292
Views
49
CrossRef citations to date
0
Altmetric
Review

JAK2 V617F and beyond: role of genetics and aberrant signaling in the pathogenesis of myeloproliferative neoplasms

&
Pages 323-337 | Published online: 10 Jan 2014

References

  • Ania BJ, Suman VJ, Sobell JL, Codd MB, Silverstein MN, Melton LJ 3rd. Trends in the incidence of polycythemia vera among Olmsted County, Minnesota residents, 1935–1989. Am. J. Hematol.47(2), 89–93 (1994).
  • Mesa RA, Silverstein MN, Jacobsen SJ, Wollan PC, Tefferi A. Population-based incidence and survival figures in essential thrombocythemia and agnogenic myeloid metaplasia: an Olmsted County Study, 1976–1995. Am. J. Hematol.61(1), 10–15 (1999).
  • Tefferi A, Vardiman J. Classification and diagnosis of myeloproliferative neoplasms: the 2008 World Health Organization criteria and point-of-care diagnostic algorithms. Leukemia22(1), 14–22 (2008).
  • Dameshek W. Some speculations on the myeloproliferative syndromes. Blood6(4), 372–375 (1951).
  • Adamson JW, Fialkow PJ, Murphy S, Prchal JF, Steinmann L. Polycythemia vera: stem- cell and probable clonal origin of the disease. N. Engl. J. Med.295(17), 913–916 (1976).
  • Fialkow PJ, Faguet GB, Jacobson RJ, Vaidya K, Murphy S. Evidence that essential thrombocythemia is a clonal disorder with origin in a multipotent stem cell. Blood58(5), 916–919 (1981).
  • Jacobson RJ, Salo A, Fialkow PJ. Agnogenic myeloid metaplasia: a clonal proliferation of hematopoietic stem cells with secondary myelofibrosis. Blood51(2), 189–194 (1978).
  • Prchal JF, Axelrad AA. Letter: Bone-marrow responses in polycythemia vera. N. Engl. J. Med.290(24), 1382 (1974).
  • el Kassar N, Hetet G, Li Y, Briere J, Grandchamp B. Clonal analysis of haemopoietic cells in essential thrombocythaemia. Br. J. Haematol.90(1), 131–137 (1995).
  • Tsukamoto N, Morita K, Maehara T et al. Clonality in chronic myeloproliferative disorders defined by X-chromosome linked probes: demonstration of heterogeneity in lineage involvement. Br. J. Haematol.86(2), 253–258 (1994).
  • Dai CH, Krantz SB, Dessypris EN, Means RT, Horn ST, Gilbert HS. Polycythemia vera. II. Hypersensitivity of bone marrow erythroid, granulocyte–macrophage, and megakaryocyte progenitor cells to interleukin-3 and granulocyte–macrophage colony-stimulating factor. Blood80(4), 891–899 (1992).
  • Dai CH, Krantz SB, Means RT, Horn ST, Gilbert HS. Polycythemia vera blood burst-forming units-erythroid are hypersensitive to interleukin-3. J. Clin. Invest.87(2), 391–396 (1991).
  • Tefferi A, Gilliland DG. Oncogenes in myeloproliferative disorders. Cell Cycle6(5), 550–566 (2007).
  • Neubauer H, Cumano A, Muller M, Wu H, Huffstadt U, Pfeffer K. JAK2 deficiency defines an essential developmental checkpoint in definitive hematopoiesis. Cell93(3), 397–409 (1998).
  • Parganas E, Wang D, Stravopodis D et al. Jak2 is essential for signaling through a variety of cytokine receptors. Cell93(3), 385–395 (1998).
  • Ihle J, Gilliland D. Jak2: normal function and role in hematopoietic disorders. Curr. Opin. Genet. Develop.17(1), 8–14 (2007).
  • Kisseleva T, Bhattacharya S, Braunstein J, Schindler CW. Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene285(1–2), 1–24 (2002).
  • Valentino L, Pierre J. JAK/STAT signal transduction: regulators and implication in hematological malignancies. Biochem. Pharmacol.71(6), 713–721 (2006).
  • Moliterno AR, Hankins WD, Spivak JL. Impaired expression of the thrombopoietin receptor by platelets from patients with polycythemia vera. N. Engl. J. Med.338(9), 572–580 (1998).
  • Roder S, Steimle C, Meinhardt G, Pahl HL. STAT3 is constitutively active in some patients with polycythemia rubra vera. Experiment. Hematol.29(6), 694–702 (2001).
