69
Views
14
CrossRef citations to date
0
Altmetric
Review

Vaccines as consolidation therapy for myeloid leukemia

&
Pages 37-50 | Published online: 10 Jan 2014

References

  • Estey E, Dohner H. Acute myeloid leukaemia. Lancet368(9550), 1894–1907 (2006).
  • Kantarjian H, Shah NP, Hochhaus A et al. Dasatinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia. N. Engl. J. Med.362(24), 2260–2270 (2010).
  • Saglio G, Kim DW, Issaragrisil S et al. Nilotinib versus imatinib for newly diagnosed chronic myeloid leukemia. N. Engl. J. Med.362(24), 2251–2259 (2010).
  • Marin D. Current status of imatinib as frontline therapy for chronic myeloid leukemia. Semin. Hematol.47(4), 312–318 (2010).
  • Falkenburg JH, van de Corput L, Marijt EW, Willemze R. Minor histocompatibility antigens in human stem cell transplantation. Exp. Hematol.31(9), 743–751 (2003).
  • Greiner J, Dohner H, Schmitt M. Cancer vaccines for patients with acute myeloid leukemia – definition of leukemia-associated antigens and current clinical protocols targeting these antigens. Haematologica91(12), 1653–1661 (2006).
  • Chen W, Norbury CC, Cho Y, Yewdell JW, Bennink JR. Immunoproteasomes shape immunodominance hierarchies of antiviral CD8(+) T cells at the levels of T cell repertoire and presentation of viral antigens. J. Exp. Med.193(11), 1319–1326 (2001).
  • Yewdell JW. Confronting complexity: real-world immunodominance in antiviral CD8+ T cell responses. Immunity25(4), 533–543 (2006).
  • Ellis JM, Henson V, Slack R, Ng J, Hartzman RJ, Katovich Hurley C. Frequencies of HLA-A2 alleles in five U.S. population groups. Predominance of A*02011 and identification of HLA-A*0231. Hum. Immunol.61(3), 334–340 (2000).
  • Rezvani K, Yong AS, Mielke S et al. Leukemia-associated antigen-specific T-cell responses following combined PR1 and WT1 peptide vaccination in patients with myeloid malignancies. Blood111(1), 236–242 (2008).
  • Oji Y, Oka Y, Nishida S et al. WT1 peptide vaccine induces reduction in minimal residual disease in an imatinib-treated CML patient. Eur. J. Haematol.85(4), 358–360 (2010).
  • Moorman AV, Chilton L, Wilkinson J, Ensor HM, Bown N, Proctor SJ. A population-based cytogenetic study of adults with acute lymphoblastic leukemia. Blood115(2), 206–214 (2010).
  • Soupir CP, Vergilio JA, Dal Cin P et al. Philadelphia chromosome-positive acute myeloid leukemia: a rare aggressive leukemia with clinicopathologic features distinct from chronic myeloid leukemia in myeloid blast crisis. Am. J. Clin. Pathol.127(4), 642–650 (2007).
  • Daley GQ, Van Etten RA, Baltimore D. Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science247(4944), 824–830 (1990).
  • Shepherd P, Suffolk R, Halsey J, Allan N. Analysis of molecular breakpoint and m-RNA transcripts in a prospective randomized trial of interferon in chronic myeloid leukaemia: no correlation with clinical features, cytogenetic response, duration of chronic phase, or survival. Br. J. Haematol.89(3), 546–554 (1995).
  • Bocchia M, Korontsvit T, Xu Q et al. Specific human cellular immunity to bcr-abl oncogene-derived peptides. Blood87(9), 3587–3592 (1996).
  • Buzyn A, Ostankovitch M, Zerbib A et al. Peptides derived from the whole sequence of BCR-ABL bind to several class I molecules allowing specific induction of human cytotoxic T lymphocytes. Eur. J. Immunol.27(8), 2066–2072 (1997).
  • Greco G, Fruci D, Accapezzato D et al. Two brc-abl junction peptides bind HLA-A3 molecules and allow specific induction of human cytotoxic T lymphocytes. Leukemia10(4), 693–699 (1996).
  • Bocchia M, Wentworth PA, Southwood S et al. Specific binding of leukemia oncogene fusion protein peptides to HLA class I molecules. Blood85(10), 2680–2684 (1995).
  • Pinilla-Ibarz J, Cathcart K, Korontsvit T et al. Vaccination of patients with chronic myelogenous leukemia with bcr-abl oncogene breakpoint fusion peptides generates specific immune responses. Blood95(5), 1781–1787 (2000).
