185
Views
23
CrossRef citations to date
0
Altmetric
Review

Inherited platelet disorders: a clinical approach to diagnosis and management

, &
Pages 455-472 | Published online: 10 Jan 2014

References

  • Rao AK. Inherited defects in platelet signaling mechanisms. J. Thromb. Haemost.1(4), 671–681 (2003).
  • Lanza F. Bernard–Soulier syndrome (hemorrhagiparous thrombocytic dystrophy). Orphanet. J. Rare Dis.1, 46 (2006).
  • Lopez JA, Andrews RK, Afshar-Kharghan V, Berndt MC. Bernard–Soulier syndrome. Blood91(12), 4397–4418 (1998).
  • Savoia A, Balduini CL, Savino M et al. Autosomal dominant macrothrombocytopenia in Italy is most frequently a type of heterozygous Bernard–Soulier syndrome. Blood97(5), 1330–1335 (2001).
  • Di Minno G, Coppola A, Di Minno MN, Poon MC. Glanzmann’s thrombasthenia (defective platelet integrin αIIb-β3): proposals for management between evidence and open issues. Thromb. Haemost.102(6), 1157–1164 (2009).
  • Ouakaa-Kchaou A, Gargouri D, Elloumi H, Kharrat J, Ghorbel A. Intractable gastrointestinal bleeding from angiodysplasia in a patient with Bernard–Soulier syndrome. Ann. Hematol.90(7), 861–862 (2011).
  • Bolton-Maggs PH, Chalmers EA, Collins PW et al. A review of inherited platelet disorders with guidelines for their management on behalf of the UKHCDO. Br. J. Haematol.135(5), 603–633 (2006).
  • Nurden AT. Qualitative disorders of platelets and megakaryocytes. J. Thromb. Haemos.3(8), 1773–1782 (2005).
  • Nurden AT, Nurden P. Inherited disorders of platelets: an update. Curr. Opin. Hematol.13(3), 157–162 (2006).
  • Salles, II, Feys HB, Iserbyt BF, De Meyer SF, Vanhoorelbeke K, Deckmyn H. Inherited traits affecting platelet function. Blood Rev.22(3), 155–172 (2008).
  • Berndt MC, Andrews RK. Bernard–Soulier syndrome. Haematologica96(3), 355–359 (2011).
  • Kahn ML, Diacovo TG, Bainton DF, Lanza F, Trejo J, Coughlin SR. Glycoprotein V-deficient platelets have undiminished thrombin responsiveness and do not exhibit a Bernard–Soulier phenotype. Blood94(12), 4112–4121 (1999).
  • Nurden AT, Caen JP. Specific roles for platelet surface glycoproteins in platelet function. Nature255(5511), 720–722 (1975).
  • Savoia A, Pastore A, De Rocco D et al. Clinical and genetic aspects of Bernard–Soulier syndrome: searching for genotype/phenotype correlations. Haematologica96(3), 417–423 (2011).
  • Wei AH, Schoenwaelder SM, Andrews RK, Jackson SP. New insights into the haemostatic function of platelets. Br. J. Haematol.147(4), 415–430 (2009).
  • Nurden P, Nurden AT. Congenital disorders associated with platelet dysfunctions. Thromb. Haemost.99(2), 253–263 (2008).
  • Ruggeri ZM. Platelet adhesion under flow. Microcirculation16(1), 58–83 (2009).
  • Beguin S, Keularts I, Al Dieri R, Bellucci S, Caen J, Hemker HC. Fibrin polymerization is crucial for thrombin generation in platelet-rich plasma in a VWF-GPIb-dependent process, defective in Bernard–Soulier syndrome. J. Thromb. Haemost.2(1), 170–176 (2004).
  • Hayward CP, Harrison P, Cattaneo M, Ortel TL, Rao AK. Platelet function analyzer (PFA)-100 closure time in the evaluation of platelet disorders and platelet function. J. Thromb. Haemost.4(2), 312–319 (2006).
  • Alamelu J, Liesner R. Modern management of severe platelet function disorders. Br. J. Haematol.149(6), 813–823 (2010).
  • Oskarsdottir S, Persson C, Eriksson BO, Fasth A. Presenting phenotype in 100 children with the 22q11 deletion syndrome. Eur. J. Pediatr.4(3), 146–153 (2005).