  • Komura E, Chagraoui H, Mansat de Mas V et al. Spontaneous STAT5 activation induces growth factor independence in idiopathic myelofibrosis: possible relationship with FKBP51 overexpression. Experiment. Hematol.31(7), 622–630 (2003).
  • Ugo V, Marzac C, Teyssandier I et al. Multiple signaling pathways are involved in erythropoietin-independent differentiation of erythroid progenitors in polycythemia vera. Experiment. Hematol.32(2), 179–187 (2004).
  • Baxter EJ, Scott LM, Campbell PJ et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet365(9464), 1054–1061 (2005).
  • James C, Ugo V, Le Couedic JP et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature434(7037), 1144–1148 (2005).
  • Kralovics R, Passamonti F, Buser AS et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N. Engl. J. Med.352(17), 1779–1790 (2005).
  • Levine R, Wadleigh M, Cools J et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell7(4), 387–397 (2005).
  • Kralovics R, Guan Y, Prchal JT. Acquired uniparental disomy of chromosome 9p is a frequent stem cell defect in polycythemia vera. Experiment. Hematol.30(3), 229–236 (2002).
  • Tefferi A. JAK and MPL mutations in myeloid malignancies. Leuk. Lymphoma49(3), 388–397 (2008).
  • Levine R, Wernig G. Role of JAK–STAT signaling in the pathogenesis of myeloproliferative disorders. Hematology Am. Soc. Hematol. Educ. Program.233–239, 510 (2006).
  • Bumm T, Elsea C, Corbin A et al. Characterization of murine JAK2V617F-positive myeloproliferative disease. Cancer Res.66(23), 11156–11165 (2006).
  • Lacout C, Pisani DF, Tulliez M, Gachelin FM, Vainchenker W, Villeval JL. JAK2V617F expression in murine hematopoietic cells leads to MPD mimicking human PV with secondary myelofibrosis. Blood108(5), 1652–1660 (2006).
  • Shide K, Shimoda H, Kumano T et al. Development of ET, primary myelofibrosis and PV in mice expressing JAK2V617F. Leukemia22(1), 87–95 (2008).
  • Tiedt R, Hao-Shen H, Sobas MA et al. Ratio of mutant JAK2-V617F to wild-type Jak2 determines the MPD phenotypes in transgenic mice. Blood111(8), 3931–3940 (2008).
  • Xing S, Wanting T, Zhao W et al. Transgenic expression of JAK2V617F causes myeloproliferative disorders in mice. Blood111(10), 5109–5117 (2008).
  • Vannucchi A, Antonioli E, Guglielmelli P, Pardanani A, Tefferi A. Clinical correlates of JAK2V617F presence or allele burden in myeloproliferative neoplasms: a critical reappraisal. Leukemia22(7), 1299–1307 (2008).
  • Antonioli E, Guglielmelli P, Poli G et al. Influence of JAK2V617F allele burden on phenotype in essential thrombocythemia. Haematologica93(1), 41–48 (2008).
  • Vannucchi A, Antonioli E, Guglielmelli P et al. Prospective identification of high-risk polycythemia vera patients based on JAK2V617F allele burden. Leukemia21(9), 1952–1959 (2007).
  • Tefferi A, Strand J, Lasho T et al. Bone marrow JAK2V617F allele burden and clinical correlates in polycythemia vera. Leukemia21(9), 2074–2075 (2007).
  • Kittur J, Knudson R, Lasho T et al. Clinical correlates of JAK2V617F allele burden in essential thrombocythemia. Cancer109(11), 2279–2284 (2007).
  • Campbell PJ, Griesshammer M, Döhner K et al. V617F mutation in JAK2 is associated with poorer survival in idiopathic myelofibrosis. Blood107(5), 2098–2100 (2006).
  • Guglielmelli P, Barosi G, Specchia G et al. Identification of patients with poorer survival in primary myelofibrosis based on the burden of JAK2V617F mutated allele. Blood114(8), 1477–1483 (2009).
  • Tefferi A, Lasho T, Huang J et al. Low JAK2V617F allele burden in primary myelofibrosis, compared to either a higher allele burden or unmutated status, is associated with inferior overall and leukemia-free survival. Leukemia22(4), 756–761 (2008).
  • Tefferi A, Lasho T, Schwager SM et al. The JAK2(V617F) tyrosine kinase mutation in myelofibrosis with myeloid metaplasia: lineage specificity and clinical correlates. Br. J. Haematol.131(3), 320–328 (2005).
