299
Views
90
CrossRef citations to date
0
Altmetric
Review

The bone marrow microenvironment and leukemia: biology and therapeutic targeting

&
Pages 271-283 | Published online: 10 Jan 2014

References

  • Yin T, Li L. The stem cell niches in bone. J. Clin. Invest.116(5), 1195–1201 (2006).
  • Calvi LM, Adams GB, Welbrecht KW et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature425(6960), 841–846 (2003).
  • Nilsson SK, Johnston HM, Coverdale JA. Spatial localization of transplanted hemopoietic stem cells: inferences for the localization of stem cell niches. Blood97(8), 2293–2299 (2001).
  • Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell121(7), 1109–1121 (2005).
  • Varnum-Finney B, Purton LE, Yu M et al. The Notch ligand, Jagged-1, influences the development of primitive hematopoietic precursor cells. Blood91(11), 4084–4091 (1998).
  • Arai F, Hirao A, Ohmura M et al. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell118(2), 149–161 (2004).
  • Brandt J, Briddell RA, Srour EF, Leemhuis TB, Hoffman R. Role of c-kit ligand in the expansion of human hematopoietic progenitor cells. Blood79(3), 634–641 (1992).
  • Kondo M, Wagers AJ, Manz MG et al. Biology of hematopoietic stem cells and progenitors: implications for clinical application. Annu. Rev. Immunol.21, 759–806 (2003).
  • Manabe A, Coustan-Smith E, Behm FG, Raimondi SC, Campana D. Bone marrow-derived stromal cells prevent apoptotic cell death in B-lineage acute lymphoblastic leukemia. Blood79(9), 2370–2377 (1992).
  • Manabe A, Murti KG, Coustan-Smith E et al. Adhesion-dependent survival of normal and leukemic human B lymphoblasts on bone marrow stromal cells. Blood83(3), 758–766 (1994).
  • Iwamoto S, Mihara K, Downing JR, Pui CH, Campana D. Mesenchymal cells regulate the response of acute lymphoblastic leukemia cells to asparaginase. J. Clin. Invest.117(4), 1049–1057 (2007).
  • Ayala F, Dewar R, Kieran M, Kalluri R. Contribution of bone microenvironment to leukemogenesis and leukemia progression. Leukemia23(12), 2233–2241 (2009).
  • Perez-Atayde AR, Sallan SE, Tedrow U, Connors S, Alfred E, Folkman J. Spectrum of tumor angiogenesis in the bone marrow of children with acute lymphoblastic leukemia. Am. J. Pathol.150(3), 815–821 (1997).
  • Mirshahi P, Rafii A, Vincent L et al. Vasculogenic mimicry of acute leukemic bone marrow stromal cells. Leukemia23(6), 1039–1048 (2009).
  • Fiedler W, Graeven U, Ergün S et al. Vascular endothelial growth factor, a possible paracrine growth factor in human acute myeloid leukemia. Blood89(6), 1870–1875 (1997).
  • Aguayo A, Estey E, Kantarjian H et al. Cellular vascular endothelial growth factor is a predictor of outcome in patients with acute myeloid leukemia. Blood94(11), 3717–3721 (1999).
  • Loges S, Heil G, Bruweleit M et al. Analysis of concerted expression of angiogenic growth factors in acute myeloid leukemia: expression of angiopoietin-2 represents an independent prognostic factor for overall survival. J. Clin. Oncol.23(6), 1109–1117 (2005).
  • Colmone A, Amorim M, Pontier AL, Wang S, Jablonski E, Sipkins DA. Leukemic cells create bone marrow niches that disrupt the behavior of normal hematopoietic progenitor cells. Science322(5909), 1861–1865 (2008).
  • Hu X, Shen H, Tian C et al. Kinetics of normal hematopoietic stem and progenitor cells in a Notch1-induced leukemia model. Blood114(18), 3783–3792 (2009).
  • Raaijmakers MH, Mukherjee S, Guo S et al. Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature464(7290), 852–857 (2010).