  • Liang HP, Morel-Kopp MC, Curtin J et al. Heterozygous loss of platelet glycoprotein (GP) Ib-V-IX variably affects platelet function in velocardiofacial syndrome (VCFS) patients. Thromb. Haemost.98(6), 1298–1308 (2007).
  • Budarf ML, Konkle BA, Ludlow LB et al. Identification of a patient with Bernard–Soulier syndrome and a deletion in the DiGeorge/velo-cardio-facial chromosomal region in 22q11.2. Hum. Mol. Genet.4(4), 763–766 (1995).
  • Federici AB, Mannucci PM, Castaman G et al. Clinical and molecular predictors of thrombocytopenia and risk of bleeding in patients with von Willebrand disease type 2B: a cohort study of 67 patients. Blood113(3), 526–534 (2009).
  • Othman M, Favaloro EJ. Genetics of type 2B von Willebrand disease: ‘true 2B,’ ‘tricky 2B,’ or ‘not 2B.’ What are the modifiers of the phenotype? Semin. Thromb. Hemost.34(6), 520–531 (2008).
  • Favaloro EJ. Phenotypic identification of platelet-type von Willebrand disease and its discrimination from type 2B von Willebrand disease: a question of 2B or not 2B? A story of nonidentical twins? Or two sides of a multidenominational or multifaceted primary-hemostasis coin? Semin. Thromb. Hemost.34(1), 113–127 (2008).
  • Othman M. Platelet-type von Willebrand disease and type 2B von Willebrand disease: a story of nonidentical twins when two different genetic abnormalities evolve into similar phenotypes. Semin. Thromb. Hemost.33(8), 780–786 (2007).
  • Othman M, Notley C, Lavender FL et al. Identification and functional characterization of a novel 27-bp deletion in the macroglycopeptide-coding region of the GPIBA gene resulting in platelet-type von Willebrand disease. Blood105(11), 4330–4336 (2005).
  • Enayat MS, Guilliatt AM, Lester W, Wilde JT, Williams MD, Hill FG. Distinguishing between type 2B and pseudo-von Willebrand disease and its clinical importance. Br. J. Haematol.133(6), 664–666 (2006).
  • Toogeh G, Sharifian R, Lak M, Safaee R, Artoni A, Peyvandi F. Presentation and pattern of symptoms in 382 patients with Glanzmann thrombasthenia in Iran. Am. J. Hematol.77(2), 198–199 (2004).
  • Nurden AT. Glanzmann thrombasthenia. Orphanet. J. Rare. Dis.1, 10 (2006).
  • George JN, Caen JP, Nurden AT. Glanzmann’s thrombasthenia: the spectrum of clinical disease. Blood75(7), 1383–1395 (1990).
  • Bellucci S, Caen J. Molecular basis of Glanzmann’s thrombasthenia and current strategies in treatment. Blood Rev.16(3), 193–202 (2002).
  • Coller BS, Shattil SJ. The GPIIb/IIIa (integrin αIIbβ3) odyssey: a technology-driven saga of a receptor with twists, turns, and even a bend. Blood112(8), 3011–3025 (2008).
  • Israels SJ, Kahr WH, Blanchette VS, Luban NL, Rivard GE, Rand ML. Platelet disorders in children: a diagnostic approach. Pediatr. Blood Cancer56(6), 975–983 (2011).
  • Cattaneo M, Zighetti ML, Lombardi R et al. Molecular bases of defective signal transduction in the platelet P2Y12 receptor of a patient with congenital bleeding. Proc. Natl Acad. Sci. USA100(4), 1978–1983 (2003).
  • Hollopeter G, Jantzen HM, Vincent D et al. Identification of the platelet ADP receptor targeted by antithrombotic drugs. Nature409(6817), 202–207 (2001).
  • Cattaneo M. The platelet P2Y12 receptor for adenosine diphosphate: congenital and drug-induced defects. Blood117(7), 2102–2112 (2011).
  • Cattaneo M. Inherited platelet-based bleeding disorders. J. Thromb. Haemost.1(7), 1628–1636 (2003).
  • Fabre JE, Nguyen M, Latour A et al. Decreased platelet aggregation, increased bleeding time and resistance to thromboembolism in P2Y1-deficient mice. Nat. Med.5(10), 1199–1202 (1999).