  • Delhommeau F, Dupont S, Tonetti C et al. Evidence that the JAK2 G1849T (V617F) mutation occurs in a lymphomyeloid progenitor in polycythemia vera and idiopathic myelofibrosis. Blood109(1), 71–77 (2007).
  • Ishii T, Bruno E, Hoffman R, Xu M. Involvement of various hematopoietic-cell lineages by the JAK2V617F mutation in polycythemia vera. Blood108(9), 3128–3134 (2006).
  • Larsen TS, Christensen J, Hasselbalch H, Pallisgaard N. The JAK2V617F mutation involves B- and T-lymphocyte lineages in a subgroup of patients with Philadelphia-chromosome negative chronic myeloproliferative disorders. Br. J. Haematol.136(5), 745–751 (2007).
  • Jamieson CH, Gotlib J, Durocher JA et al. The JAK2V617F mutation occurs in hematopoietic stem cells in polycythemia vera and predisposes toward erythroid differentiation. Proc. Natl Acad. Sci. USA103(16), 6224–6229 (2006).
  • James C, Mazurier F, Dupont S et al. The hematopoietic stem cell compartment of JAK2V617F-positive myeloproliferative disorders is a reflection of disease heterogeneity. Blood112(6), 2429–2438 (2008).
  • Wernig G, Mercher T, Okabe R, Levine R, Lee BH, Gilliland DG. Expression of JAK2V617F causes a polycythemia vera-like disease with associated myelofibrosis in a murine bone marrow transplant model. Blood107(11), 4274–4281 (2006).
  • Zaleskas V, Krause DS, Lazarides K et al. Molecular pathogenesis and therapy of polycythemia induced in mice by JAK2 V617F. PLoS ONE1(1), e18 (2006).
  • Pardanani A, Fridley BL, Lasho TL, Gilliland DG, Tefferi A. Host genetic variation contributes to phenotypic diversity in myeloproliferative disorders. Blood111(5), 2785–2789 (2008).
  • Jones AV, Chase A, Silver RT et al. JAK2 haplotype is a major risk factor for the development of myeloproliferative neoplasms. Nat. Genet.41(4), 446–449 (2009).
  • Kilpivaara O, Mukherjee S, Schram AM et al. A germline JAK2 SNP is associated with predisposition to the development of JAK2 (V617F)-positive myeloproliferative neoplasms. Nat. Genet.41(4), 455–459 (2009).
  • Olcaydu D, Harutyunyan A, Jager R et al. A common JAK2 haplotype confers susceptibility to myeloproliferative neoplasms. Nat. Genet.41(4), 450–454 (2009).
  • Campbell P, Baxter E, Beer P et al. Mutation of JAK2 in the myeloproliferative disorders: timing, clonality studies, cytogenetic associations, and role in leukemic transformation. Blood108(10), 3548–3555 (2006).
  • Theocharides A, Boissinot M, Girodon F et al. Leukemic blasts in transformed JAK2-V617F-positive myeloproliferative disorders are frequently negative for the JAK2-V617F mutation. Blood110(1), 375–379 (2007).
  • Scott LM, Scott MA, Campbell PJ, Green AR. Progenitors homozygous for the V617F mutation occur in most patients with polycythemia vera, but not essential thrombocythemia. Blood108(7), 2435–2437 (2006).
  • Nussenzveig RH, Swierczek SI, Jelinek J et al. Polycythemia vera is not initiated by JAK2V617F mutation. Experiment. Hematol.35(1), 32–38 (2007).
  • Lambert JR, Everington T, Linch DC, Gale RE. In essential thrombocythemia, multiple JAK2-V617F clones are present in most mutant-positive patients: a new disease paradigm. Blood114(14), 3018–3023 (2009).
  • Dupont S, Masse A, James C et al. The JAK2 617V>F mutation triggers erythropoietin hypersensitivity and terminal erythroid amplification in primary cells from patients with polycythemia vera. Blood110(3), 1013–1021 (2007).
  • Delhommeau F, Dupont S, Della Valle V et al. Mutation in TET2 in myeloid cancers. N. Engl. J. Med.360(22), 2289–2301 (2009).
  • Abdel-Wahab O, Mullally A, Hedvat C et al. Genetic characterization of TET1, TET2, and TET3 alterations in myeloid malignancies. Blood114(1), 144–147 (2009).
