of thrombopoietin in mast cell differentiation. Ann. NY Acad. Sci.1106, 152–174 (2007).
  • Chang Y, Bluteau D, Debili N, Vainchenker W. From hematopoietic stem cells to platelets. J. Thromb. Haemost.5(Suppl. 1), 318–327 (2007).
  • Rumi E. Familial chronic myeloproliferative disorders: the state of the art. Hematol. Oncol.26(3), 131–138 (2008).
  • Rossbach HC. Familial infantile myelofibrosis as an autosomal recessive disorder: preponderance among children from Saudi Arabia. Pediatr. Hematol. Oncol.23(5), 453–454 (2006).
  • Sheikha A. Fatal familial infantile myelofibrosis. J. Pediatr. Hematol. Oncol.26(3), 164–168 (2004).
  • Bonduel M, Sciuccati G, Torres AF, Pierini A, Gallo G. Familial idiopathic myelofibrosis and multiple hemangiomas. Am. J. Hematol.59(2), 175–177 (1998).
  • Pastore C, Nomdedeu J, Volpe G et al. Genetic analysis of chromosome 13 deletions in BCR/ABL negative chronic myeloproliferative disorders. Genes Chromosomes Cancer14(2), 106–111 (1995).
  • Reilly JT, Snowden JA, Spearing RL et al. Cytogenetic abnormalities and their prognostic significance in idiopathic myelofibrosis: a study of 106 cases. Br. J. Haematol.98(1), 96–102 (1997).
  • Juneau AL, Kaehler M, Christensen ER et al. Detection of RB1 deletions by fluorescence in situ hybridization in malignant hematologic disorders. Cancer Genet. Cytogenet.103(2), 117–123 (1998).
  • Wurster-Hill DH, Cornwell GG 3rd, McIntyre OR. Chromosomal aberrations and neoplasm – a family study. Cancer33(1), 72–81 (1974).
  • Ohyashiki K, Kodama A, Ohyashiki JH. Recurrent der(9;18) in essential thrombocythemia with JAK2 V617F is highly linked to myelofibrosis development. Cancer Genet. Cytogenet.186(1), 6–11 (2008).
  • Santana-Davila R, Tefferi A, Holtan SG et al. Primary myelofibrosis is the most frequent myeloproliferative neoplasm associated with del(5q): clinicopathologic comparison of del(5q)-positive and -negative cases. Leuk. Res.32(12), 1927–1930 (2008).
  • Nakata Y, Kimura A, Katoh O, Kawaishi K, Hyodo H. c-kit point mutation of extracellular domain in patients with myeloproliferative disorders. Br. J. Hematol.91(3), 661–663 (1995).
  • Kimura A, Nakata Y, Katoh O, Hyodo H. c-kit Point mutation in patients with myeloproliferative disorders. Leuk. Lymphoma25(3–4), 281–287 (1997).
  • Longley BJ, Jr., Metcalfe DD, Tharp M et al. Activating and dominant inactivating c-KIT catalytic domain mutations in distinct clinical forms of human mastocytosis. Proc. Natl Acad. Sci. USA96(4), 1609–1614 (1999).
  • Longley BJ, Tyrrell L, Lu SZ et al. Somatic c-KIT activating mutation in urticaria pigmentosa and aggressive mastocytosis: establishment of clonality in a human mast cell neoplasm. Nat. Genet.12(3), 312–314 (1996).
  • Munugalavadla V, Sims EC, Chan RJ, Lenz SD, Kapur R. Requirement for p85α regulatory subunit of class IA PI3K in myeloproliferative disease driven by an activation loop mutant of KIT. Exp. Hematol.36(3), 301–308 (2008).
  • Vidovic A, Jankovic G, Colovic M et al. The proto-oncogene expression varies over the course of chronic myeloid leukemia. Hematology13(1), 34–40 (2008).
  • Kaushansky K. On the molecular origins of the chronic myeloproliferative disorders: it all makes sense. Hematology Am. Soc. Hematol. Educ. Program2005, 533–537 (2005).
