385
Views
57
CrossRef citations to date
0
Altmetric
Review

The PIM kinases in hematological cancers

, &
Pages 81-96 | Published online: 10 Jan 2014

References

  • Bachmann M, Moroy T. The serine/threonine kinase PIM-1. Int. J. Biochem. Cell Biol.37(4), 726–730 (2005).
  • Cuypers HT, Selten G, Quint W et al. Murine leukemia virus-induced T-cell lymphomagenesis: integration of proviruses in a distinct chromosomal region. Cell37(1), 141–150 (1984).
  • Meeker TC, Nagarajan L, Ar-Rushdi A, Rovera G, Huebner K, Croce CM. Characterization of the human PIM-1 gene: a putative proto-oncogene coding for a tissue specific member of the protein kinase family. Oncogene Res.1(1), 87–101 (1987).
  • Breuer ML, Cuypers HT, Berns A. Evidence for the involvement of PIM-2, a new common proviral insertion site, in progression of lymphomas. EMBO J.8(3), 743–748 (1989).
  • Feldman JD, Vician L, Crispino M et al. KID-1, a protein kinase induced by depolarization in brain. J. Biol. Chem.273(26), 16535–16543 (1998).
  • Mikkers H, Allen J, Knipscheer P et al. High-throughput retroviral tagging to identify components of specific signaling pathways in cancer. Nat. Gen.32(1), 153–159 (2002).
  • Van Lohuizen M, Verbeek S, Krimpenfort P et al. Predisposition to lymphomagenesis in PIM-1 transgenic mice: cooperation with c-MYC and N-MYC in murine leukemia virus-induced tumors. Cell56(4), 673–682 (1989).
  • Lilly M, Sandholm J, Cooper JJ, Koskinen PJ, Kraft A. The PIM-1 serine kinase prolongs survival and inhibits apoptosis-related mitochondrial dysfunction in part through a BCL-2-dependent pathway. Oncogene18(27), 4022–4031 (1999).
  • Pircher TJ, Zhao S, Geiger JN, Joneja B, Wojchowski DM. PIM-1 kinase protects hematopoietic FDC cells from genotoxin-induced death. Oncogene19(32), 3684–3692 (2000).
  • Berns A, Breuer M, Verbeek S, Van Lohuizen M. Transgenic mice as a means to study synergism between oncogenes. Int. J. Cancer Suppl.4, 22–25 (1989).
  • Pasqualucci L, Neumeister P, Goossens T et al. Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas. Nature412(6844), 341–346 (2001).
  • Dhanasekaran SM, Barrette TR, Ghosh D et al. Delineation of prognostic biomarkers in prostate cancer. Nature412(6849), 822–826 (2001).
  • Amson R, Sigaux F, Przedborski S, Flandrin G, Givol D, Telerman A. The human protooncogene product p33PIM is expressed during fetal hematopoiesis and in diverse leukemias. Proc. Natl Acad. Sci. USA86(22), 8857–8861 (1989).
  • Mizuki M, Schwable J, Steur C et al. Suppression of myeloid transcription factors and induction of STAT response genes by AML-specific FLT3 mutations. Blood101(8), 3164–3173 (2003).
  • Tamburini J, Green AS, Bardet V et al. Protein synthesis is resistant to rapamycin and constitutes a promising therapeutic target in acute myeloid leukemia. Blood114(8), 1618–1627 (2009).
  • Woodland RT, Fox CJ, Schmidt MR et al. Multiple signaling pathways promote B lymphocyte stimulator dependent B-cell growth and survival. Blood111(2), 750–760 (2008).
  • Cohen AM, Grinblat B, Bessler H et al. Increased expression of the hPIM-2 gene in human chronic lymphocytic leukemia and non-Hodgkin lymphoma. Leuk. Lymphoma45(5), 951–955 (2004).
  • Huttmann A, Klein-Hitpass L, Thomale J et al. Gene expression signatures separate B-cell chronic lymphocytic leukaemia prognostic subgroups defined by ZAP-70 and CD38 expression status. Leukemia20(10), 1774–1782 (2006).