  • Mannering SI, McKenzie JL, Fearnley DB, Hart DN. HLA-DR1-restricted bcr-abl (b3a2)-specific CD4+ T lymphocytes respond to dendritic cells pulsed with b3a2 peptide and antigen-presenting cells exposed to b3a2 containing cell lysates. Blood90(1), 290–297 (1997).
  • Pawelec G, Max H, Halder T et al. BCR/ABL leukemia oncogene fusion peptides selectively bind to certain HLA-DR alleles and can be recognized by T cells found at low frequency in the repertoire of normal donors. Blood88(6), 2118–2124 (1996).
  • Cathcart K, Pinilla-Ibarz J, Korontsvit T et al. A multivalent bcr-abl fusion peptide vaccination trial in patients with chronic myeloid leukemia. Blood103(3), 1037–1042 (2004).
  • Bocchia M, Gentili S, Abruzzese E et al. Effect of a p210 multipeptide vaccine associated with imatinib or interferon in patients with chronic myeloid leukaemia and persistent residual disease: a multicentre observational trial. Lancet365(9460), 657–662 (2005).
  • Rojas JM, Knight K, Wang L, Clark RE. Clinical evaluation of BCR-ABL peptide immunisation in chronic myeloid leukaemia: results of the EPIC study. Leukemia21(11), 2287–2295 (2007).
  • Alexander J, Sidney J, Southwood S et al. Development of high potency universal DR-restricted helper epitopes by modification of high affinity DR-blocking peptides. Immunity1(9), 751–761 (1994).
  • Rosa DS, Tzelepis F, Cunha MG, Soares IS, Rodrigues MM. The pan HLA DR-binding epitope improves adjuvant-assisted immunization with a recombinant protein containing a malaria vaccine candidate. Immunol. Lett.92(3), 259–268 (2004).
  • Ressing ME, van Driel WJ, Brandt RM et al. Detection of T helper responses, but not of human papillomavirus-specific cytotoxic T lymphocyte responses, after peptide vaccination of patients with cervical carcinoma. J. Immunother.23(2), 255–266 (2000).
  • Pinilla-Ibarz J, Korontsvit T, Zakhaleva V, Roberts W, Scheinberg DA. Synthetic peptide analogs derived from bcr/abl fusion proteins and the induction of heteroclitic human T-cell responses. Haematologica90(10), 1324–1332 (2005).
  • Jain N, Reuben JM, Kantarjian H et al. Synthetic tumor-specific breakpoint peptide vaccine in patients with chronic myeloid leukemia and minimal residual disease: a Phase 2 trial. Cancer115(17), 3924–3934 (2009).
  • Rojas JM, Knight K, Watmough S et al. BCR-ABL peptide vaccination in healthy subjects: immunological responses are equivalent to those in chronic myeloid leukaemia patients. Leuk. Res. DOI: 10.1016/j.leukres.2010.05.028 (2010) (Epub ahead of print).
  • Rauscher FJ 3rd, Morris JF, Tournay OE, Cook DM, Curran T. Binding of the Wilms’ tumor locus zinc finger protein to the EGR-1 consensus sequence. Science250(4985), 1259–1262 (1990).
  • Englert C, Hou X, Maheswaran S et al. WT1 suppresses synthesis of the epidermal growth factor receptor and induces apoptosis. EMBO J.14(19), 4662–4675 (1995).
  • Harrington MA, Konicek B, Song A, Xia XL, Fredericks WJ, Rauscher FJ 3rd. Inhibition of colony-stimulating factor-1 promoter activity by the product of the Wilms’ tumor locus. J. Biol. Chem.268(28), 21271–21275 (1993).
  • Hossain A, Nixon M, Kuo MT, Saunders GF. N-terminally truncated WT1 protein with oncogenic properties overexpressed in leukemia. J. Biol. Chem.281(38), 28122–28130 (2006).
  • Inoue K, Ogawa H, Sonoda Y et al. Aberrant overexpression of the Wilms tumor gene (WT1) in human leukemia. Blood89(4), 1405–1412 (1997).
  • Miwa H, Beran M, Saunders GF. Expression of the Wilms’ tumor gene (WT1) in human leukemias. Leukemia6(5), 405–409 (1992).
  • Call KM, Glaser T, Ito CY et al. Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms’ tumor locus. Cell60(3), 509–520 (1990).
  • Oji Y, Miyoshi S, Maeda H et al. Overexpression of the Wilms’ tumor gene WT1 in de novo lung cancers. Int. J. Cancer100(3), 297–303 (2002).
  • Dohi S, Ohno S, Ohno Y, Soma G, Kyo S, Inoue M. Correlation between WT1 expression and cell proliferation in endometrial cancer. Anticancer Res.29(11), 4887–4891 (2009).