  • Geron I, Abrahamsson AE, Barroga CF et al. Selective inhibition of JAK2-driven erythroid differentiation of polycythemia vera progenitors. Cancer Cell13(4), 321–330 (2008).
  • Pardanani A. JAK2 inhibitor therapy in myeloproliferative disorders: rationale, preclinical studies and ongoing clinical trials. Leukemia22(1), 23–30 (2008).
  • Schulze H, Korpal M, Hurov J et al. Characterization of the megakaryocyte demarcation membrane system and its role in thrombopoiesis. Blood107(10), 3868–3875 (2006).
  • Italiano JE Jr, Richardson JL, Patel-Hett S et al. Angiogenesis is regulated by a novel mechanism: pro- and antiangiogenic proteins are organized into separate platelet alpha granules and differentially released. Blood111(3), 1227–1233 (2008).
  • Le Bousse-Kerdiles MC, Martyre MC. Dual implication of fibrogenic cytokines in the pathogenesis of fibrosis and myeloproliferation in myeloid metaplasia with myelofibrosis. Ann. Hematol.78(10), 437–444 (1999).
  • Chagraoui H, Komura E, Tulliez M et al. Prominent role of TGF-β 1 in thrombopoietin-induced myelofibrosis in mice. Blood100(10), 3495–3503 (2002).
  • Chagraoui H, Tulliez M, Smayra T et al. Stimulation of osteoprotegerin production is responsible for osteosclerosis in mice overexpressing TPO. Blood101(8), 2983–2989 (2003).
  • Vannucchi AM, Bianchi L, Paoletti F et al. A pathobiologic pathway linking thrombopoietin, GATA-1, and TGF-β1 in the development of myelofibrosis. Blood105(9), 3493–3501 (2005).
  • Border WA, Noble NA. Transforming growth factor β in tissue fibrosis. N. Engl. J. Med.331(19), 1286–1292 (1994).
  • Kimura A, Katoh O, Hyodo H, Kuramoto A. Transforming growth factor-β regulates growth as well as collagen and fibronectin synthesis of human marrow fibroblasts. Br. J. Haematol.72(4), 486–491 (1989).
  • Roberts AB, Sporn MB, Assoian RK et al. Transforming growth factor type β: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc. Natl Acad. Sci. USA83(12), 4167–4171 (1986).
  • Nachman RL, Rafii S. Platelets, petechiae, and preservation of the vascular wall. N. Engl. J. Med.359(12), 1261–1270 (2008).
  • Mohle R, Green D, Moore MA, Nachman RL, Rafii S. Constitutive production and thrombin-induced release of vascular endothelial growth factor by human megakaryocytes and platelets. Proc. Natl Acad. Sci. USA94(2), 663–668 (1997).
  • Vannucchi AM, Pancrazzi A, Guglielmelli P et al. Abnormalities of GATA-1 in megakaryocytes from patients with idiopathic myelofibrosis. Am. J. Pathol.167(3), 849–858 (2005).
  • Orkin SH, Shivdasani RA, Fujiwara Y, McDevitt MA. Transcription factor GATA-1 in megakaryocyte development. Stem Cells16(Suppl. 2), 79–83 (1998).
  • Cashell AW, Buss DH. The frequency and significance of megakaryocytic emperipolesis in myeloproliferative and reactive states. Ann. Hematol.64(6), 273–276 (1992).
  • Schmitt A, Jouault H, Guichard J et al. Pathologic interaction between megakaryocytes and polymorphonuclear leukocytes in myelofibrosis. Blood96(4), 1342–1347 (2000).
  • Rameshwar P, Narayanan R, Qian J et al. NF-κ B as a central mediator in the induction of TGF-β in monocytes from patients with idiopathic myelofibrosis: an inflammatory response beyond the realm of homeostasis. J. Immunol.165(4), 2271–2277 (2000).
  • Amabile G, Di Noia A, Alfani E et al. Isolation of TPO-dependent subclones from the multipotent 32D cell line. Blood Cells Mol. Dis.35(2), 241–252 (2005).