  • Tefferi A, Pardanani A, Lim KH et al.TET2 mutations and their clinical correlates in polycythemia vera, essential thrombocythemia and myelofibrosis. Leukemia23(5), 905–911 (2009).
  • Viguié F, Aboura A, Bouscary D et al. Common 4q24 deletion in four cases of hematopoietic malignancy: early stem cell involvement? Leukemia19(8), 1411–1415 (2005).
  • Abdel-Wahab O, Manshouri T, Patel J et al. Genetic analysis of transforming events that convert chronic myeloproliferative neoplasms to leukemias. Cancer Res.70(2), 447–452 (2010).
  • Tefferi A, Lim KH, Abdel-Wahab O et al. Detection of mutant TET2 in myeloid malignancies other than myeloproliferative neoplasms: CMML, MDS, MDS/MPN and AML. Leukemia23(7), 1343–1345 (2009).
  • Jankowska AM, Szpurka H, Tiu RV et al. Loss of heterozygosity 4q24 and TET2 mutations associated with myelodysplastic/myeloproliferative neoplasms. Blood113(25), 6403–6410 (2009).
  • Langemeijer SM, Kuiper RP, Berends M et al. Acquired mutations in TET2 are common in myelodysplastic syndromes. Nat. Genet.41(7), 838–842 (2009).
  • Mohamedali AM, Smith AE, Gaken J et al. Novel TET2 mutations associated with UPD4q24 in myelodysplastic syndrome. J. Clin. Oncol.27(24), 4002–4006 (2009).
  • Tefferi A, Levine RL, Lim KH et al. Frequent TET2 mutations in systemic mastocytosis: clinical, KITD816V and FIP1L1-PDGFRA correlates. Leukemia23(5), 900–904 (2009).
  • Lorsbach R, Moore J, Mathew S, Raimondi S, Mukatira S, Downing J. TET1, a member of a novel protein family, is fused to MLL in acute myeloid leukemia containing the t(10;11)(q22;q23). Leukemia17(3), 637–641 (2003).
  • Ono R, Taki T, Taketani T, Taniwaki M, Kobayashi H, Hayashi Y. LCX, leukemia-associated protein with a CXXC domain, is fused to MLL in acute myeloid leukemia with trilineage dysplasia having t(10;11)(q22;q23). Cancer Res.62(14), 4075–4080 (2002).
  • Tahiliani M, Koh KP, Shen Y et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science324(5929), 930–935 (2009).
  • Scott LM, Tong W, Levine R et al. JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N. Engl. J. Med.356(5), 459–468 (2007).
  • Pardanani A, Lasho T, Finke C, Hanson C, Tefferi A. Prevalence and clinicopathologic correlates of JAK2 exon 12 mutations in JAK2V617F-negative polycythemia vera. Leukemia21(9), 1960–1963 (2007).
  • Pietra D, Li S, Brisci A et al. Somatic mutations of JAK2 exon 12 in patients with JAK2 (V617F)-negative myeloproliferative disorders. Blood111(3), 1686–1689 (2008).
  • Wang Y, Vandris K, Jones A et al.JAK2 Mutations are present in all cases of polycythemia vera. Leukemia22(6), 1289–1289 (2008).
  • Arcasoy MO, Degar BA, Harris KW, Forget BG. Familial erythrocytosis associated with a short deletion in the erythropoietin receptor gene. Blood89(12), 4628–4635 (1997).
  • Kralovics R, Indrak K, Stopka T, Berman BW, Prchal JF, Prchal JT. Two new EPO receptor mutations: truncated EPO receptors are most frequently associated with primary familial and congenital polycythemias. Blood90(5), 2057–2061 (1997).
  • Pikman Y, Lee BH, Mercher T et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med.3(7), e270 (2006).
  • Pardanani A, Levine R, Lasho T et al. MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. Blood, 108(10), 3472–3476 (2006).
  • Croker B, Kiu H, Nicholson S. SOCS regulation of the JAK/STAT signalling pathway. Semin. Cell Dev. Biol.19(4), 414–422 (2008).
  • O’Sullivan LA, Liongue C, Lewis RS, Stephenson SE, Ward AC. Cytokine receptor signaling through the JAK–STAT–SOCS pathway in disease. Mol. Immunol.44(10), 2497–2506 (2007).
  • Endo TA, Masuhara M, Yokouchi M et al. A new protein containing an SH2 domain that inhibits JAK kinases. Nature387(6636), 921–924 (1997).