  • Oury C, Toth-Zsamboki E, Van Geet C et al. A natural dominant negative P2X1 receptor due to deletion of a single amino acid residue. J. Biol. Chem.275(30), 22611–22614 (2000).
  • Nurden A. GPVI: the inside story. Blood114(9), 1723–1724 (2009).
  • Trifiro E, Williams SA, Cheli Y et al. The low-frequency isoform of platelet glycoprotein VIb attenuates ligand-mediated signal transduction but not receptor expression or ligand binding. Blood114(9), 1893–1899 (2009).
  • Dumont B, Lasne D, Rothschild C et al. Absence of collagen-induced platelet activation caused by compound heterozygous GPVI mutations. Blood114(9), 1900–1903 (2009).
  • Hermans C, Wittevrongel C, Thys C, Smethurst PA, Van Geet C, Freson K. A compound heterozygous mutation in glycoprotein VI in a patient with a bleeding disorder. J. Thromb. Haemost.7(8), 1356–1363 (2009).
  • Mumford AD, Dawood BB, Daly ME et al. A novel thromboxane A2 receptor D304N variant that abrogates ligand binding in a patient with a bleeding diathesis. Blood115(2), 363–369 (2010).
  • Watson S, Daly M, Dawood B et al. Phenotypic approaches to gene mapping in platelet function disorders – identification of new variant of P2Y12, TxA2 and GPVI receptors. Hamostaseologie30(1), 29–38 (2010).
  • Blair P, Flaumenhaft R. Platelet α-granules: basic biology and clinical correlates. Blood Rev.23(4), 177–189 (2009).
  • Raccuglia G. Gray platelet syndrome. A variety of qualitative platelet disorder. Am. J. Med.51(6), 818–828 (1971).
  • Nurden AT, Nurden P. The gray platelet syndrome: clinical spectrum of the disease. Blood Rev.21(1), 21–36 (2007).
  • Fabbro S, Kahr WH, Hinckley J et al. Homozygosity mapping with SNP arrays confirms 3p21 as a recessive locus for gray platelet syndrome and narrows the interval significantly. Blood117(12), 3430–3434 (2011).
  • Gunay-Aygun M, Zivony-Elboum Y, Gumruk F et al. Gray platelet syndrome: natural history of a large patient cohort and locus assignment to chromosome 3p. Blood116(23), 4990–5001 (2011).
  • Kahr WHA, Hinckley J, Li L et al. Mutations in NBEAL2, encoding a BEACH protein, cause gray platelet syndrome. Nat. Genet. DOI: 10.1038/ng.884 (2011) (Epub ahead of print).
  • Albers CA, Cvejic A, Favier R et al. Exome sequencing identifies NBEAL2 as the causative gene for gray platelet syndrome. Nat. Genet. DOI:10.1038/ng.885 (2011) (Epub ahead of print).
  • Gunay-Aygun M, Falik-Zaccai TC, Vilboux T et al. NBEAL2 is mutated in gray platelet syndrome and is required for biogenesis of platelet α-granules. Nat. Genet. DOI:10.1038/ng.883 (2011) (Epub ahead of print).
  • Tubman VN, Levine JE, Campagna DR et al. X-linked gray platelet syndrome due to a GATA1 Arg2.Gln mutation. Blood109(8), 3297–3299 (2007).
  • Balduini CL, De Candia E, Savoia A. Why the disorder induced by GATA1 Arg2.Gln mutation should be called ‘X-linked thrombocytopenia with thalassemia’ rather than ‘X-linked gray platelet syndrome’. Blood110(7), 2770–2771; author reply 2771 (2007).
  • Eastham KM, McKiernan PJ, Milford DV et al. ARC syndrome: an expanding range of phenotypes. Arch. Dis. Child.85(5), 415–420 (2001).
  • Gissen P, Johnson CA, Morgan NV et al. Mutations in VPS33B, encoding a regulator of SNARE-dependent membrane fusion, cause arthrogryposis-renal dysfunction-cholestasis (ARC) syndrome. Nat. Genet.36(4), 400–404 (2004).
  • Hayes JA, Kahr WH, Lo B, Macpherson BA. Liver biopsy complicated by hemorrhage in a patient with ARC syndrome. Paediatr. Anaesth.14(11), 960–963 (2004).