  • Oji Y, Yamamoto H, Nomura M et al. Overexpression of the Wilms’ tumor gene WT1 in colorectal adenocarcinoma. Cancer Sci.94(8), 712–717 (2003).
  • Oka Y, Udaka K, Tsuboi A et al. Cancer immunotherapy targeting Wilms’ tumor gene WT1 product. J. Immunol.164(4), 1873–1880 (2000).
  • Gao L, Xue SA, Hasserjian R et al. Human cytotoxic T lymphocytes specific for Wilms’ tumor antigen-1 inhibit engraftment of leukemia-initiating stem cells in non-obese diabetic-severe combined immunodeficient recipients. Transplantation75(9), 1429–1436 (2003).
  • Asemissen AM, Keilholz U, Tenzer S et al. Identification of a highly immunogenic HLA-A*01-binding T cell epitope of WT1. Clin. Cancer Res.12(24), 7476–7482 (2006).
  • Li Z, Oka Y, Tsuboi A et al. Identification of a WT1 protein-derived peptide, WT1, as a HLA-A 0206-restricted, WT1-specific CTL epitope. Microbiol. Immunol.52(11), 551–558 (2008).
  • Ohminami H, Yasukawa M, Fujita S. HLA class I-restricted lysis of leukemia cells by a CD8(+) cytotoxic T-lymphocyte clone specific for WT1 peptide. Blood95(1), 286–293 (2000).
  • Gao L, Bellantuono I, Elsasser A et al. Selective elimination of leukemic CD34+ progenitor cells by cytotoxic T lymphocytes specific for WT1. Blood95(7), 2198–2203 (2000).
  • Oka Y, Elisseeva OA, Tsuboi A et al. Human cytotoxic T-lymphocyte responses specific for peptides of the wild-type Wilms’ tumor gene (WT1) product. Immunogenetics51(2), 99–107 (2000).
  • Fujiki F, Oka Y, Kawakatsu M et al. A WT1 protein-derived, naturally processed 16-mer peptide, WT1(332), is a promiscuous helper peptide for induction of WT1-specific Th1-type CD4+ T cells. Microbiol. Immunol.52(12), 591–600 (2008).
  • Knights AJ, Zaniou A, Rees RC, Pawelec G, Muller L. Prediction of an HLA-DR-binding peptide derived from Wilms’ tumour 1 protein and demonstration of in vitro immunogenicity of WT1(124–138)-pulsed dendritic cells generated according to an optimised protocol. Cancer Immunol. Immunother.51(5), 271–281 (2002).
  • Kobayashi H, Nagato T, Aoki N et al. Defining MHC class II T helper epitopes for WT1 tumor antigen. Cancer Immunol. Immunother.55(7), 850–860 (2006).
  • Guo Y, Niiya H, Azuma T et al. Direct recognition and lysis of leukemia cells by WT1-specific CD4+ T lymphocytes in an HLA class II-restricted manner. Blood106(4), 1415–1418 (2005).
  • Tsuboi A, Oka Y, Udaka K et al. Enhanced induction of human WT1-specific cytotoxic T lymphocytes with a 9-mer WT1 peptide modified at HLA-A*2402-binding residues. Cancer Immunol. Immunother.51(11–12), 614–620 (2002).
  • Oka Y, Tsuboi A, Taguchi T et al. Induction of WT1 (Wilms’ tumor gene)-specific cytotoxic T lymphocytes by WT1 peptide vaccine and the resultant cancer regression. Proc. Natl Acad. Sci. USA101(38), 13885–13890 (2004).
  • Tsuboi A, Oka Y, Osaki T et al. WT1 peptide-based immunotherapy for patients with lung cancer: report of two cases. Microbiol. Immunol.48(3), 175–184 (2004).
  • Oka Y, Tsuboi A, Murakami M et al. Wilms tumor gene peptide-based immunotherapy for patients with overt leukemia from myelodysplastic syndrome (MDS) or MDS with myelofibrosis. Int. J. Hematol.78(1), 56–61 (2003).
  • Mailander V, Scheibenbogen C, Thiel E, Letsch A, Blau IW, Keilholz U. Complete remission in a patient with recurrent acute myeloid leukemia induced by vaccination with WT1 peptide in the absence of hematological or renal toxicity. Leukemia18(1), 165–166 (2004).
  • Keilholz U, Letsch A, Busse A et al. A clinical and immunologic Phase 2 trial of Wilms tumor gene product 1 (WT1) peptide vaccination in patients with AML and MDS. Blood113(26), 6541–6548 (2009).