  • Wernig G, Mercher T, Okabe R et al. Expression of Jak2V617F causes a polycythemia vera-like disease with associated myelofibrosis in a murine bone marrow transplant model. Blood107(11), 4274–4281 (2006).
  • Lacout C, Pisani DF, Tulliez M et al. JAK2 V617F expression in murine hematopoietic cells leads to MPD mimicking human PV with secondary myelofibrosis. Blood108(5), 1652–1660 (2006).
  • Chaligne R, James C, Tonetti C et al. Evidence for MPL W515L/K mutations in hematopoietic stem cells in primitive myelofibrosis. Blood110(10), 3735–3743 (2007).
  • Takaki S, Watts JD, Forbush KA et al. Characterization of Lnk. An adaptor protein expressed in lymphocytes. J. Biol. Chem.272(23), 14562–14570 (1997).
  • Huang X, Li Y, Tanaka K, Moore KG, Hayashi JI. Cloning and characterization of Lnk, a signal transduction protein that links T-cell receptor activation signal to phospholipase C γ 1, Grb2, and phosphatidylinositol 3-kinase. Proc. Natl Acad. Sci. USA92(25), 11618–11622 (1995).
  • Velazquez L, Cheng AM, Fleming HE et al. Cytokine signaling and hematopoietic homeostasis are disrupted in Lnk-deficient mice. J. Exp. Med.195(12), 1599–1611 (2002).
  • Ema H, Sudo K, Seita J et al. Quantification of self-renewal capacity in single hematopoietic stem cells from normal and Lnk-deficient mice. Dev. Cell8(6), 907–914 (2005).
  • Takaki S, Morita H, Tezuka Y, Takatsu K. Enhanced hematopoiesis by hematopoietic progenitor cells lacking intracellular adaptor protein, Lnk. J. Exp. Med.195(2), 151–160 (2002).
  • Takizawa H, Eto K, Yoshikawa A et al. Growth and maturation of megakaryocytes is regulated by Lnk/Sh2b3 adaptor protein through crosstalk between cytokine- and integrin-mediated signals. Exp. Hematol.36(7), 897–906 (2008).
  • Vannucchi AM, Bianchi L, Cellai C et al. Development of myelofibrosis in mice genetically impaired for GATA-1 expression (GATA-1low mice). Blood100(4), 1123–1132 (2002).
  • Toki T, Katsuoka F, Kanezaki R et al. Transgenic expression of BACH1 transcription factor results in megakaryocytic impairment. Blood105(8), 3100–3108 (2005).
  • Walkley CR, Olsen GH, Dworkin S et al. A microenvironment-induced myeloproliferative syndrome caused by retinoic acid receptor γ deficiency. Cell129(6), 1097–1110 (2007).
  • Walkley CR, Shea JM, Sims NA, Purton LE, Orkin SH. Rb regulates interactions between hematopoietic stem cells and their bone marrow microenvironment. Cell129(6), 1081–1095 (2007).
  • de Sauvage FJ, Carver-Moore K, Luoh SM et al. Physiological regulation of early and late stages of megakaryocytopoiesis by thrombopoietin. J. Exp. Med.183(2), 651–656 (1996).
  • Kaushansky K. Thrombopoietin: the primary regulator of platelet production. Blood86(2), 419–431 (1995).
  • Burmester H, Wolber EM, Freitag P, Fandrey J, Jelkmann W. Thrombopoietin production in wild-type and interleukin-6 knockout mice with acute inflammation. J. Interferon Cytokine Res.25(7), 407–413 (2005).
  • Linthorst GE, Folman CC, van Olden RW, von dem Borne AE. Plasma thrombopoietin levels in patients with chronic renal failure. Hematol. J.3(1), 38–42 (2002).
  • Kaushansky K. The molecular mechanisms that control thrombopoiesis. J. Clin. Invest.115(12), 3339–3347 (2005).
  • Kaushansky K. Thrombopoietin: a tool for understanding thrombopoiesis. J. Thromb. Haemost.1(7), 1587–1592 (2003).
  • Kuter DJ. Thrombopoietin: biology and clinical applications. Oncologist1(1–2), 98–106 (1996).