  • Méndez-Ferrer S, Frenette PS. Hematopoietic stem cell trafficking: regulated adhesion and attraction to bone marrow microenvironment. Ann. NY Acad. Sci.1116, 392–413 (2007).
  • Loetscher M, Geiser T, O’Reilly T, Zwahlen R, Baggiolini M, Moser B. Cloning of a human seven-transmembrane domain receptor, LESTR, that is highly expressed in leukocytes. J. Biol. Chem.269(1), 232–237 (1994).
  • Feng Y, Broder CC, Kennedy PE, Berger EA. HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science272(5263), 872–877 (1996).
  • Deng H, Liu R, Ellmeier W et al. Identification of a major co-receptor for primary isolates of HIV-1. Nature381(6584), 661–666 (1996).
  • Endres MJ, Clapham PR, Marsh M et al. CD4-independent infection by HIV-2 is mediated by fusin/CXCR4. Cell87(4), 745–756 (1996).
  • Kitchen SG, Zack JA. CXCR4 expression during lymphopoiesis: implications for human immunodeficiency virus type 1 infection of the thymus. J. Virol.71(9), 6928–6934 (1997).
  • D’Apuzzo M, Rolink A, Loetscher M et al. The chemokine SDF-1, stromal cell-derived factor 1, attracts early stage B cell precursors via the chemokine receptor CXCR4. Eur. J. Immunol.27(7), 1788–1793 (1997).
  • Bleul CC, Fuhlbrigge RC, Casasnovas JM, Aiuti A, Springer TA. A highly efficacious lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1). J. Exp. Med.184(3), 1101–1109 (1996).
  • Oberlin E, Amara A, Bachelerie F et al. The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line-adapted HIV-1. Nature382(6594), 833–835 (1996).
  • Tashiro K, Tada H, Heilker R, Shirozu M, Nakano T, Honjo T. Signal sequence trap: a cloning strategy for secreted proteins and type I membrane proteins. Science261(5121), 600–603 (1993).
  • Nagasawa T, Kikutani H, Kishimoto T. Molecular cloning and structure of a pre-B-cell growth-stimulating factor. Proc. Natl Acad. Sci. USA91(6), 2305–2309 (1994).
  • Bleul CC, Schultze JL, Springer TA. B lymphocyte chemotaxis regulated in association with microanatomic localization, differentiation state, and B cell receptor engagement. J. Exp. Med.187(5), 753–762 (1998).
  • De La Luz Sierra M, Yang F, Narazaki M et al. Differential processing of stromal-derived factor-1α and stromal-derived factor-1β explains functional diversity. Blood103(7), 2452–2459 (2004).
  • Bleul CC, Farzan M, Choe H et al. The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry. Nature382(6594), 829–833 (1996).
  • Méndez-Ferrer S, Lucas D, Battista M, Frenette PS. Haematopoietic stem cell release is regulated by circadian oscillations. Nature452(7186), 442–447 (2008).
  • Burger JA, Kipps TJ. CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment. Blood107(5), 1761–1767 (2006).
  • Ma Q, Jones D, Borghesani PR et al. Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice. Proc. Natl Acad. Sci. USA95(16), 9448–9453 (1998).
  • Nagasawa T, Hirota S, Tachibana K et al. Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature382(6592), 635–638 (1996).
  • Peled A, Petit I, Kollet O et al. Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science283(5403), 845–848 (1999).
  • Méndez-Ferrer S, Michurina TV, Ferraro F et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature466(7308), 829–834 (2010).
  • Laudana C, Kim JY, Constantin G, Butcher E. Rapid leukocyte integrin activation by chemokines. Immunol. Rev.186, 37–46 (2002).
  • DiVietro JA, Brown DC, Sklar LA, Larson RS, Lawrence MB. Immobilized stromal cell-derived factor-1α triggers rapid VLA-4 affinity increases to stabilize lymphocyte tethers on VCAM-1 and subsequently initiate firm adhesion. J. Immunol.178(6), 3903–3911 (2007).