  • Molldrem J, Dermime S, Parker K et al. Targeted T-cell therapy for human leukemia: cytotoxic T lymphocytes specific for a peptide derived from proteinase 3 preferentially lyse human myeloid leukemia cells. Blood88(7), 2450–2457 (1996).
  • Borregaard N, Cowland JB. Granules of the human neutrophilic polymorphonuclear leukocyte. Blood89(10), 3503–3521 (1997).
  • Molldrem JJ, Clave E, Jiang YZ et al. Cytotoxic T lymphocytes specific for a nonpolymorphic proteinase 3 peptide preferentially inhibit chronic myeloid leukemia colony-forming units. Blood90(7), 2529–2534 (1997).
  • Molldrem JJ, Lee PP, Wang C et al. Evidence that specific T lymphocytes may participate in the elimination of chronic myelogenous leukemia. Nat. Med.6(9), 1018–1023 (2000).
  • Qazilbash M, Wieder E, Rios R et al. Vaccination with the PR1 leukemia-associated antigen can induce complete remission in patients with myeloid leukaemia. Blood104, 77a (2004) (Abstract 259).
  • Qazilbash MH, Thall PF, Wang X et al. PR1 peptide vaccination for patients with myeloid leukemias. J. Clin. Oncol. (ASCO Annual Meeting Proceedings)25, 18S (2007).
  • Greiner J, Ringhoffer M, Taniguchi M et al. Receptor for hyaluronan acid-mediated motility (RHAMM) is a new immunogenic leukemia-associated antigen in acute and chronic myeloid leukemia. Exp. Hematol.30(9), 1029–1035 (2002).
  • Maxwell CA, McCarthy J, Turley E. Cell-surface and mitotic-spindle RHAMM: moonlighting or dual oncogenic functions? J. Cell Sci.121(Pt 7), 925–932 (2008).
  • Hamilton SR, Fard SF, Paiwand FF et al. The hyaluronan receptors CD44 and Rhamm (CD168) form complexes with ERK1,2 that sustain high basal motility in breast cancer cells. J. Biol. Chem.282(22), 16667–16680 (2007).
  • Tolg C, Hamilton SR, Nakrieko KA et al. Rhamm-/- fibroblasts are defective in CD44-mediated ERK1,2 motogenic signaling, leading to defective skin wound repair. J. Cell Biol.175(6), 1017–1028 (2006).
  • Samuel SK, Hurta RA, Spearman MA, Wright JA, Turley EA, Greenberg AH. TGF-β 1 stimulation of cell locomotion utilizes the hyaluronan receptor RHAMM and hyaluronan. J. Cell Biol.123(3), 749–758 (1993).
  • Greiner J, Li L, Ringhoffer M et al. Identification and characterization of epitopes of the receptor for hyaluronic acid-mediated motility (RHAMM/CD168) recognized by CD8+ T cells of HLA-A2-positive patients with acute myeloid leukemia. Blood106(3), 938–945 (2005).
  • Schmitt M, Schmitt A, Rojewski MT et al. RHAMM-R3 peptide vaccination in patients with acute myeloid leukemia, myelodysplastic syndrome, and multiple myeloma elicits immunologic and clinical responses. Blood111(3), 1357–1365 (2008).
  • Greiner J, Schmitt A, Giannopoulos K et al. High-dose RHAMM-R3 peptide vaccination for patients with acute myeloid leukemia, myelodysplastic syndrome and multiple myeloma. Haematologica95(7), 1191–1197 (2010).
  • Blackburn EH. Structure and function of telomeres. Nature350(6319), 569–573 (1991).
  • Hiyama E, Hiyama K. Telomerase as tumor marker. Cancer Lett.194(2), 221–233 (2003).
  • Hartmann U, Brummendorf TH, Balabanov S, Thiede C, Illme T, Schaich M. Telomere length and hTERT expression in patients with acute myeloid leukemia correlates with chromosomal abnormalities. Haematologica90(3), 307–316 (2005).
  • Warner JK, Wang JC, Takenaka K et al. Direct evidence for cooperating genetic events in the leukemic transformation of normal human hematopoietic cells. Leukemia19(10), 1794–1805 (2005).
  • Minev B, Hipp J, Firat H, Schmidt JD, Langlade-Demoyen P, Zanetti M. Cytotoxic T cell immunity against telomerase reverse transcriptase in humans. Proc. Natl Acad. Sci. USA97(9), 4796–4801 (2000).
  • Arai J, Yasukawa M, Ohminami H, Kakimoto M, Hasegawa A, Fujita S. Identification of human telomerase reverse transcriptase-derived peptides that induce HLA-A24-restricted antileukemia cytotoxic T lymphocytes. Blood97(9), 2903–2907 (2001).