  • Ulich TR, del Castillo J, Senaldi G et al. Systemic hematologic effects of PEG-rHuMGDF-induced megakaryocyte hyperplasia in mice. Blood87(12), 5006–5015 (1996).
  • Yanagida M, Ide Y, Imai A et al. The role of transforming growth factor-β in PEG-rHuMGDF-induced reversible myelofibrosis in rats. Br. J. Haematol.99(4), 739–745 (1997).
  • Frey BM, Rafii S, Teterson M et al. Adenovector-mediated expression of human thrombopoietin cDNA in immune-compromised mice: insights into the pathophysiology of osteomyelofibrosis. J. Immunol.160(2), 691–699 (1998).
  • Abina MA, Tulliez M, Duffour MT et al. Thrombopoietin (TPO) knockout phenotype induced by cross-reactive antibodies against TPO following injection of mice with recombinant adenovirus encoding human TPO. J. Immunol.160(9), 4481–4489 (1998).
  • Cannizzo SJ, Frey BM, Raffi S et al. Augmentation of blood platelet levels by intratracheal administration of an adenovirus vector encoding human thrombopoietin cDNA. Nat. Biotechnol.15(6), 570–573 (1997).
  • Ohwada A, Rafii S, Moore MA, Crystal RG. In vivo adenovirus vector-mediated transfer of the human thrombopoietin cDNA maintains platelet levels during radiation-and chemotherapy-induced bone marrow suppression. Blood88(3), 778–784 (1996).
  • Wagner-Ballon O, Chagraoui H, Prina E et al. Monocyte/macrophage dysfunctions do not impair the promotion of myelofibrosis by high levels of thrombopoietin. J. Immunol.176(11), 6425–6433 (2006).
  • Villeval JL, Cohen-Solal K, Tulliez M et al. High thrombopoietin production by hematopoietic cells induces a fatal myeloproliferative syndrome in mice. Blood90(11), 4369–4383 (1997).
  • Yan XQ, Lacey D, Fletcher F et al. Chronic exposure to retroviral vector encoded MGDF (mpl-ligand) induces lineage-specific growth and differentiation of megakaryocytes in mice. Blood86(11), 4025–4033 (1995).
  • Zhou W, Toombs CF, Zou T, Guo J, Robinson MO. Transgenic mice overexpressing human c-mpl ligand exhibit chronic thrombocytosis and display enhanced recovery from 5-fluorouracil or antiplatelet serum treatment. Blood89(5), 1551–1559 (1997).
  • Kakumitsu H, Kamezaki K, Shimoda K et al. Transgenic mice overexpressing murine thrombopoietin develop myelofibrosis and osteosclerosis. Leuk. Res.29(7), 761–769 (2005).
  • Bock O, Loch G, Schade U et al. Osteosclerosis in advanced chronic idiopathic myelofibrosis is associated with endothelial overexpression of osteoprotegerin. Br. J. Haematol.130(1), 76–82 (2005).
  • Evrard S, Tulliez M, Zetterberg E et al. Increased myelofibrosis in thrombospondin-1 null mice is associated with enhanced TGF-β1-mediated response by bone marrow fibroblasts. In: American Society of Hematology 50th Annual Meeting. San Fransisco, CA, USA 6–9 December (2008)
  • Tong W, Lodish HF. Lnk inhibits Tpo–mpl signaling and Tpo-mediated megakaryocytopoiesis. J. Exp. Med.200(5), 569–580 (2004).
  • Tong W, Zhang J, Lodish HF. Lnk inhibits erythropoiesis and Epo-dependent JAK2 activation and downstream signaling pathways. Blood105(12), 4604–4612 (2005).
  • Gueller S, Gery S, Nowak V et al. Adaptor protein Lnk associates with Tyr(568) in c-Kit. Biochem. J.415(2), 241–245 (2008).
  • Simon C, Dondi E, Chaix A et al. Lnk adaptor protein down-regulates specific Kit-induced signaling pathways in primary mast cells. Blood112(10), 4039–4047 (2008).