  • Ayala GE, Dai H, Ittmann M et al. Growth and survival mechanisms associated with perineural invasion in prostate cancer. Cancer Res.64(17), 6082–6090 (2004).
  • Deneen B, Welford SM, Ho T, Hernandez F, Kurland I, Denny CT. PIM3 proto-oncogene kinase is a common transcriptional target of divergent EWS/ETS oncoproteins. Mol. Cell Biol.23(11), 3897–3908 (2003).
  • Fujii C, Nakamoto Y, Lu P et al. Aberrant expression of serine/threonine kinase PIM-3 in hepatocellular carcinoma development and its role in the proliferation of human hepatoma cell lines. Int. J. Cancer114(2), 209–218 (2005).
  • Li YY, Popivanova BK, Nagai Y, Ishikura H, Fujii C, Mukaida N. PIM-3, a proto-oncogene with serine/threonine kinase activity, is aberrantly expressed in human pancreatic cancer and phosphorylates bad to block BAD-mediated apoptosis in human pancreatic cancer cell lines. Cancer Res.66(13), 6741–6747 (2006).
  • Zheng HC, Tsuneyama K, Takahashi H et al. Aberrant PIM-3 expression is involved in gastric adenoma-adenocarcinoma sequence and cancer progression. J. Cancer Res. Clin. Oncol.134(4), 481–488 (2008).
  • Nawijn MC, Alendar A, Berns A. For better or for worse: the role of PIM oncogenes in tumorigenesis. Nat. Rev.11(1), 23–34 (2011).
  • Zhu N, Ramirez LM, Lee RL, Magnuson NS, Bishop GA, Gold MR. CD40 signaling in B cells regulates the expression of the PIM-1 kinase via the NF-kappa B pathway. J Immunol.168(2), 744–754 (2002).
  • Fox CJ, Hammerman PS, Cinalli RM, Master SR, Chodosh LA, Thompson CB. The serine/threonine kinase PIM-2 is a transcriptionally regulated apoptotic inhibitor. Genes Develop.17(15), 1841–1854 (2003).
  • Saris CJ, Domen J, Berns A. The PIM-1 oncogene encodes two related protein-serine/threonine kinases by alternative initiation at AUG and CUG. EMBO J.10(3), 655–664 (1991).
  • Ragoussis J, Senger G, Mockridge I et al. A testis-expressed Zn finger gene (ZNF76) in human 6p21.3 centromeric to the MHC is closely linked to the human homolog of the t-complex gene tcp-11. Genomics14(3), 673–679 (1992).
  • Qian KC, Wang L, Hickey ER et al. Structural basis of constitutive activity and a unique nucleotide binding mode of human PIM-1 kinase. J. Biol. Chem.280(7), 6130–6137 (2005).
  • Aksoy I, Sakabedoyan C, Bourillot PY et al. Self-renewal of murine embryonic stem cells is supported by the serine/threonine kinases PIM-1 and PIM-3. Stem Cells25(12), 2996–3004 (2007).
  • Mikkers H, Nawijn M, Allen J et al. Mice deficient for all PIM kinases display reduced body size and impaired responses to hematopoietic growth factors. Mol. Cell Biol.24(13), 6104–6115 (2004).
  • Domen J, Van Der Lugt NM, Laird PW et al. Impaired interleukin-3 response in PIM-1-deficient bone marrow-derived mast cells. Blood82(5), 1445–1452 (1993).
  • Katakami N, Kaneto H, Hao H et al. Role of PIM-1 in smooth muscle cell proliferation. J. Biol. Chem.279(52), 54742–54749 (2004).
  • Muraski JA, Rota M, Misao Y et al. PIM-1 regulates cardiomyocyte survival downstream of AKT. Nat. Med.13(12), 1467–1475 (2007).