  • Chan JR, Hyduk SJ, Cybulsky MI. Chemoattractants induce a rapid and transient upregulation of monocyte α4 integrin affinity for vascular cell adhesion molecule 1 which mediates arrest: an early step in the process of emigration. J. Exp. Med.193(10), 1149–1158 (2001).
  • Petty JM, Lenox CC, Weiss DJ, Poynter ME, Suratt BT. Crosstalk between CXCR4/stromal derived factor-1 and VLA-4/VCAM-1 pathways regulate neutrophil retention in the bone marrow. J. Immunol.182(1), 604–612 (2009).
  • Hartmann TN, Grabovsky V, Pasvolsky R et al. A crosstalk between intracellular CXCR7 and CXCR4 involved in rapid CXCL12-triggered integrin activation but not in chemokine-triggered motility of human T lymphocytes and CD34+ cells. J. Leukoc. Biol.84(4), 1130–1140 (2008).
  • Peled A, Kollet O, Ponomaryov T et al. The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34+ cells: role in transendothelial/stromal migration and engraftment of NOD/SCID mice. Blood95(11), 3289–3296 (2000).
  • Bonig H, Watts KL, Chang KH, Kiem HP, Papayannopolou T. Concurrent blockade of α4-integrin and CXCR4 in hematopoietic stem/progenitor cell mobilization. Stem Cells27(4), 836–837 (2009).
  • Marchese A, Benovic JL. Agonist-promoted ubiquitination of the G protein-coupled receptor CXCR4 mediates lysosomal sorting. J. Biol. Chem.276(49), 45509–45512 (2001).
  • Signoret N, Oldridge J, Pelchen-Matthews A et al. Phorbol esters and SDF-1 induce rapid endocytosis and down modulation of the chemokine receptor CXCR4. J. Cell Biol.139(3), 651–664 (1997).
  • Förster R, Kremmer E, Schubel A et al. Intracellular and surface expression of the HIV-1 coreceptor CXCR4/fusin on various leukocyte subsets: rapid internalization and recycling upon activation. J. Immunol.160(3), 1522–1531 (1998).
  • Busillo JM, Benovic JL. Regulation of CXCR4 signaling. Biochim. Biophys. Acta1768(4), 952–963 (2007).
  • Vila-Coro AJ, Rodríguez-Frade JM, Martín De Ana A, Moreno-Ortíz MC, Martínez-A C, Mellado M. The chemokine SDF-1α triggers CXCR4 receptor dimerization and activates the JAK/STAT pathway. FASEB J.13(13), 1699–1710 (1999).
  • Hesselgesser J, Liang M, Hoxie J et al. Identification and characterization of the CXCR4 chemokine receptor in human T cell lines: ligand binding, biological activity, and HIV-1 infectivity. J. Immunol.160(2), 877–883 (1998).
  • Nie Y, Han YC, Zou YR. CXCR4 is required for the quiescence of primitive hematopoietic cells. J. Exp. Med.205(4), 777–783 (2008).
  • Moriuchi M, Moriuchi H, Margolis DM, Fauci AS. Cloning and analysis of the promoter region of CXCR4, a coreceptor for HIV-1 entry. USF/c-Myc enhances, while Yin-Yang 1 suppresses, the promoter activity of CXCR4, a coreceptor for HIV-1 entry. J. Immunol.162(10), 5986–5992 (1999).
  • Wegner SA, Ehrenberg PK, Chang G, Dayhoff DE, Sleeker AL, Michael NL. Genomic organization and functional characterization of the chemokine receptor CXCR4, a major entry co-receptor for human immunodeficiency virus type 1. J. Biol. Chem.273(8), 4754–4760 (1998).
  • Bleul CC, Wu L, Hoxie JA, Springer TA, Mackay CR. The HIV coreceptors CXCR4 and CCR5 are differentially expressed and regulated on human T lymphocytes. Proc. Natl Acad. Sci. USA94(5), 1925–1930 (1997).