  • Lo B, Li L, Gissen P et al. Requirement of VPS33B, a member of the Sec1/Munc18 protein family, in megakaryocyte and platelet α-granule biogenesis. Blood106(13), 4159–4166 (2005).
  • Tracy PB, Giles AR, Mann KG, Eide LL, Hoogendoorn H, Rivard GE. Factor V (Quebec): a bleeding diathesis associated with a qualitative platelet Factor V deficiency. J. Clin. Invest.74(4), 1221–1228 (1984).
  • Hayward CP, Rivard GE, Kane WH et al. An autosomal dominant, qualitative platelet disorder associated with multimerin deficiency, abnormalities in platelet factor V, thrombospondin, von Willebrand factor, and fibrinogen and an epinephrine aggregation defect. Blood87(12), 4967–4978 (1996).
  • Janeway CM, Rivard GE, Tracy PB, Mann KG. Factor V Quebec revisited. Blood87(9), 3571–3578 (1996).
  • Kahr WH, Zheng S, Sheth PM et al. Platelets from patients with the Quebec platelet disorder contain and secrete abnormal amounts of urokinase-type plasminogen activator. Blood98(2), 257–265 (2001).
  • Sheth PM, Kahr WH, Haq MA, Veljkovic DK, Rivard GE, Hayward CP. Intracellular activation of the fibrinolytic cascade in the Quebec Platelet Disorder. Thromb. Haemost.90(2), 293–298 (2003).
  • Diamandis M, Veljkovic DK, Maurer-Spurej E, Rivard GE, Hayward CP. Quebec platelet disorder: features, pathogenesis and treatment. Blood Coagul. Fibrinolysis19(2), 109–119 (2008).
  • Paterson AD, Rommens JM, Bharaj B et al. Persons with Quebec platelet disorder have a tandem duplication of PLAU, the urokinase plasminogen activator gene. Blood115(6), 1264–1266 (2010).
  • Drachman JG. Inherited thrombocytopenia: when a low platelet count does not mean ITP. Blood103(2), 390–398 (2004).
  • Favier R, Jondeau K, Boutard P et al. Paris–Trousseau syndrome : clinical, hematological, molecular data of ten new cases. Thromb. Haemost.90(5), 893–897 (2003).
  • Breton-Gorius J, Favier R, Guichard J et al. A new congenital dysmegakaryopoietic thrombocytopenia (Paris–Trousseau) associated with giant platelet α-granules and chromosome 11 deletion at 11q23. Blood85(7), 1805–1814 (1995).
  • Raslova H, Komura E, Le Couedic JP et al. FLI1 monoallelic expression combined with its hemizygous loss underlies Paris–Trousseau/Jacobsen thrombopenia. J. Clin. Invest.114(1), 77–84 (2004).
  • Mattina T, Perrotta CS, Grossfeld P. Jacobsen syndrome. Orphanet. J. Rare Dis.4, 9 (2009).
  • Reed GL. Platelet secretory mechanisms. Semin. Thromb. Hemost.30(4), 441–450 (2004).
  • White JG. Use of the electron microscope for diagnosis of platelet disorders. Semin. Thromb. Hemost.24(2), 163–168 (1998).
  • White JG. Electron microscopy methods for studying platelet structure and function. Methods Mol. Biol.272, 47–63 (2004).
  • Wall JE, Buijs-Wilts M, Arnold JT et al. A flow cytometric assay using mepacrine for study of uptake and release of platelet dense granule contents. Br. J. Haematol.89(2), 380–385 (1995).
  • Huizing M, Helip-Wooley A, Westbroek W, Gunay-Aygun M, Gahl WA. Disorders of lysosome-related organelle biogenesis: clinical and molecular genetics. Annu. Rev. Genomics Hum. Genet.9, 359–386 (2008).
  • Huizing M, Boissy RE, Gahl WA. Hermansky–Pudlak syndrome: vesicle formation from yeast to man. Pigment Cell Res.15(6), 405–419 (2002).
  • Kaplan J, De Domenico I, Ward DM. Chediak–Higashi syndrome. Curr. Opin. Hematol.15(1), 22–29 (2008).
  • Trantow CM, Hedberg-Buenz A, Iwashita S, Moore SA, Anderson MG. Elevated oxidative membrane damage associated with genetic modifiers of Lyst-mutant phenotypes. PLoS Genet.6(7), e1001008 (2010).