  • Schroers R, Shen L, Rollins L et al. Human telomerase reverse transcriptase-specific T-helper responses induced by promiscuous major histocompatibility complex class II-restricted epitopes. Clin. Cancer Res.9(13), 4743–4755 (2003).
  • Bernhardt SL, Gjertsen MK, Trachsel S et al. Telomerase peptide vaccination of patients with non-resectable pancreatic cancer: a dose escalating Phase I/II study. Br. J. Cancer95(11), 1474–1482 (2006).
  • Brunsvig PF, Aamdal S, Gjertsen MK et al. Telomerase peptide vaccination: a Phase I/II study in patients with non-small cell lung cancer. Cancer Immunol. Immunother.55(12), 1553–1564 (2006).
  • Mavroudis D, Bolonakis I, Cornet S et al. A Phase I study of the optimized cryptic peptide TERT(572y) in patients with advanced malignancies. Oncology70(4), 306–314 (2006).
  • Gannage M, Abel M, Michallet AS et al.Ex vivo characterization of multiepitopic tumor-specific CD8 T cells in patients with chronic myeloid leukemia: implications for vaccine development and adoptive cellular immunotherapy. J. Immunol.174(12), 8210–8218 (2005).
  • Vissers JL, De Vries IJ, Schreurs MW et al. The renal cell carcinoma-associated antigen G250 encodes a human leukocyte antigen (HLA)-A2.1-restricted epitope recognized by cytotoxic T lymphocytes. Cancer Res.59(21), 5554–5559 (1999).
  • Loncaster JA, Harris AL, Davidson SE et al. Carbonic anhydrase (CA IX) expression, a potential new intrinsic marker of hypoxia: correlations with tumor oxygen measurements and prognosis in locally advanced carcinoma of the cervix. Cancer Res.61(17), 6394–6399 (2001).
  • Grabmaier K, A de Weijert MC, Verhaegh GW, Schalken JA, Oosterwijk E. Strict regulation of CAIX(G250/MN) by HIF-1α in clear cell renal cell carcinoma. Oncogene23(33), 5624–5631 (2004).
  • Le QT, Chen E, Salim A et al. An evaluation of tumor oxygenation and gene expression in patients with early stage non-small cell lung cancers. Clin. Cancer Res.12(5), 1507–1514 (2006).
  • Troost EG, Bussink J, Kaanders JH et al. Comparison of different methods of CAIX quantification in relation to hypoxia in three human head and neck tumor lines. Radiother. Oncol.76(2), 194–199 (2005).
  • Greiner J, Schmitt M, Li L et al. Expression of tumor-associated antigens in acute myeloid leukemia: implications for specific immunotherapeutic approaches. Blood108(13), 4109–4117 (2006).
  • Herbert N, Haferkamp A, Schmitz-Winnenthal HF, Zoller M. Concomitant tumor and autoantigen vaccination supports renal cell carcinoma rejection. J. Immunol.185(2), 902–916 (2010).
  • Su Z, Dannull J, Heiser A et al. Immunological and clinical responses in metastatic renal cancer patients vaccinated with tumor RNA-transfected dendritic cells. Cancer Res.63(9), 2127–2133 (2003).
  • Doolan P, Clynes M, Kennedy S, Mehta JP, Crown J, O’Driscoll L. Prevalence and prognostic and predictive relevance of PRAME in breast cancer. Breast Cancer Res. Treat.109(2), 359–365 (2008).
  • Figueiredo DL, Mamede RC, Proto-Siqueira R, Neder L, Silva WA Jr, Zago MA. Expression of cancer testis antigens in head and neck squamous cell carcinomas. Head Neck28(7), 614–619 (2006).
  • Oberthuer A, Hero B, Spitz R, Berthold F, Fischer M. The tumor-associated antigen PRAME is universally expressed in high-stage neuroblastoma and associated with poor outcome. Clin. Cancer Res.10(13), 4307–4313 (2004).
  • Steinbach D, Hermann J, Viehmann S, Zintl F, Gruhn B. Clinical implications of PRAME gene expression in childhood acute myeloid leukemia. Cancer Genet. Cytogenet.133(2), 118–123 (2002).
  • Steinbach D, Viehmann S, Zintl F, Gruhn B. PRAME gene expression in childhood acute lymphoblastic leukemia. Cancer Genet. Cytogenet.138(1), 89–91 (2002).
  • De Carvalho DD, Binato R, Pereira WO et al. BCR-ABL-mediated upregulation of PRAME is responsible for knocking down TRAIL in CML patients. Oncogene30(2), 223–233 (2010).