  • Schioppa T, Uranchimeg B, Saccani A et al. Regulation of the chemokine receptor CXCR4 by hypoxia. J. Exp. Med.198(9), 1391–1402 (2003).
  • Ceradini DJ, Kulkarni AR, Callaghan MJ et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat. Med.10(8), 858–864 (2004).
  • Burger JA, Peled A. CXCR4 antagonists: targeting the microenvironment in leukemia and other cancers. Leukemia23(1), 43–52 (2009).
  • Möhle R, Schittenhelm M, Failenschmid C et al. Functional response of leukaemic blasts to stromal cell-derived factor-1 correlates with preferential expression of the chemokine receptor CXCR4 in acute myelomonocytic and lymphoblastic leukaemia. Br. J. Haematol.110(3), 563–572 (2000).
  • Möhle R, Bautz F, Rafii S, Moore MA, Brugger W, Kanz L. The chemokine receptor CXCR4 is expressed on CD34+ hematopoietic progenitors and leukemic cells and mediates transendothelial migration induced by stroma cell-derived factor-1. Blood91(12), 4523–4530 (1998).
  • Burger JA, Spoo A, Dwenger A, Burger M, Behringer D. CXCR4 chemokine receptors (CD184) and α4β1 integrins mediate spontaneous migration of human CD34+ progenitors and acute myeloid leukaemia cells beneath marrow stromal cells (pseudoemperipolesis). Br. J. Haematol.122(4), 579–589 (2003).
  • Burger JA, Burger M, Kipps TJ. Chronic lymphocytic leukemia B cells express functional CXCR4 chemokine receptors that mediate spontaneous migration beneath bone marrow stromal cells. Blood94(11), 3658–3667 (1999).
  • Cooper TM, Haasle H, Smith FO. Acute myeloid leukemia, myeloproliferative and myelodysplastic disorders. In: Principles and Practice of Pediatric Oncology. Pizzo PA, Poplack DG (Eds). Lippincott Williams and Wilkins, Philadelphia, PA, USA, 566–610 (2011).
  • Tavor S, Petit I. Can inhibition of the SDF-1/CXCR4 axis eradicate acute leukemia? Semin. Cancer Biol.20(3), 178–185 (2010).
  • Scupoli MT, Donadelli M, Cioffi F et al. Bone marrow stromal cells and the upregulation of interleukin-8 production in human T-cell acute lymphoblastic leukemia through the CXCL12/CXCR4 axis and the NF-κB and JNK/AP-1 pathways. Haematologica93(4), 524–532 (2008).
  • Shen W, Bendall LJ, Gottlieb DJ, Bradstock KF. The chemokine receptor CXCR4 enhances integrin-mediated in vitro adhesion and facilitates engraftment of leukemic precursor-B cells in the bone marrow. Exp. Hematol.29(12), 1439–1447 (2001).
  • Crazzolara R, Bernhard D. CXCR4 chemokine receptors, histone deacetylase inhibitors and acute lymphoblastic leukemia. Leuk. Lymphoma46(11), 1545–1551 (2005).
  • Gul H, Marquez-Curtis LA, Jahroudi N, Lo J, Turner AR, Janowska-Wieczorek A. Valproic acid increases CXCR4 expression in hematopoietic stem/progenitor cells by chromatin remodeling. Stem Cells Dev.18(6), 831–838 (2009).
  • Gul H, Marquez-Curtis LA, Jahroudi N, Larratt LM, Janowska-Wieczorek A. Valproic acid exerts differential effects on CXCR4 expression in leukemic cells. Leuk. Res.34(2), 235–242 (2010).
  • Stamatopoulos B, Meuleman N, De Bruyn C, Delforge A, Bron D, Lagneaux L. The histone deacetylase inhibitor suberoylanilide hydroxamic acid induces apoptosis, down-regulates the CXCR4 chemokine receptor and impairs migration of chronic lymphocytic leukemia cells. Haematologica95(7), 1136–1143 (2010).