  • Gery S, Gueller S, Chumakova K et al. Adaptor protein Lnk negatively regulates the mutant MPL, MPL W515L associated with myeloproliferative disorders. Blood110(9), 3360–3364 (2007).
  • Xing S, Wanting TH, Zhao W et al. Transgenic expression of JAK2 V617F causes myeloproliferative disorders in mice. Blood111(10), 5109–5117 (2008).
  • Kennedy JA, Barabe F, Patterson BJ et al. Expression of TEL–JAK2 in primary human hematopoietic cells drives erythropoietin-independent erythropoiesis and induces myelofibrosis in vivo. Proc. Natl Acad. Sci. USA103(45), 16930–16935 (2006).
  • Sternberg DW, Tomasson MH, Carroll M et al. The TEL/PDGFbR fusion in chronic myelomonocytic leukemia signals through STAT5-dependent and STAT5-independent pathways. Blood98(12), 3390–3397 (2001).
  • Ritchie KA, Aprikyan AA, Bowen-Pope DF et al. The Tel-PDGFRβ fusion gene produces a chronic myeloproliferative syndrome in transgenic mice. Leukemia13(11), 1790–1803 (1999).
  • Tomasson MH, Sternberg DW, Williams IR et al. Fatal myeloproliferation, induced in mice by TEL/PDGFβR expression, depends on PDGFβR tyrosines 579/581. J. Clin. Invest.105(4), 423–432 (2000).
  • Yu C, Cantor AB, Yang H et al. Targeted deletion of a high-affinity GATA-binding site in the GATA-1 promoter leads to selective loss of the eosinophil lineage in vivo. J. Exp. Med.195(11), 1387–1395 (2002).
  • Migliaccio AR, Rana RA, Vannucchi AM, Manzoli FA. Role of GATA-1 in normal and neoplastic hemopoiesis. Ann. NY Acad. Sci.1044, 142–158 (2005).
  • Migliaccio AR, Rana RA, Sanchez M et al. GATA-1 as a regulator of mast cell differentiation revealed by the phenotype of the GATA-1low mouse mutant. J. Exp. Med.197(3), 281–296 (2003).
  • Romeo PH, Prandini MH, Joulin V et al. Megakaryocytic and erythrocytic lineages share specific transcription factors. Nature344(6265), 447–449 (1990).
  • Tsai SF, Martin DI, Zon LI et al. Cloning of cDNA for the major DNA-binding protein of the erythroid lineage through expression in mammalian cells. Nature339(6224), 446–451 (1989).
  • Whyatt DJ, Karis A, Harkes IC et al. The level of the tissue-specific factor GATA-1 affects the cell-cycle machinery. Genes Funct.1(1), 11–24 (1997).
  • Cantor AB, Orkin SH. Hematopoietic development: a balancing act. Curr. Opin. Genet. Dev.11(5), 513–519 (2001).
  • Pevny L, Simon MC, Robertson E et al. Erythroid differentiation in chimaeric mice blocked by a targeted mutation in the gene for transcription factor GATA-1. Nature349(6306), 257–260 (1991).
  • Patient RK, McGhee JD. The GATA family (vertebrates and invertebrates). Curr. Opin. Genet. Dev.12(4), 416–422 (2002).
  • Cantor AB, Orkin SH. Transcriptional regulation of erythropoiesis: an affair involving multiple partners. Oncogene21(21), 3368–3376 (2002).
  • Fujiwara Y, Chang AN, Williams AM, Orkin SH. Functional overlap of GATA-1 and GATA-2 in primitive hematopoietic development. Blood103(2), 583–585 (2004).
  • Kobayashi M, Yamamoto M. Regulation of GATA1 gene expression. J. Biochem.142(1), 1–10 (2007).
  • McDevitt MA, Shivdasani RA, Fujiwara Y, Yang H, Orkin SH. A “knockdown” mutation created by cis-element gene targeting reveals the dependence of erythroid cell maturation on the level of transcription factor GATA-1. Proc. Natl Acad. Sci. USA94(13), 6781–6785 (1997).
