232
Views
20
CrossRef citations to date
0
Altmetric
Review

HIF pathway mutations and erythrocytosis

Pages 93-101 | Published online: 10 Jan 2014

References

  • Finch CA, Harker LA, Cook JA. Kinetics of the formed elements of human blood. Blood50, 699–707 (1977).
  • Bain BJ. Normal ranges. In: Blood Cells A Practical Guide. (4th Edition). Blackwell Publishing, Oxford, UK 203 (2006).
  • Johansson PL, Soodabeh S-K, Kutti J. An elevated venous haemoglobin concentration cannot be used as a surrogate marker for absolute erythrocytosis: a study of patients with polycythaemia vera and apparent polycythaemia. Br. J. Haematol.129, 701–705 (2005).
  • Percy MJ. Genetically heterogeneous origins of idiopathic erythrocytosis. Hematology12, 131–139 (2007).
  • Wedzicha JA, Cotes PM, Empey DW et al. Serum immunoreactive erythropoietin in hypoxic lung disease with and without polycythaemia. Clin. Sci.69, 413–422 (1985).
  • Hudgson P, Pearce JMS, Yeates WK. Renal artery stenosis with hypertension and high haematocrit. BMJ1, 18–21 (1967).
  • Trimble M, Caro J, Talalla A, Brain M. Secondary erythrocytosis due to a cerebellar hemangioblastoma: demonstration of erythropoietin mRNA in the tumor. Blood78, 599–601 (1991).
  • Dickerman RD, Pertusi R, Miller J, Zachariah NH. Androgen-induced erythrocytosis: is it erythropoietin? Am. J. Hematol.61, 153–158 (1999).
  • Wang GL, Jiang B-H, Rue EA, Semenza GL. Hypoxia-inducible factor 1 is a basic-helix–loop–helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl Acad. Sci. USA92, 5510–5514 (1995).
  • Semenza G. Perspectives on oxygen sensing. Cell98, 281–284 (1999).
  • Semenza G. HIF-1, O2, and the 3 PHDs: how animal cells signal hypoxia to the nucleus. Cell107, 1–3 (2001).
  • Maynard MA, Heng Q, Chung J et al. Multiple splice variants of the human HIF-3α locus are targets of the von Hippel–Lindau E3 ubiquitin ligase complex. J. Biol. Chem.278, 11032–11040 (2003).
  • Epstein AC, Gleadle JM, McNeill LA et al.C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell107, 43–54 (2001).
  • Bruick RK, McKnight SL. A conserved family of prolyl-4-hydroxylases that modify HIF. Science294, 1337–1340 (2001).
  • Jaakkola P, Mole DR, Tian Y-M et al. Targeting of HIF-α to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science292, 468–472 (2001).
  • Ivan M, Kondo K, Yang H et al. HIFα targeted for VHL-mediated destruction by praline hydroxylation: implication for O2 sensing. Science292, 464–468 (2001).
  • Tanimoto K, Makino Y, Periera T, Poellinger L. Mechanism of regulation of the hypoxia-inducible factor-1α by the von Hippel-Lindau tumor suppressor protein. EMBO J.19, 4298–4309 (2000).
  • Maxwell PH, Wiesener MS, Chang G-H et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature399, 271–275 (1999).
  • Ohh M, Park CW, Ivan M et al. Ubiquitination of hypoxia-inducible factor requires binding to the β-domain of the von Hippel-Lindau protein. Nature Cell. Biol.2, 423–427 (2000).
  • Schofield C, Ratcliffe PJ. Oxygen sensing by HIF hydroxylases. Nat. Rev.5, 343–354 (2004)
  • Sergeyeva A, Gordeuk VR, Tokarev YN, Sokol L, Prchal JF, Prchal JT. Congenital polycythaemia in Chuvashia. Blood89, 2148–2154 (1997).
  • Ang SO, Chen H, Hirota K et al. Disruption of oxygen homeostasis underlies congenital Chuvash polycythaemia. Nat. Genet.32, 614–621 (2002).
  • Kaelin WG. Von Hippel-Lindau disease. Annu. Rev. Pathol. Mech. Dis.2, 145–173 (2007).
  • Pastore Y, Jedickova K, Guan Y et al. Mutations of von Hippel-Lindau tumor-suppressor gene and congenital polycythemia. Am. J. Hum. Genet.73, 412–419 (2003).
  • Percy MJ, McMullin MF, Jowitt SN et al. Chuvash congenital polycythaemia in 4 families of Asian and Western European ancestry. Blood102, 1097–1099 (2003).
  • Liu E, Percy MJ, Amos CI et al. The worldwide distribution of VHL598C>T mutation indicated a single founding event. Blood103, 1937–1940 (2004).
  • Perrota S, Novili B, Ferraro M et al. Von Hippel-Lindau-dependent polycythaemia is endemic on the island of Ischia: identification of a novel cluster. Blood107, 514–519 (2006).
  • Cario H, Schwarz K, Jorch N et al. Mutations in the von Hippel-Lindau (VHL) tumor suppressor gene and VHL-haplotype analysis in patients with presumable congenital erythrocytosis. Haematologica90, 19–24 (2005)
  • Pastore YD, Jelinek J, Ang S et al. Mutations in the VHL gene in sporadic apparently congenital polycythaemia. Blood101, 1591–1595 (2003)
  • Bento MC, Chang K-T, Guan Y et al. Congenital polycythaemia with homozygous and heterozygous mutations of von Hippel-Lindau gene: five new Caucasian patients. Haematologica90, 128–129 (2005).