  • Sasaki A, Yasukawa H, Suzuki A et al. Cytokine-inducible SH2 protein-3 (CIS3/SOCS3) inhibits Janus tyrosine kinase by binding through the N-terminal kinase inhibitory region as well as SH2 domain. Genes Cells4(6), 339–351 (1999).
  • Frantsve J, Schwaller J, Sternberg DW, Kutok J, Gilliland DG. SOCS-1 inhibits TEL-JAK2-mediated transformation of hematopoietic cells through inhibition of JAK2 kinase activity and induction of proteasome-mediated degradation. Mol. Cell Biol.21(10), 3547–3557 (2001).
  • Ungureanu D, Saharinen P, Junttila I, Hilton DJ, Silvennoinen O. Regulation of JAK2 through the ubiquitin–proteasome pathway involves phosphorylation of JAK2 on Y1007 and interaction with SOCS-1. Mol. Cell Biol.22(10), 3316–3326 (2002).
  • Hortner M, Nielsch U, Mayr LM, Heinrich PC, Haan S. A new high affinity binding site for suppressor of cytokine signaling-3 on the erythropoietin receptor. Eur. J. Biochem.269(10), 2516–2526 (2002).
  • Capello D, Deambrogi C, Rossi D et al. Epigenetic inactivation of suppressors of cytokine signalling in Philadelphia-negative chronic myeloproliferative disorders. Br. J. Haematol.141(4), 504–511 (2008).
  • Jost E, do O N, Dahl E et al. Epigenetic alterations complement mutation of JAK2 tyrosine kinase in patients with BCR/ABL-negative myeloproliferative disorders. Leukemia21(3), 505–510 (2007).
  • Teofili L, Martini M, Cenci T et al. Epigenetic alteration of SOCS family members is a possible pathogenetic mechanism in JAK2 wild type myeloproliferative diseases. Int. J. Cancer123(7), 1586–1592 (2008).
  • Quentmeier H, Geffers R, Jost E et al. SOCS2: inhibitor of JAK2V617F-mediated signal transduction. Leukemia22(12), 2169–2175 (2008).
  • Haan S, Ferguson P, Sommer U et al. Tyrosine phosphorylation disrupts elongin interaction and accelerates SOCS3 degradation. J. Biol. Chem.278(34), 31972–31979 (2003).
  • Hookham M, Elliott J, Suessmuth Y et al. The myeloproliferative disorder associated JAK2V617F mutant escapes negative regulation by suppressor of cytokine signaling 3. Blood109(11), 4924–4929 (2007).
  • Rudd CE. Lnk adaptor: novel negative regulator of B cell lymphopoiesis. Sci. STKE2001(85), PE1 (2001).
  • Takaki S, Sauer K, Iritani BM et al. Control of B cell production by the adaptor protein lnk. Definition of a conserved family of signal-modulating proteins. Immunity13(5), 599–609 (2000).
  • Takaki S, Morita H, Tezuka Y, Takatsu K. Enhanced hematopoiesis by hematopoietic progenitor cells lacking intracellular adaptor protein, Lnk. J. Exp. Med.195(2), 151–160 (2002).
  • Velazquez L, Cheng AM, Fleming HE et al. Cytokine signaling and hematopoietic homeostasis are disrupted in Lnk-deficient mice. J. Exp. Med.195(12), 1599–1611 (2002).
  • Tong W, Lodish HF. Lnk inhibits Tpo-mpl signaling and Tpo-mediated megakaryocytopoiesis. J. Exp. Med.200(5), 569–580 (2004).
  • Buza-Vidas N, Antonchuk J, Qian H et al. Cytokines regulate postnatal hematopoietic stem cell expansion: opposing roles of thrombopoietin and LNK. Genes Dev.20(15), 2018–2023 (2006).
  • Tong W, Zhang J, Lodish HF. Lnk inhibits erythropoiesis and Epo-dependent JAK2 activation and downstream signaling pathways. Blood105(12), 4604–4612 (2005).
  • Bersenev A, Wu C, Balcerek J, Tong W. Lnk controls mouse hematopoietic stem cell self-renewal and quiescence through direct interactions with JAK2. J. Clin. Invest.118(8), 2832–2844 (2008).
  • Gery S, Gueller S, Chumakova K, Kawamata N, Liu L, Koeffler HP. Adaptor protein Lnk negatively regulates the mutant MPL, MPLW515L associated with myeloproliferative disorders. Blood110(9), 3360–3364 (2007).