  • Zippo A, De Robertis A, Bardelli M, Galvagni F, Oliviero S. Identification of FLK-1 target genes in vasculogenesis: PIM-1 is required for endothelial and mural cell differentiation in vitro. Blood103(12), 4536–4544 (2004).
  • Gapter LA, Magnuson NS, Ng KY, Hosick HL. PIM-1 kinase expression during murine mammary development. Biochem. Biophys. Res. Commun.345(3), 989–997 (2006).
  • Amaravadi R, Thompson CB. The survival kinases AKT and PIM as potential pharmacological targets. J. Clin. Investig.115(10), 2618–2624 (2005).
  • Wang Z, Bhattacharya N, Weaver M et al. PIM-1: a serine/threonine kinase with a role in cell survival, proliferation, differentiation and tumorigenesis. J. Vet. Sci.2(3), 167–179 (2001).
  • Matikainen S, Sareneva T, Ronni T, Lehtonen A, Koskinen PJ, Julkunen I. Interferon-α activates multiple STAT proteins and upregulates proliferation-associated IL-2Rα, c-MYC, and PIM-1 genes in human T cells. Blood93(6), 1980–1991 (1999).
  • Wierenga AT, Vellenga E, Schuringa JJ. Maximal STAT5-induced proliferation and self-renewal at intermediate STAT5 activity levels. Mol. Cell. Biol.28(21), 6668–6680 (2008).
  • Li J, Peet GW, Balzarano D et al. Novel NEMO/IκB kinase and NF-κB target genes at the pre-B to immature B cell transition. J. Biol. Chem.276(21), 18579–18590 (2001).
  • Chen J, Kobayashi M, Darmanin S et al. Hypoxia-mediated up-regulation of PIM-1 contributes to solid tumor formation. Am. J. Pathol.175(1), 400–411 (2009).
  • Zhao Y, Hamza MS, Leong HS et al. Kruppel-like factor 5 modulates p53-independent apoptosis through PIM1 survival kinase in cancer cells. Oncogene27(1), 1–8 (2008).
  • Yip-Schneider MT, Horie M, Broxmeyer HE. Transcriptional induction of PIM-1 protein kinase gene expression by interferon γ and posttranscriptional effects on costimulation with steel factor. Blood85(12), 3494–3502 (1995).
  • Losman J, Chen XP, Jiang H et al. IL-4 signaling is regulated through the recruitment of phosphatases, kinases, and SOCS proteins to the receptor complex. Cold Spring Harb. Symp. Quant. Biol.64, 405–416 (1999).
  • Chen XP, Losman JA, Cowan S et al. PIM serine/threonine kinases regulate the stability of SOCS-1 protein. Proc. Natl Acad. Sci. USA99(4), 2175–2180 (2002).
  • Peltola KJ, Paukku K, Aho TL, Ruuska M, Silvennoinen O, Koskinen PJ. PIM-1 kinase inhibits STAT5-dependent transcription via its interactions with SOCS1 and SOCS3. Blood103(10), 3744–3750 (2004).
  • Hoover DS, Wingett DG, Zhang J, Reeves R, Magnuson NS. PIM-1 protein expression is regulated by its 5´-untranslated region and translation initiation factor elF-4E. Cell Growth Differ.8(12), 1371–1380 (1997).
  • Hoover D, Friedmann M, Reeves R, Magnuson NS. Recombinant human PIM-1 protein exhibits serine/threonine kinase activity. J. Biol. Chem.266(21), 14018–14023 (1991).
  • Friedmann M, Nissen MS, Hoover DS, Reeves R, Magnuson NS. Characterization of the proto-oncogene PIM-1: kinase activity and substrate recognition sequence. Arch. Biochem. Biophys.298(2), 594–601 (1992).
  • Palaty CK, Clark-Lewis I, Leung D, Pelech SL. Phosphorylation site substrate specificity determinants for the PIM-1 protooncogene-encoded protein kinase. Biochem. Cell Biol. Biochim. Biol. Cell.75(2), 153–162 (1997).