  • Shivdasani RA, Fujiwara Y, McDevitt MA, Orkin SH. A lineage-selective knockout establishes the critical role of transcription factor GATA-1 in megakaryocyte growth and platelet development. EMBO J.16(13), 3965–3973 (1997).
  • Vyas P, Ault K, Jackson CW, Orkin SH, Shivdasani RA. Consequences of GATA-1 deficiency in megakaryocytes and platelets. Blood93(9), 2867–2875 (1999).
  • Martelli F, Ghinassi B, Panetta B et al. Variegation of the phenotype induced by the Gata1low mutation in mice of different genetic backgrounds. Blood106(13), 4102–4113 (2005).
  • Persons DA, Paulson RF, Loyd MR et al. Fv2 encodes a truncated form of the Stk receptor tyrosine kinase. Nat. Genet.23(2), 159–165 (1999).
  • Lilly F. Fv-2: identification and location of a second gene governing the spleen focus response to Friend leukemia virus in mice. J. Natl Cancer Inst.45(1), 163–169 (1970).
  • Ghinassi B, Sanchez M, Martelli F et al. The hypomorphic Gata1low mutation alters the proliferation/differentiation potential of the common megakaryocytic-erythroid progenitor. Blood109(4), 1460–1471 (2007).
  • Centurione L, Di Baldassarre A, Zingariello M et al. Increased and pathologic emperipolesis of neutrophils within megakaryocytes associated with marrow fibrosis in GATA-1(low) mice. Blood104(12), 3573–3580 (2004).
  • Kobayashi A, Ito E, Toki T et al. Molecular cloning and functional characterization of a new Cap’n’ collar family transcription factor Nrf3. J. Biol. Chem.274(10), 6443–6452 (1999).
  • Toki T, Itoh J, Kitazawa J et al. Human small Maf proteins form heterodimers with CNC family transcription factors and recognize the NF–E2 motif. Oncogene14(16), 1901–1910 (1997).
  • Ohira M, Seki N, Nagase T et al. Characterization of a human homolog (BACH1) of the mouse Bach1 gene encoding a BTB-basic leucine zipper transcription factor and its mapping to chromosome 21q22.1. Genomics47(2), 300–306 (1998).
  • Blouin JL, Duriaux Sail G, Guipponi M et al. Isolation of the human BACH1 transcription regulator gene, which maps to chromosome 21q22.1. Hum. Genet.102(3), 282–288 (1998).
  • Terui K, Takahashi Y, Kitazawa J et al. Expression of transcription factors during megakaryocytic differentiation of CD34+ cells from human cord blood induced by thrombopoietin. Tohoku J. Exp. Med.192(4), 259–273 (2000).
  • Oyake T, Itoh K, Motohashi H et al. Bach proteins belong to a novel family of BTB-basic leucine zipper transcription factors that interact with MafK and regulate transcription through the NF–E2 site. Mol. Cell. Biol.16(11), 6083–6095 (1996).
  • Talbot D, Philipsen S, Fraser P, Grosveld F. Detailed analysis of the site 3 region of the human β-globin dominant control region. Embo. J.9(7), 2169–2177 (1990).
  • Talbot D, Grosveld F. The 5´HS2 of the globin locus control region enhances transcription through the interaction of a multimeric complex binding at two functionally distinct NF–E2 binding sites. EMBO J.10(6), 1391–1398 (1991).
  • Ney PA, Sorrentino BP, McDonagh KT, Nienhuis AW. Tandem AP-1-binding sites within the human β-globin dominant control region function as an inducible enhancer in erythroid cells. Genes Dev.4(6), 993–1006 (1990).
  • Ney PA, Sorrentino BP, Lowrey CH, Nienhuis AW. Inducibility of the HS II enhancer depends on binding of an erythroid specific nuclear protein. Nucleic Acids Res.18(20), 6011–6017 (1990).
  • Shivdasani RA, Rosenblatt MF, Zucker-Franklin D et al. Transcription factor NF–E2 is required for platelet formation independent of the actions of thrombopoietin/MGDF in megakaryocyte development. Cell81(5), 695–704 (1995).