  • Introne W, Boissy RE, Gahl WA. Clinical, molecular, and cell biological aspects of Chediak–Higashi syndrome. Mol. Genet. Metab.68(2), 283–303 (1999).
  • Tolmachova T, Abrink M, Futter CE, Authi KS, Seabra MC. Rab27b regulates number and secretion of platelet dense granules. Proc. Natl Acad. Sci. USA104(14), 5872–5877 (2007).
  • Masliah-Planchon J, Bellucci S, Darnige L, Callebert J, Fischer AM, Tapon-Bretaudiere J. Absence of mutation in the RAB27B gene in patients with platelet δ-storage pool deficiency. Eur. J. Haematol.86(4), 350–351 (2011).
  • Detter JC, Zhang Q, Mules EH et al. Rab geranylgeranyl transferase α mutation in the gunmetal mouse reduces Rab prenylation and platelet synthesis. Proc. Natl Acad. Sci. USA97(8), 4144–4149 (2000).
  • Bosticardo M, Marangoni F, Aiuti A, Villa A, Grazia Roncarolo M. Recent advances in understanding the pathophysiology of Wiskott–Aldrich syndrome. Blood113(25), 6288–6295 (2009).
  • Thrasher AJ. New insights into the biology of Wiskott–Aldrich syndrome (WAS). Hematology Am. Soc. Hematol. Educ. Program132–138 (2009).
  • Ochs HD. Mutations of the Wiskott–Aldrich syndrome protein affect protein expression and dictate the clinical phenotypes. Immunol. Res.44(1–3), 84–88 (2009).
  • Balduini CL, Cattaneo M, Fabris F et al. Inherited thrombocytopenias: a proposed diagnostic algorithm from the Italian Gruppo di Studio delle Piastrine. Haematologica88(5), 582–592 (2003).
  • Albert MH, Bittner TC, Nonoyama S et al. X-linked thrombocytopenia (XLT) due to WAS mutations: clinical characteristics, long-term outcome, and treatment options. Blood115(16), 3231–3238 (2010).
  • Balduini CL, Iolascon A, Savoia A. Inherited thrombocytopenias: from genes to therapy. Haematologica87(8), 860–880 (2002).
  • Sabri S, Foudi A, Boukour S et al. Deficiency in the Wiskott–Aldrich protein induces premature proplatelet formation and platelet production in the bone marrow compartment. Blood108(1), 134–140 (2006).
  • Ochs HD. The Wiskott–Aldrich syndrome. Semin. Hematol.35(4), 332–345 (1998).
  • Seri M, Pecci A, Di Bari F et al. MYH9-related disease: May-Hegglin anomaly, Sebastian syndrome, Fechtner syndrome, and Epstein syndrome are not distinct entities but represent a variable expression of a single illness. Medicine (Baltimore)82(3), 203–215 (2003).
  • Althaus K, Greinacher A. MYH9-related platelet disorders. Semin. Thromb. Hemost.35(2), 189–203 (2009).
  • Leung TF, Tsoi WC, Li CK, Chik KW, Shing MM, Yuen PM. A Chinese adolescent girl with Fechtner-like syndrome. Acta. Paediatr.87(6), 705–707 (1998).
  • Kahr WH, Savoia A, Pluthero FG et al. Megakaryocyte and platelet abnormalities in a patient with a W33C mutation in the conserved SH3-like domain of myosin heavy chain IIA. Thromb. Haemost.102(6), 1241–1250 (2009).
  • Chen Z, Naveiras O, Balduini A et al. The May–Hegglin anomaly gene MYH9 is a negative regulator of platelet biogenesis modulated by the Rho-ROCK pathway. Blood110(1), 171–179 (2007).
  • Eckly A, Strassel C, Freund M et al. Abnormal megakaryocyte morphology and proplatelet formation in mice with megakaryocyte-restricted MYH9 inactivation. Blood113(14), 3182–3189 (2009).
  • Chang Y, Aurade F, Larbret F et al. Proplatelet formation is regulated by the Rho/ROCK pathway. Blood109(10), 4229–4236 (2007).
  • Eckly A, Rinckel JY, Laeuffer P et al. Proplatelet formation deficit and megakaryocyte death contribute to thrombocytopenia in Myh9 knockout mice. J. Thromb. Haemost.8(10), 2243–2251 (2010).