  • Jin L, Tabe Y, Konoplev S et al. CXCR4 up-regulation by imatinib induces chronic myelogenous leukemia (CML) cell migration to bone marrow stroma and promotes survival of quiescent CML cells. Mol. Cancer Ther.7(1), 48–58 (2008).
  • Dillmann F, Veldwijk MR, Laufs S et al. Plerixafor inhibits chemotaxis toward SDF-1 and CXCR4-mediated stroma contact in a dose-dependent manner resulting in increased susceptibility of BCR–ABL+ cell to imatinib and nilotinib. Leuk. Lymphoma50(10), 1676–1686 (2009).
  • Fei F, Stoddart S, Müschen M, Kim YM, Groffen J, Heisterkamp N. Development of resistance to dasatinib in Bcr/Abl-positive acute lymphoblastic leukemia. Leukemia24(4), 1318–1327 (2010).
  • Geay JF, Buet D, Zhang Y et al. p210BCR–ABL inhibits SDF-1 chemotactic response via alteration of CXCR4 signaling and down-regulation of CXCR4 expression. Cancer Res.65(7), 2676–2683 (2005).
  • Nakashima H, Masuda M, Murakami T et al. Anti-human immunodeficiency virus activity of a novel synthetic peptide, T22 ([Tyr-5,12, Lys-7]polyphemusin II): a possible inhibitor of virus–cell fusion. Antimicrob. Agents Chemother.36(6), 1249–1255 (1992).
  • Murakami T, Nakajima T, Koyanagi Y et al. A small molecule CXCR4 inhibitor that blocks T cell line-tropic HIV-1 infection. J. Exp. Med.186(8), 1389–1393 (1997).
  • Tamamura H, Xu Y, Hattori T et al. A low-molecular-weight inhibitor against the chemokine receptor CXCR4: a strong anti-HIV peptide T140. Biochem. Biophys. Res. Commun.253(3), 877–882 (1998).
  • Tamamura H, Omagari A, Hiramatsu K et al. Development of specific CXCR4 inhibitors possessing high selectivity indexes as well as complete stability in serum based on an anti-HIV peptide T140. Bioorg. Med. Chem. Lett.11(14), 1897–1902 (2001).
  • Tamamura H, Hori A, Kanzaki N et al. T140 analogs as CXCR4 antagonists identified as anti-metastatic agents in the treatment of breast cancer. FEBS Lett.550(1–3), 79–83 (2003).
  • Mori T, Doi R, Koizumi M et al. CXCR4 antagonist inhibits stromal cell-derived factor 1-induced migration and invasion of human pancreatic cancer. Mol. Cancer Ther.3(1), 29–37 (2004).
  • Abraham M, Biyder K, Begin M et al. Enhanced unique pattern of hematopoietic cell mobilization induced by the CXCR4 antagonist 4F-benzoyl-TN14003. Stem Cells25(9), 2158–2166 (2007).
  • Abraham M, Beider K, Wald H et al. The CXCR4 antagonist 4F-benzoyl-TN14003 stimulates the recovery of the bone marrow after transplantation. Leukemia23(8), 1378–1388 (2009).
  • Fricker SP, Anastassov V, Cox J et al. Characterization of the molecular pharmacology of AMD3100: a specific antagonist of the G-protein coupled chemokine receptor, CXCR4. Biochem. Pharm.72(5), 588–596 (2006).
  • Bodart V, Anastassov V, Darkes MC et al. Pharmacology of AMD3465: a small molecule antagonist of the chemokine receptor CXCR4. Biochem. Pharmacol.78(8), 993–1000 (2009).
  • Schols D, Struyf S, Van Damme J, Esté JA, Henson G, De Clercq E. Inhibition of T-tropic HIV strains by selective antagonization of the chemokine receptor CXCR4. J. Exp. Med.186(8), 1383–1388 (1997).