  • Clarke B. Normal bone anatomy and physiology. Clin. J. Am. Soc. Nephrol.3(Suppl. 3), S131–S139 (2008).
  • Phan TC, Xu J, Zheng MH. Interaction between osteoblast and osteoclast: impact in bone disease. Histol. Histopathol.19(4), 1325–1344 (2004).
  • Kacena MA, Shivdasani RA, Wilson K et al. Megakaryocyte–osteoblast interaction revealed in mice deficient in transcription factors GATA-1 and NF–E2. J. Bone Miner. Res.19(4), 652–660 (2004).
  • Beerepoot LV, Mehra N, Vermaat JS et al. Increased levels of viable circulating endothelial cells are an indicator of progressive disease in cancer patients. Ann. Oncol.15(1), 139–145 (2004).
  • Zetterberg E, Lundberg LG, Palmblad J. Characterization of blood vessels in bone marrow from patients with chronic myeloid leukemia and polycythemia vera. Scand. J. Clin. Lab. Invest.64(7), 641–647 (2004).
  • Zetterberg E, Vannucchi AM, Migliaccio AR et al. Pericyte coverage of abnormal blood vessels in myelofibrotic bone marrows. Haematologica92(5), 597–604 (2007).
  • Sugiyama T, Kohara H, Noda M, Nagasawa T. Maintenance of the hematopoietic stem cell pool by CXCL12–CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity25(6), 977–988 (2006).
  • Ara T, Tokoyoda K, Sugiyama T et al. Long-term hematopoietic stem cells require stromal cell-derived factor-1 for colonizing bone marrow during ontogeny. Immunity19(2), 257–267 (2003).
  • McGrath KE, Koniski AD, Maltby KM, McGann JK, Palis J. Embryonic expression and function of the chemokine SDF-1 and its receptor, CXCR4. Dev. Biol.213(2), 442–456 (1999).
  • Kim CH, Broxmeyer HE. In vitro behavior of hematopoietic progenitor cells under the influence of chemoattractants: stromal cell-derived factor-1, steel factor, and the bone marrow environment. Blood91(1), 100–110 (1998).
  • Dar A, Goichberg P, Shinder V et al. Chemokine receptor CXCR4-dependent internalization and resecretion of functional chemokine SDF-1 by bone marrow endothelial and stromal cells. Nat. Immunol.6(10), 1038–1046 (2005).
  • Lane WJ, Dias S, Hattori K et al. Stromal-derived factor 1-induced megakaryocyte migration and platelet production is dependent on matrix metalloproteinases. Blood96(13), 4152–4159 (2000).
  • Ma Q, Jones D, Borghesani PR et al. Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice. Proc. Natl Acad. Sci. USA95(16), 9448–9453 (1998).
  • Sweeney EA, Lortat-Jacob H, Priestley GV, Nakamoto B, Papayannopoulou T. Sulfated polysaccharides increase plasma levels of SDF-1 in monkeys and mice: involvement in mobilization of stem/progenitor cells. Blood99(1), 44–51 (2002).
  • Pelus LM, Bian H, Fukuda S et al. The CXCR4 agonist peptide, CTCE-0021, rapidly mobilizes polymorphonuclear neutrophils and hematopoietic progenitor cells into peripheral blood and synergizes with granulocyte colony-stimulating factor. Exp. Hematol.33(3), 295–307 (2005).
  • Petit I, Szyper-Kravitz M, Nagler A et al. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat. Immunol.3(7), 687–694 (2002).
  • Massa M, Rosti V, Ramajoli I et al. Circulating CD34+, CD133+, and vascular endothelial growth factor receptor 2-positive endothelial progenitor cells in myelofibrosis with myeloid metaplasia. J. Clin. Oncol.23(24), 5688–5695 (2005).
  • Xu M, Bruno E, Chao J et al. Constitutive mobilization of CD34+ cells into the peripheral blood in idiopathic myelofibrosis may be due to the action of a number of proteases. Blood105(11), 4508–4515 (2005).
  • Passamonti F, Vanelli L, Malabarba L et al. Clinical utility of the absolute number of circulating CD34-positive cells in patients with chronic myeloproliferative disorders. Haematologica88(10), 1123–1129 (2003).