  • Noris P, Klersy C, Zecca M et al. Platelet size distinguishes between inherited macrothrombocytopenias and immune thrombocytopenia. J. Thromb. Haemost.7(12), 2131–2136 (2009).
  • Savoia A, De Rocco D, Panza E et al. Heavy chain myosin 9-related disease (MYH9-RD): neutrophil inclusions of myosin-9 as a pathognomonic sign of the disorder. Thromb. Haemost.103(4), 826–832 (2010).
  • Kunishima S, Matsushita T, Kojima T et al. Immunofluorescence analysis of neutrophil nonmuscle myosin heavy chain-A in MYH9 disorders: association of subcellular localization with MYH9 mutations. Lab. Invest.83(1), 115–122 (2003).
  • Seri M, Cusano R, Gangarossa S et al. Mutations in MYH9 result in the May–Hegglin anomaly, and Fechtner and Sebastian syndromes. The May–Heggllin/Fechtner Syndrome Consortium. Nat. Genet.26(1), 103–105 (2000).
  • Weiss HJ. Scott syndrome: a disorder of platelet coagulant activity. Semin. Hematol.31(4), 312–319 (1994).
  • Suzuki J, Umeda M, Sims PJ, Nagata S. Calcium-dependent phospholipid scrambling by TMEM16F. Nature468(7325), 834–838 (2010).
  • Weiss HJ. Impaired platelet procoagulant mechanisms in patients with bleeding disorders. Semin. Thromb. Hemost.35(2), 233–241 (2009).
  • Weiss HJ, Vicic WJ, Lages BA, Rogers J. Isolated deficiency of platelet procoagulant activity. Am. J. Med.67(2), 206–213 (1979).
  • Dachary-Prigent J, Freyssinet JM, Pasquet JM, Carron JC, Nurden AT. Annexin V as a probe of aminophospholipid exposure and platelet membrane vesiculation: a flow cytometry study showing a role for free sulfhydryl groups. Blood81(10), 2554–2565 (1993).
  • Cines DB, Bussel JB, McMillan RB, Zehnder JL. Congenital and acquired thrombocytopenia. Hematology Am. Soc. Hematol. Educ. Program390–406 (2004).
  • King S, Germeshausen M, Strauss G, Welte K, Ballmaier M. Congenital amegakaryocytic thrombocytopenia: a retrospective clinical analysis of 20 patients. Br. J. Haematol.131(5), 636–644 (2005).
  • Geddis AE. Congenital amegakaryocytic thrombocytopenia and thrombocytopenia with absent radii. Hematol. Oncol. Clin. North Am.23(2), 321–331 (2009).
  • Alexander WS, Roberts AW, Nicola NA, Li R, Metcalf D. Deficiencies in progenitor cells of multiple hematopoietic lineages and defective megakaryocytopoiesis in mice lacking the thrombopoietic receptor c-Mpl. Blood87(6), 2162–2170 (1996).
  • Gurney AL, Carver-Moore K, de Sauvage FJ, Moore MW. Thrombocytopenia in c-mpl-deficient mice. Science265(5177), 1445–1447 (1994).
  • Geddis AE, Kaushansky K. Inherited thrombocytopenias: toward a molecular understanding of disorders of platelet production. Curr. Opin. Pediatr.16(1), 15–22 (2004).
  • Ballmaier M, Germeshausen M, Schulze H et al. C-Mpl mutations are the cause of congenital amegakaryocytic thrombocytopenia. Blood97(1), 139–146 (2001).
  • Klopocki E, Schulze H, Strauss G et al. Complex inheritance pattern resembling autosomal recessive inheritance involving a microdeletion in thrombocytopenia-absent radius syndrome. Am. J. Hum. Genet.80(2), 232–240 (2007).
  • Thompson AA, Woodruff K, Feig SA, Nguyen LT, Schanen NC. Congenital thrombocytopenia and radio-ulnar synostosis: a new familial syndrome. Br. J. Haematol.113(4), 866–870 (2001).
  • Thompson AA, Nguyen LT. Amegakaryocytic thrombocytopenia and radio-ulnar synostosis are associated with HOXA11 mutation. Nat. Genet.26(4), 397–398 (2000).