  • Hendrix CW, Collier AC, Lederman MM et al. Safety, pharmacokinetics, and antiviral activity of AMD3100, a selective CXCR4 receptor inhibitor, in HIV-1 infection. J. Acquir. Immune Defic. Syndr.37(2), 1253–1262 (2004).
  • DiPersio JF, Micallef IN, Stiff PJ et al. Phase III prospective randomized double-blind placebo-controlled trial of plerixafor plus granulocyte colony-stimulating factor compared with placebo plus granulocyte colony-stimulating factor for autologous stem-cell mobilization and transplantation for patients with non-Hodgkin’s lymphoma. J. Clin. Oncol.27(28), 4767–4773 (2009).
  • Kuhne M, Mulvey T, Belanger B et al. A fully human anti-CXCR4 antibody induces apoptosis in vitro and shows anti tumor activity in vivo. Presented at: 100th American Association for Cancer Research Annual Meeting. Denver, CO, USA, 18–22 April 2009 (Abstract LB-150).
  • Tavor S, Eisenbach M, Jacob-Hirsch J et al. The CXCR4 antagonist AMD3100 impairs survival of human AML cells and induces their differentiation. Leukemia22(12), 2151–2158 (2008).
  • Liesveld JL, Bechelli J, Rosell K et al. Effects of AMD3100 on transmigration and survival of acute myelogenous leukemia cells. Leuk. Res.31(11), 1553–1563 (2007).
  • Nervi B, Ramirez P, Rettig MP et al. Chemosensitization of acute myeloid leukemia (AML) following mobilization by the CXCR4 antagonist AMD3100. Blood113(24), 6206–6214 (2009).
  • Mandawat A, Fiskus W, Buckley KM et al. Pan-histone deacetylase (HDAC) inhibitor panobinostat depletes CXCR4 levels and signaling and exerts synergistic anti-myeloid activity in combination with CXCR4 antagonists. Blood116(24), 5306–5315 (2010).
  • Small D. Targeting FLT3 for the treatment of leukemia. Semin. Hematol.45(3 Suppl. 2), S17–S21 (2008).
  • Jacobi A, Thieme S, Lehmann R et al. Impact of CXCR4 inhibition on Flt3–ITD-positive human AML blasts. Exp. Hematol.38(3), 180–190 (2010).
  • Zeng Z, Shi YX, Samudio IJ et al. Targeting the leukemia microenvironment by CXCR4 inhibition overcomes resistance to kinase inhibitors and chemotherapy in AML. Blood113(24), 6215–6224 (2009).
  • Juarez J, Bradstock KF, Gottlieb DJ, Bendall LJ. Effects of inhibitors of the chemokine receptor CXCR4 on acute lymphoblastic leukemia cells in vitro. Leukemia17(7), 1294–1300 (2003).
  • Juarez J, Dela Pena A, Baraz R et al. CXCR4 antagonists mobilize childhood acute lymphoblastic leukemia cells into the peripheral blood and inhibit engraftment. Leukemia21(6), 1249–1257 (2007).
  • Bhojwani D, Howard SC, Pui CH. High-risk childhood acute lymphoblastic leukemia. Clin. Lymphoma Myeloma9(Suppl. 3), S222–S230 (2009).
  • Brown P, McIntyre E, Li L, Small D. Disruption of leukemia stem cell (LSC) interactions with bone marrow stromal niche enhances efficacy of FLT3 tyrosine kinase inhibitors (TKI) in vivo. Presented at: 50th American Society of Hematology Annual Meeting and Exposition. San Francisco, CA, USA, 6–9 December 2008 (Abstract 383).
  • Fielding AK. How I treat Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood116(18), 3409–3417 (2010).
  • Vianello F, Villanova F, Tisato V et al. Bone marrow mesenchymal stromal cells non-selectively protect chronic myeloid leukemia cells from imatinib-induced apoptosis via the CXCR4/CXCL12 axis. Haematologica95(7), 1081–1089 (2010).