  • van Baren N, Chambost H, Ferrant A et al.PRAME, a gene encoding an antigen recognized on a human melanoma by cytolytic T cells, is expressed in acute leukaemia cells. Br. J. Haematol.102(5), 1376–1379 (1998).
  • Ikeda H, Lethe B, Lehmann F et al. Characterization of an antigen that is recognized on a melanoma showing partial HLA loss by CTL expressing an NK inhibitory receptor. Immunity6(2), 199–208 (1997).
  • Santamaria CM, Chillon MC, Garcia-Sanz R et al. Molecular stratification model for prognosis in cytogenetically normal acute myeloid leukemia. Blood114(1), 148–152 (2009).
  • Oehler VG, Guthrie KA, Cummings CL et al. The preferentially expressed antigen in melanoma (PRAME) inhibits myeloid differentiation in normal hematopoietic and leukemic progenitor cells. Blood114(15), 3299–3308 (2009).
  • Radich JP, Dai H, Mao M et al. Gene expression changes associated with progression and response in chronic myeloid leukemia. Proc. Natl Acad. Sci. USA103(8), 2794–2799 (2006).
  • Kessler JH, Beekman NJ, Bres-Vloemans SA et al. Efficient identification of novel HLA-A(*)0201-presented cytotoxic T lymphocyte epitopes in the widely expressed tumor antigen PRAME by proteasome-mediated digestion analysis. J. Exp. Med.193(1), 73–88 (2001).
  • Griffioen M, Kessler JH, Borghi M et al. Detection and functional analysis of CD8+ T cells specific for PRAME: a target for T-cell therapy. Clin. Cancer Res.12(10), 3130–3136 (2006).
  • Morita Y, Heike Y, Kawakami M et al. Monitoring of WT1-specific cytotoxic T lymphocytes after allogeneic hematopoietic stem cell transplantation. Int. J. Cancer119(6), 1360–1367 (2006).
  • Quintarelli C, Dotti G, De Angelis B et al. Cytotoxic T lymphocytes directed to the preferentially expressed antigen of melanoma (PRAME) target chronic myeloid leukemia. Blood112(5), 1876–1885 (2008).
  • Rezvani K, Yong AS, Tawab A et al.Ex vivo characterization of polyclonal memory CD8+ T-cell responses to PRAME-specific peptides in patients with acute lymphoblastic leukemia and acute and chronic myeloid leukemia. Blood113(10), 2245–2255 (2009).
  • Brossart P, Schneider A, Dill P et al. The epithelial tumor antigen MUC1 is expressed in hematological malignancies and is recognized by MUC1-specific cytotoxic T-lymphocytes. Cancer Res.61(18), 6846–6850 (2001).
  • Brossart P, Heinrich KS, Stuhler G et al. Identification of HLA-A2-restricted T-cell epitopes derived from the MUC1 tumor antigen for broadly applicable vaccine therapies. Blood93(12), 4309–4317 (1999).
  • Girling A, Bartkova J, Burchell J, Gendler S, Gillett C, Taylor-Papadimitriou J. A core protein epitope of the polymorphic epithelial mucin detected by the monoclonal antibody SM-3 is selectively exposed in a range of primary carcinomas. Int. J. Cancer43(6), 1072–1076 (1989).
  • Brugger W, Schneider A, Schammann T et al. Dendritic cell-based vaccines in patients with hematological malignancies. Ann. NY Acad. Sci.938, 359–363 (2001).
  • Ramanathan RK, Lee KM, McKolanis J et al. Phase I study of a MUC1 vaccine composed of different doses of MUC1 peptide with SB-AS2 adjuvant in resected and locally advanced pancreatic cancer. Cancer Immunol. Immunother.54(3), 254–264 (2005).
  • Palmer M, Parker J, Modi S et al. Phase I study of the BLP25 (MUC1 peptide) liposomal vaccine for active specific immunotherapy in stage IIIB/IV non-small-cell lung cancer. Clin. Lung Cancer3(1), 49–57; discussion 58 (2001).
  • North SA, Graham K, Bodnar D, Venner P. A pilot study of the liposomal MUC1 vaccine BLP25 in prostate specific antigen failures after radical prostatectomy. J. Urol.176(1), 91–95 (2006).
  • Butts C, Murray N, Maksymiuk A et al. Randomized Phase IIB trial of BLP25 liposome vaccine in stage IIIB and IV non-small-cell lung cancer. J. Clin. Oncol.23(27), 6674–6681 (2005).