  • Horvat-Switzer RD, Thompson AA. HOXA11 mutation in amegakaryocytic thrombocytopenia with radio-ulnar synostosis syndrome inhibits megakaryocytic differentiation in vitro. Blood Cells Mol. Dis.37(1), 55–63 (2006).
  • Nichols KE, Crispino JD, Poncz M et al. Familial dyserythropoietic anaemia and thrombocytopenia due to an inherited mutation in GATA1. Nat. Genet.24(3), 266–270 (2000).
  • Mehaffey MG, Newton AL, Gandhi MJ, Crossley M, Drachman JG. X-linked thrombocytopenia caused by a novel mutation of GATA-1. Blood98(9), 2681–2688 (2001).
  • Freson K, Devriendt K, Matthijs G et al. Platelet characteristics in patients with X-linked macrothrombocytopenia because of a novel GATA1 mutation. Blood98(1), 85–92 (2001).
  • Hughan SC, Senis Y, Best D et al. Selective impairment of platelet activation to collagen in the absence of GATA1. Blood105(11), 4369–4376 (2005).
  • Makris M, Conlon CP, Watson HG. Immunization of patients with bleeding disorders. Haemophilia9(5), 541–546 (2003).
  • Ortel TL, Mercer MC, Thames EH, Moore KD, Lawson JH. Immunologic impact and clinical outcomes after surgical exposure to bovine thrombin. Ann. Surg.233(1), 88–96 (2001).
  • Coppola A, Di Minno G. Desmopressin in inherited disorders of platelet function. Haemophilia14(Suppl. 1), 31–39 (2008).
  • Kaufmann JE, Vischer UM. Cellular mechanisms of the hemostatic effects of desmopressin (DDAVP). J. Thromb. Haemost.1(4), 682–689 (2003).
  • Balduini CL, Noris P, Belletti S, Spedini P, Gamba G. In vitro and in vivo effects of desmopressin on platelet function. Haematologica84(10), 891–896 (1999).
  • Schulman S, Johnsson H, Egberg N, Blomback M. DDAVP-induced correction of prolonged bleeding time in patients with congenital platelet function defects. Thromb. Res.45(2), 165–174 (1987).
  • Almeida AM, Khair K, Hann I, Liesner R. The use of recombinant factor VIIa in children with inherited platelet function disorders. Br. J. Haematol.121(3), 477–481 (2003).
  • Chuansumrit A, Sangkapreecha C, Hathirat P. Successful epistaxis control in a patient with Glanzmann thrombasthenia by increased bolus injection dose of recombinant factor VIIa. Thromb. Haemost.82(6), 1778 (1999).
  • Poon MC, D’Oiron R, Von Depka M et al. Prophylactic and therapeutic recombinant factor VIIa administration to patients with Glanzmann’s thrombasthenia: results of an international survey. J. Thromb. Haemost.2(7), 1096–1103 (2004).
  • Dargaud Y, Bordet JC, Trzeciak MC, Vinciguerra C, Negrier C. A case of Glanzmann’s thrombasthenia successfully treated with recombinant factor viia during a surgical procedure: observations on the monitoring and the mechanism of action of this drug. Haematologica91(Suppl. 6), ECR20 (2006).
  • Hayward CP, Rao AK, Cattaneo M. Congenital platelet disorders: overview of their mechanisms, diagnostic evaluation and treatment. Haemophilia12(Suppl. 3), 128–136 (2006).
  • Wilcox DA, White GC 2nd. Gene therapy for platelet disorders: studies with Glanzmann’s thrombasthenia. J. Thromb. Haemost.1(11), 2300–2311 (2003).
  • Boztug K, Schmidt M, Schwarzer A et al. Stem-cell gene therapy for the Wiskott–Aldrich syndrome. N. Engl. J. Med.363(20), 1918–1927 (2010).
  • Macaulay IC, Carr P, Gusnanto A, Ouwehand WH, Fitzgerald D, Watkins NA. Platelet genomics and proteomics in human health and disease. J. Clin. Invest.115(12), 3370–3377 (2005).
  • Rowley JW, Oler A, Tolley ND et al. Genome wide RNA-seq analysis of human and mouse platelet transcriptomes. Blood 10.1182/blood-2011-03-339705 (2011) (Epub ahead of print).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.