  • Burger M, Hartmann T, Krome M et al. Small peptide inhibitors of the CXCR4 chemokine receptor (CD184) antagonize the activation, migration, and antiapoptotic responses of CXCL12 in chronic lymphocytic leukemia B cells. Blood106(5), 1824–1830 (2005).
  • Buchner M, Brantner P, Stickel N et al. The microenvironment differentially impairs passive and active immunotherapy in chronic lymphocytic leukaemia – CXCR4 antagonists as potential adjuvants for monoclonal antibodies. Br. J. Haematol.151(2), 167–178 (2010).
  • Crazzolara R, Kreczy A, Mann G et al. High expression of the chemokine receptor CXCR4 predicts extramedullary organ infiltration in childhood acute lymphoblastic leukaemia. Br. J. Haematology115(3), 545–553 (2001).
  • Rombouts EJ, Pavic B, Löwenberg B, Ploemacher RE. Relation between CXCR-4 expression, Flt3 mutations, and unfavorable prognosis of adult acute myeloid leukemia. Blood104(2), 550–557 (2004).
  • Barretina J, Juncà J, Llano A et al. CXCR4 and SDF-1 expression in B-cell chronic lymphocytic leukemia and stage of the disease. Ann. Hematol.82(8), 500–505 (2003).
  • Wu S, Gessner R, Taube T et al. Chemokine IL-8 and chemokine receptor CXCR3 and CXCR4 gene expression in childhood acute lymphoblastic leukemia at first relapse. J. Pediatr. Hematol. Oncol.28(4), 216–220 (2006).
  • Konoplev S, Rassidakis GZ, Estey E et al. Overexpression of CXCR4 predicts adverse overall and event-free survival in patients with unmutated Flt3 acute myeloid leukemia with normal karyotype. Cancer109(6), 1152–1156 (2007).
  • Spoo AC, Lübbert M, Wierda WG, Burger JA. CXCR4 is a prognostic marker in acute myelogenous leukemia. Blood109(2), 786–791 (2007).
  • Fukuda S, Broxmeyer HE, Pelus LM. Flt3 ligand and the Flt3 receptor regulate hematopoietic cell migration by modulating the SDF-1α(CXCL12)/CXCR4 axis. Blood105(8), 3117–3126 (2005).
  • Fukuda S, Pelus LM. Internal tandem duplication of Flt3 modulates chemotaxis and survival of hematopoietic cells by SDF1α but negatively regulates marrow homing in vivo. Exp. Hematol.34(8), 1041–1051 (2006).
  • Nowell PC. Discovery of the Philadelphia chromosome: a personal perspective. J. Clin. Invest.117(8), 2033–2035 (2007).
  • Salgia R, Quackenbush E, Lin J et al. The BCR/ABL oncogene alters the chemotatic response to stromal-derived factor-1α. Blood94(12), 4233–4246 (1999).
  • Chen YY, Malik M, Tomkowicz BE et al. BCR–ABL1 alters SDF-1α-mediated adhesive responses through the β2 integrin LFA-1 in leukemia cells. Blood111(10), 5182–5186 (2008).
  • Fierro FA, Brenner S, Oelschlaegel U et al. Combining SDF-1/CXCR4 antagonism and chemotherapy in relapsed acute myeloid leukemia. Leukemia23(2), 393–396 (2009).
  • Uy GL, Rettig MP, McFarland K et al. A Phase I/II study of chemosensitization with the CXCR4 antagonist plerixafor in relapsed or refractory AML. Presented at: 51st American Society of Hematology Annual Meeting and Exposition. New Orleans, LA, USA, 5–8 December 2009 (Abstract 787).
  • Andristos L, Byrd JC, Jones JA et al. Preliminary results from a Phase I dose escalation study to determine the maximum tolerated dose of plerixafor in combination with rituximab in patients with relapsed chronic lymphocytic leukemia. Presented at: 52nd American Society of Hematology Annual Meeting and Exposition. Orlando, FL, USA, 4–7 December 2010 (Abstract 2450).