  • Percy MJ, Jones FGC, Lappin TRJ, McMullin MF. Mutations in the VHL gene are the major identified cause of inherited erythrocytosis. Blood106, 109a (2005).
  • Percy MJ, Furlow PW, Jones FGC, Lappin TRJ, Lee FS, McMullin MF. Erythrocytosis caused by mutations in the PHD2 and VHL genes. Blood118, 1069a (2007).
  • Randi ML, Murgia A, Putti MC et al. Low frequency of VHL gene mutations in young individuals with polycythaemia and high serum erythropoietin. Haematologica90, 689–691 (2005)
  • Gordeuk VR, Prchal JT. Vascular complications in Chuvash polycythaemia. Semin. Thromb. Hemost.32, 289–294 (2006)
  • Gordeuk VR, Sergueeva AI, Miasnikova GY et al. Congenital disorder of oxygen sensing: association of the homozygous Chuvash polycythaemia VHL mutation with thrombosis and vascular abnormalities but not tumors. Blood103, 3924–3929 (2004).
  • Sergueeva AI, Miasnikova GY, Okhotin DJ et al. Elevated homocysteine, glutathione and cysteinylglycine concentrations in patients homozygous for the Chuvash polycythaemia VHL mutation. Haematologica93, 279–282 (2008).
  • Smith TG, Brooks JT, Balanos GM et al. Mutation of von Hippel-Lindau tumor suppressor and human cardiopulmonary physiology. PLoS Med.3, 1178–1186 (2006).
  • Hickey MM, Lam JC, Bezman NA et al. von Hippel-Lindau mutation in mice recapitulates Chuvash polycythaemia via hypoxia-inducible factor-2α signaling and splenic erythropoiesis. J. Clin. Invest.117, 3879–3889 (2007).
  • van Rooijen E, Voest EE, Logister I et al. Zebrafish mutants in the von Hippel-Lindau tumor suppressor display a hypoxic response and recapitulate key aspects of Chuvash polycythaemia. Blood113, 6449–6460 (2009).
  • Percy MJ, Zhao Q, Flores A et al. A family with erythrocytosis establishes a role for prolyl hydroxylase domain protein 2 in oxygen homeostasis. Proc. Natl Acad. Sci. USA103, 654–659 (2006).
  • Percy MJ, Furlow PW, Beer PA et al. A novel erythrocytosis-associated PHD2 mutation suggests the location of a HIF binding groove. Blood110, 2193–2196 (2007).
  • Ladroue C, Carcenac R, Leporrier M et al. PHD2 mutation and congenital erythrocytosis and panaganglioma. N. Engl. J. Med.359, 2685–2692 (2008).
  • Al-Sheikh M, Moradkhani K, Lopez M et al. Disturbance in the HIF-1α pathway associated with erythrocytosis: Further evidences brought by frameshift and nonsense mutation in the prolyl hydroxylase domain protein 2 (PHD2) gene. Blood Cells Mol. Dis.40, 160–165 (2008).
  • Albiero E, Ruggeri M, Fortuna S et al. Three novel mutations in the prolyl hydroxylase protein 2 gene of the oxygen sensing pathway in patients with isolated erythrocytosis. Haematologica94(Suppl. 2), 352–353 (2009).
  • Albiero E, Ruggeri M, Finotto S, Rodeghiero F. A new prolyl hydroxylase domain protein 2 mutation in a JAK2 (V617F) positive patient with a familial myeloproliferative disease. Haematologica94(Suppl. 2), 352–353 (2009).
  • Takeda k, Ho VC, Takeda H, Duan L-H, Nagy A, Fong G-H. Placental but not heart defects are associated with elevated hypoxia-inducible factor α levels in mice lacking prolyl hydroxylase domain protein 2. Mol. Cell. Biol.26, 8336–8346 (2006).
  • Takeda K, Aguila HL, Parikh NS et al. Regulation of adult erythropoiesis by prolyl hydroxylase domain proteins. Blood11, 3229–3225 (2008).
  • Minamishima YA, Moslehi J, Bardeesy N, Cullen D, Bronson RT, Kaelin WG. Somatic inactivation of the PHD2 prolyl hydroxylase causes polycythemia and congestive heart failure. Blood11, 3236–3244 (2008).
  • Percy MJ, Furlow PW, Lucas GS et al. A gain-of-function mutation in the HIF2A gene in familial erythrocytosis. N. Engl. J. Med.335, 52–58 (2008).
  • Perrotta S, Della Ragione F. The HIF2A gene in familial erythrocytosis. N. Engl. J. Med.338, 1966 (2008).
  • Percy MJ, Beer PA, Campbell G et al. Novel exon 12 mutations in the HIF2α gene associated with erythrocytosis. Blood111, 5400–5402 (2008).
  • Gale DP, Harten SK, Reid CD et al. Autosomal dominant erythrocytosis and pulmonary arterial hypertension associated with HIF2a mutation. Blood112, 919–921 (2008).
  • Martini M, Teofili L, Cenci T et al. A novel heterozygous HIF2AM535I mutation reinforces the role of oxygen sensing pathway disturbances in the pathogenesis of familial erythrocytosis. Haematologica93, 1068–1071 (2008).
  • Furlow PW, Percy MJ, Sutherland S et al. Erythrocytosis-associated HIF-2α mutations demonstrate a critical role for residues C-terminal to the hydroxylacceptor praline. J. Biol. Chem.284, 9050–9058 (2009)
  • Gruber M, Hu C-J, Johnson RS et al. Acute postnatal ablation of HIF-2α results in anemia. Proc. Natl Acad. Sci. USA104, 2301–2306 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.