  • Brouty-Boye D, Briard D, Azzarone B et al. Effects of human fibroblasts from myelometaplasic and non-myelometaplasic hematopoietic tissues on CD34+ stem cells. Int. J. Cancer92(4), 484–488 (2001).
  • Briard D, Brouty-Boye D, Giron-Michel J et al. Impaired NK cell differentiation of blood-derived CD34+ progenitors from patients with myeloid metaplasia with myelofibrosis. Clin. Immunol.106(3), 201–212 (2003).
  • Migliaccio AR, Martelli F, Verrucci M et al. Altered SDF-1/CXCR4 axis in patients with primary myelofibrosis and in the Gata1low mouse model of the disease. Exp. Hematol.36(2), 158–171 (2008).
  • Rosti V, Massa M, Vannucchi AM et al. The expression of CXCR4 is down-regulated on the CD34+ cells of patients with myelofibrosis with myeloid metaplasia. Blood Cells Mol. Dis.38(3), 280–286 (2007).
  • Ciurea SO, Merchant D, Mahmud N et al. Pivotal contributions of megakaryocytes to the biology of idiopathic myelofibrosis. Blood110(3), 986–993 (2007).
  • Grass JA, Boyer ME, Pal S et al. GATA-1-dependent transcriptional repression of GATA-2 via disruption of positive autoregulation and domain-wide chromatin remodeling. Proc. Natl Acad. Sci. USA100(15), 8811–8816 (2003).
  • Terskikh AV, Miyamoto T, Chang C, Diatchenko L, Weissman IL. Gene expression analysis of purified hematopoietic stem cells and committed progenitors. Blood102(1), 94–101 (2003).
  • Migliaccio AR, Jiang Y, Migliaccio G et al. Transcriptional and posttranscriptional regulation of the expression of the erythropoietin receptor gene in human erythropoietin-responsive cell lines. Blood82(12), 3760–3769 (1993).
  • Pal S, Cantor AB, Johnson KD et al. Coregulator-dependent facilitation of chromatin occupancy by GATA-1. Proc. Natl Acad. Sci. USA101(4), 980–985 (2004).
  • Takahashi S, Onodera K, Motohashi H et al. Arrest in primitive erythroid cell development caused by promoter-specific disruption of the GATA-1 gene. J. Biol. Chem.272(19), 12611–12615 (1997).
  • Vyas P, Crispino JD. Molecular insights into Down syndrome-associated leukemia. Curr. Opin. Pediatr.19(1), 9–14 (2007).
  • Lange B. The management of neoplastic disorders of haematopoiesis in children with Down’s syndrome. Br. J. Haematol.110(3), 512–524 (2000).
  • Li Z, Godinho FJ, Klusmann JH et al. Developmental stage-selective effect of somatically mutated leukemogenic transcription factor GATA1. Nat. Genet.37(6), 613–619 (2005).
  • Kirsammer G, Jilani S, Liu H et al. Highly penetrant myeloproliferative disease in the Ts65Dn mouse model of Down syndrome. Blood111(2), 767–775 (2008).
  • Minucci S, Pelicci PG. Retinoid receptors in health and disease: co-regulators and the chromatin connection. Semin. Cell Dev. Biol.10(2), 215–225 (1999).
  • Weinberg RA. The retinoblastoma gene and gene product. Cancer Surv.12, 43–57 (1992).
  • Weinberg RA. The retinoblastoma gene and cell growth control. Trends Biochem. Sci.15(5), 199–202 (1990).
  • Delhommeau F, Dupont S, James C et al.TET2 is a novel tumor suppressor gene inactivated in myeloproliferative neoplasms: identification of a Pre-JAK2 V617F event. (ASH annual meeting abstracts). Blood112, (2008) (Abstract 3).
  • Niida S, Kondo T, Hiratsuka S et al. VEGF receptor 1 signaling essential for osteoclast development and bone marrow formation in colony-stimulating factor 1-deficient mice. Proc. Natl Acad. Sci. USA102, 14016–14021 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.