  • Ghobrial I, Azab AK, Laubach JP et al. Phase I trial of plerixafor and bortezomib as a chemosensitization strategy in relapsed or relapsed/refractory multiple myeloma. Presented at: 52nd American Society of Hematology Annual Meeting and Exposition. Orlando, FL, USA, 4–7 December 2010 (Abstract 1943).
  • Sun X, Cheng G, Hao M et al. CXCL12/CXCR4/CXCR7 chemokine axis and cancer progression. Cancer Metastasis Rev.29(4), 709–722 (2010).
  • Balabanian K, Lagane B, Infantino S et al. The chemokine SDF-1/CXCL12 binds to and signals through the orphan reecptor RDC1 in T lymphocytes. J. Biol. Chem.280(42), 35760–35766 (2005).
  • Maksym RB, Tarnowski M, Grymula K et al. The role of stromal-derived factor-1–CXCR7 axis in development and cancer. Eur. J. Pharmacol.625(1–3), 31–40 (2009).
  • Tarnowski M, Liu R, Wysoczynski M, Ratajczak J, Kucia M, Ratajczak MZ. CXCR7: a new SDF-1-binding receptor in contrast to normal CD34+ progenitors is functional and is expressed at higher level in human malignant hematopoietic cells. Eur. J. Haematol.85(6), 472–483 (2010).
  • Levoye A, Balabanian K, Baleux F et al. CXCR7 heterodimerizes with CXCR4 and regulates CXCL12-mediated G protein signaling. Blood113(24), 6085–6093 (2009).
  • Denkers IA, de Jong-de Boer TJ, Beelen RH, Ossenkoppele GJ, Langenhuijsen MM. VLA molecule expression may be involved in the release of acute myeloid leukaemic cells from the bone marrow. Leuk. Res.16(5), 469–474 (1992).
  • Reuss-Borst MA, Bühring HJ, Klein G, Müller CA. Adhesion molecules on CD34+ hematopoietic cells in normal human bone marrow and leukemia. Ann. Hematol.65(4), 169–174 (1992).
  • Liesveld JL, Winslow JM, Friediani KE, Ryan DH, Abboud CN. Expression of integrins and examination of their adhesive function in normal and leukemic hematopoietic cells. Blood81(1), 112–121 (1993).
  • Bradstock K, Makrynikola V, Bianchi A, Byth K. Analysis of the mechanism of adhesion of precursor-B acute lymphoblastic leukemia cells to bone marrow fibroblasts. Blood82(11), 3437–3444 (1993).
  • Spiegel A, Kollet O, Peled A et al. Unique SDF-1-induced activation of human precursor-B ALL cells as a result of altered CXCR4 expression and signaling. Blood103(8), 2900–2907 (2004).
  • Walter RB, Alonzo TA, Gerbing RB et al. High expression of the very late antigen-4 integrin independently predicts reduced risk of relapse and improved outcome in pediatric acute myeloid leukemia: a report from the Children’s Oncology Group. J. Clin. Oncol.28(17), 2831–2838 (2010).
  • Tavernier-Tardy E, Cornillon J, Campos L et al. Prognostic value of CXCR4 and FAK expression in acute myelogenous leukemia. Leuk. Res.33(6), 764–768 (2009).
  • Reuss-Borst MA, Ning Y, Klein G, Müller CA. The vascular cell adhesion molecule (VCAM-1) is expressed on a subset of lymphoid and myeloid leukaemias. Br. J. Haematol.89(2), 299–305 (1995).
  • Ginis I, Mentzer SJ, Faller DV. Hypoxia induces lymphocyte adhesion to human mesenchymal cells via an LFA-1-dependent mechanism. Am. J. Physiol.264(3 Pt 1), C617–C624 (1993).
  • Bendall LJ, Kortlepel K, Gottlieb DJ. Human acute myeloid leukemia cells bind to bone marrow stroma via a combination of β-1 and β-2 integrin mechanisms. Blood82(10), 3125–3132 (1993).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.