  • Simon C, Dondi E, Chaix A et al. Lnk adaptor protein down-regulates specific Kit-induced signaling pathways in primary mast cells. Blood112(10), 4039–4047 (2008).
  • Oh ST, Simonds EF, Jones C et al. Novel mutations in the inhibitory adaptor protein LNK drive JAK–STAT signaling in patients with myeloproliferative neoplasms. Blood DOI: blood-2010-02-270108 (2010) (Epub ahead of print).
  • Schmidt MH, Dikic I. The Cbl interactome and its functions. Nat. Rev. Mol. Cell Biol.6(12), 907–918 (2005).
  • Langdon WY, Hartley JW, Klinken SP, Ruscetti SK, Morse HC 3rd. v-Cbl, an oncogene from a dual-recombinant murine retrovirus that induces early B-lineage lymphomas. Proc. Natl Acad. Sci. USA86(4), 1168–1172 (1989).
  • Caligiuri MA, Briesewitz R, Yu J et al. Novel c-CBL and CBL-b ubiquitin ligase mutations in human acute myeloid leukemia. Blood110(3), 1022–1024 (2007).
  • Sargin B, Choudhary C, Crosetto N et al. Flt3-dependent transformation by inactivating c-Cbl mutations in AML. Blood110(3), 1004–1012 (2007).
  • Dunbar AJ, Gondek LP, O’Keefe CL et al. 250K single nucleotide polymorphism array karyotyping identifies acquired uniparental disomy and homozygous mutations, including novel missense substitutions of c-Cbl, in myeloid malignancies. Cancer Res.68(24), 10349–10357 (2008).
  • Grand FH, Hidalgo-Curtis CE, Ernst T et al. Frequent CBL mutations associated with 11q acquired uniparental disomy in myeloproliferative neoplasms. Blood113(24), 6182–6192 (2009).
  • Makishima H, Cazzolli H, Szpurka H et al. Mutations of e3 ubiquitin ligase cbl family members constitute a novel common pathogenic lesion in myeloid malignancies. J. Clin. Oncol.27(36), 6109–6116 (2009).
  • Sanada M, Suzuki T, Shih LY et al. Gain-of-function of mutated C-CBL tumour suppressor in myeloid neoplasms. Nature460(7257), 904–908 (2009).
  • Loh ML, Sakai DS, Flotho C et al. Mutations in CBL occur frequently in juvenile myelomonocytic leukemia. Blood114(9), 1859–1863 (2009).
  • Silva M, Richard C, Benito A, Sanz C, Olalla I, Fernández-Luna JL. Expression of Bcl-x in erythroid precursors from patients with polycythemia vera. N. Engl. J. Med.338(9), 564–571 (1998).
  • Plo I, Nakatake M, Malivert L et al. JAK2 stimulates homologous recombination and genetic instability: potential implication in the heterogeneity of myeloproliferative disorders. Blood112(4), 1402–1412 (2008).
  • Zhao R, Oxley D, Smith T, Follows GA, Green AR, Alexander DR. DNA damage-induced Bcl-xL deamidation is mediated by NHE-1 antiport regulated intracellular pH. PLoS Biol.5(1), e1 (2007).
  • Zhao R, Follows GA, Beer PA et al. Inhibition of the Bcl-xL deamidation pathway in myeloproliferative disorders. N. Engl. J. Med.359(26), 2778–2789 (2008).
  • Green A, Beer P. Somatic mutations of IDH1 and IDH2 in the leukemic transformation of myeloproliferative neoplasms. N. Engl. J. Med.362(4), 369–370 (2010).
  • Pardanani A, Lasho TL, Finke CM et al. IDH1 and IDH2 mutation analysis in chronic- and blast-phase myeloproliferative neoplasms. Leukemia DOI: 10.1038/leu.2010.77 (2010) (Epub ahead of print).
  • Jager R, Gisslinger H, Berg T et al. Deletions of the transcription factor Ikaros in myeloproliferative neoplasms at transformation to acute myeloid leukemia. Blood114, 181 (2009) (Abstract 435).
  • Mullighan CG, Miller CB, Radtke I et al. BCR–ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature453(7191), 110–114 (2008).
  • Jamieson CH, Ailles LE, Dylla SJ et al. Granulocyte–macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N. Engl. J. Med.351(7), 657–667 (2004).
  • Levine RL, Pardanani A, Tefferi A, Gilliland DG. Role of JAK2 in the pathogenesis and therapy of myeloproliferative disorders. Nat. Rev. Cancer7(9), 673–683 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.