  • Kapp M, Stevanovic S, Fick K et al. CD8+ T-cell responses to tumor-associated antigens correlate with superior relapse-free survival after allo-SCT. Bone Marrow Transplant.43(5), 399–410 (2009).
  • Chen YT, Scanlan MJ, Sahin U et al. A testicular antigen aberrantly expressed in human cancers detected by autologous antibody screening. Proc. Natl Acad. Sci. USA94(5), 1914–1918 (1997).
  • Stockert E, Jager E, Chen YT et al. A survey of the humoral immune response of cancer patients to a panel of human tumor antigens. J. Exp. Med.187(8), 1349–1354 (1998).
  • Jager E, Chen YT, Drijfhout JW et al. Simultaneous humoral and cellular immune response against cancer-testis antigen NY-ESO-1: definition of human histocompatibility leukocyte antigen (HLA)-A2-binding peptide epitopes. J. Exp. Med.187(2), 265–270 (1998).
  • Odunsi K, Qian F, Matsuzaki J et al. Vaccination with an NY-ESO-1 peptide of HLA class I/II specificities induces integrated humoral and T cell responses in ovarian cancer. Proc. Natl Acad. Sci. USA104(31), 12837–12842 (2007).
  • Khong HT, Yang JC, Topalian SL et al. Immunization of HLA-A*0201 and/or HLA-DPβ1*04 patients with metastatic melanoma using epitopes from the NY-ESO-1 antigen. J. Immunother.27(6), 472–477 (2004).
  • Fourcade J, Kudela P, Andrade Filho PA et al. Immunization with analog peptide in combination with CpG and montanide expands tumor antigen-specific CD8+ T cells in melanoma patients. J. Immunother.31(8), 781–791 (2008).
  • Bioley G, Guillaume P, Luescher I et al. Vaccination with a recombinant protein encoding the tumor-specific antigen NY-ESO-1 elicits an A2/157–165-specific CTL repertoire structurally distinct and of reduced tumor reactivity than that elicited by spontaneous immune responses to NY-ESO-1-expressing tumors. J. Immunother.32(2), 161–168 (2009).
  • Adams SP, Sahota SS, Mijovic A et al. Frequent expression of HAGE in presentation chronic myeloid leukaemias. Leukemia16(11), 2238–2242 (2002).
  • Niemeyer P, Tureci O, Eberle T, Graf N, Pfreundschuh M, Sahin U. Expression of serologically identified tumor antigens in acute leukemias. Leuk. Res.27(7), 655–660 (2003).
  • Schmitt M, Li L, Giannopoulos K et al. Chronic myeloid leukemia cells express tumor-associated antigens eliciting specific CD8+ T-cell responses and are lacking costimulatory molecules. Exp. Hematol.34(12), 1709–1719 (2006).
  • Mohty M, Jarrossay D, Lafage-Pochitaloff M et al. Circulating blood dendritic cells from myeloid leukemia patients display quantitative and cytogenetic abnormalities as well as functional impairment. Blood98(13), 3750–3756 (2001).
  • Vuckovic S, Fearnley DB, Gunningham S, Spearing RL, Patton WN, Hart DN. Dendritic cells in chronic myelomonocytic leukaemia. Br. J. Haematol.105(4), 974–985 (1999).
  • Eisendle K, Wolf D, Gastl G, Kircher-Eibl B. Dendritic cells from patients with chronic myeloid leukemia: functional and phenotypic features. Leuk. Lymphoma46(5), 663–670 (2005).
  • Takahashi T, Tanaka Y, Nieda M et al. Dendritic cell vaccination for patients with chronic myelogenous leukemia. Leuk. Res.27(9), 795–802 (2003).
  • Van Driessche A, Van de Velde AL, Nijs G et al. Clinical-grade manufacturing of autologous mature mRNA-electroporated dendritic cells and safety testing in acute myeloid leukemia patients in a Phase I dose-escalation clinical trial. Cytotherapy11(5), 653–668 (2009).
  • Van Tendeloo VF, Van de Velde A, Van Driessche A et al. Induction of complete and molecular remissions in acute myeloid leukemia by Wilms’ tumor 1 antigen-targeted dendritic cell vaccination. Proc. Natl Acad. Sci. USA107(31), 13824–13829 (2010).
  • Matheoud D, Perie L, Hoeffel G et al. Cross-presentation by dendritic cells from live cells induces protective immune responses in vivo. Blood115(22), 4412–4420 (2010).
  • Mellman I, Steinman RM. Dendritic cells: specialized and regulated antigen processing machines. Cell106(3), 255–258 (2001).
  • Ackerman AL, Cresswell P. Cellular mechanisms governing cross-presentation of exogenous antigens. Nat. Immunol5(7), 678–684 (2004).
  • Zeng Y, Graner MW, Thompson S, Marron M, Katsanis E. Induction of BCR-ABL-specific immunity following vaccination with chaperone-rich cell lysates derived from BCR-ABL+ tumor cells. Blood105(5), 2016–2022 (2005).
  • Weigel BJ, Panoskaltsis-Mortari A, Diers M et al. Dendritic cells pulsed or fused with AML cellular antigen provide comparable in vivo antitumor protective responses. Exp. Hematol.34(10), 1403–1412 (2006).
  • Spisek R, Chevallier P, Morineau N et al. Induction of leukemia-specific cytotoxic response by cross-presentation of late-apoptotic leukemic blasts by autologous dendritic cells of nonleukemic origin. Cancer Res.62(10), 2861–2868 (2002).
  • Fujii S, Fujimoto K, Osato M, Matsui K, Takatsuki K, Kawakita M. Induction of antitumor cytotoxic activity using CD34+ cord blood cell-derived and irradiated tumor cell-primed dendritic cells. Int. J. Hematol.68(2), 169–182 (1998).
  • Jarnjak-Jankovic S, Pettersen RD, Saeboe-Larssen S, Wesenberg F, Gaudernack G. Evaluation of dendritic cells loaded with apoptotic cancer cells or expressing tumour mRNA as potential cancer vaccines against leukemia. BMC Cancer5, 20 (2005).
  • Lee JJ, Kook H, Park MS et al. Immunotherapy using autologous monocyte-derived dendritic cells pulsed with leukemic cell lysates for acute myeloid leukemia relapse after autologous peripheral blood stem cell transplantation. J. Clin. Apher.19(2), 66–70 (2004).
  • Kremser A, Dressig J, Grabrucker C et al. Dendritic cells (DCs) can be successfully generated from leukemic blasts in individual patients with AML or MDS: an evaluation of different methods. J. Immunother.33(2), 185–199 (2010).
  • Li L, Schmitt A, Reinhardt P et al. Reconstitution of CD40 and CD80 in dendritic cells generated from blasts of patients with acute myeloid leukemia. Cancer Immun.3, 8 (2003).
  • Westermann J, Kopp J, van Lessen A et al. Vaccination with autologous non-irradiated dendritic cells in patients with bcr/abl+ chronic myeloid leukaemia. Br. J. Haematol.137(4), 297–306 (2007).
  • Dranoff G, Jaffee E, Lazenby A et al. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc. Natl Acad. Sci. USA90(8), 3539–3543 (1993).
  • Schwaab T, Tretter CP, Gibson JJ et al. Tumor-related immunity in prostate cancer patients treated with human recombinant granulocyte monocyte-colony stimulating factor (GM-CSF). Prostate66(6), 667–674 (2006).
  • Soiffer R, Hodi FS, Haluska F et al. Vaccination with irradiated, autologous melanoma cells engineered to secrete granulocyte-macrophage colony-stimulating factor by adenoviral-mediated gene transfer augments antitumor immunity in patients with metastatic melanoma. J. Clin. Oncol.21(17), 3343–3350 (2003).
  • Nemunaitis J. Granulocyte-macrophage colony-stimulating factor gene-transfected autologous tumor cell vaccine: focus[correction to fcous] on non-small-cell lung cancer. Clin. Lung Cancer5(3), 148–157 (2003).
  • Borrello I, Sotomayor EM, Rattis FM, Cooke SK, Gu L, Levitsky HI. Sustaining the graft-versus-tumor effect through posttransplant immunization with granulocyte-macrophage colony-stimulating factor (GM-CSF)-producing tumor vaccines. Blood95(10), 3011–3019 (2000).
  • Borrello IM, Levitsky HI, Stock W et al. Granulocyte-macrophage colony-stimulating factor (GM-CSF)-secreting cellular immunotherapy in combination with autologous stem cell transplantation (ASCT) as postremission therapy for acute myeloid leukemia (AML). Blood114(9), 1736–1745 (2009).
  • Simons JW, Sacks N. Granulocyte-macrophage colony-stimulating factor-transduced allogeneic cancer cellular immunotherapy: the GVAX vaccine for prostate cancer. Urol. Oncol.24(5), 419–424 (2006).
  • Small EJ, Sacks N, Nemunaitis J et al. Granulocyte macrophage colony-stimulating factor – secreting allogeneic cellular immunotherapy for hormone-refractory prostate cancer. Clin. Cancer Res.13(13), 3883–3891 (2007).
  • Le DT, Pardoll DM, Jaffee EM. Cellular vaccine approaches. Cancer J.16(4), 304–310 (2010).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.