  • Bullock AN, Debreczeni J, Amos AL, Knapp S, Turk BE. Structure and substrate specificity of the PIM-1 kinase. J. Biol. Chem.280(50), 41675–41682 (2005).
  • Palaty CK, Kalmar G, Tai G et al. Identification of the autophosphorylation sites of the Xenopus laevis PIM-1 proto-oncogene-encoded protein kinase. J. Biol. Chem.272(16), 10514–10521 (1997).
  • Shay KP, Wang Z, Xing PX, Mckenzie IF, Magnuson NS. PIM-1 kinase stability is regulated by heat shock proteins and the ubiquitin-proteasome pathway. Mol. Cancer Res.3(3), 170–181 (2005).
  • Mizuno K, Shirogane T, Shinohara A, Iwamatsu A, Hibi M, Hirano T. Regulation of PIM-1 by Hsp90. Biochem. Biophys. Res. Commun.281(3), 663–669 (2001).
  • Nasser MW, Datta J, Nuovo G et al. Down-regulation of micro-RNA-1 (miR-1) in lung cancer. Suppression of tumorigenic property of lung cancer cells and their sensitization to doxorubicin-induced apoptosis by miR-1. J. Biol. Chem.283(48), 33394–33405 (2008).
  • Huang X, Ding L, Bennewith KL et al. Hypoxia-inducible MIR-210 regulates normoxic gene expression involved in tumor initiation. Mol. Cell35(6), 856–867 (2009).
  • Losman JA, Chen XP, Vuong BQ, Fay S, Rothman PB. Protein phosphatase 2A regulates the stability of PIM protein kinases. J. Biol. Chem.278(7), 4800–4805 (2003).
  • Ma J, Arnold HK, Lilly MB, Sears RC, Kraft AS. Negative regulation of PIM-1 protein kinase levels by the B56beta subunit of PP2A. Oncogene26(35), 5145–5153 (2007).
  • Laird PW, Van Der Lugt NM, Clarke A et al.In vivo analysis of PIM-1 deficiency. Nucleic Acids Res.21(20), 4750–4755 (1993).
  • Wang Z, Bhattacharya N, Mixter PF, Wei W, Sedivy J, Magnuson NS. Phosphorylation of the cell cycle inhibitor p21Cip1/WAF1 by PIM-1 kinase. Biochim. Biophys. Acta1593(1), 45–55 (2002).
  • Leverson JD, Koskinen PJ, Orrico FC et al. PIM-1 kinase and p100 cooperate to enhance c-Myb activity. Mol. Cell2(4), 417–425 (1998).
  • Bhattacharya N, Wang Z, Davitt C, Mckenzie IF, Xing PX, Magnuson NS. PIM-1 associates with protein complexes necessary for mitosis. Chromosoma111(2), 80–95 (2002).
  • Morishita D, Katayama R, Sekimizu K, Tsuruo T, Fujita N. PIM kinases promote cell cycle progression by phosphorylating and down-regulating p27Kip1 at the transcriptional and posttranscriptional levels. Cancer Res.68(13), 5076–5085 (2008).
  • Bachmann M, Hennemann H, Xing PX, Hoffmann I, Moroy T. The oncogenic serine/threonine kinase PIM-1 phosphorylates and inhibits the activity of Cdc25C-associated kinase 1 (C-TAK1): a novel role for PIM-1 at the G2/M cell cycle checkpoint. J. Biol. Chem.279(46), 48319–48328 (2004).
  • Mochizuki T, Kitanaka C, Noguchi K, Muramatsu T, Asai A, Kuchino Y. Physical and functional interactions between PIM-1 kinase and Cdc25A phosphatase. Implications for the PIM-1-mediated activation of the c-MYC signaling pathway. J. Biol. Chem.274(26), 18659–18666 (1999).
  • Shirogane T, Fukada T, Muller JM, Shima DT, Hibi M, Hirano T. Synergistic roles for PIM-1 and c-MYC in STAT3-mediated cell cycle progression and antiapoptosis. Immunity11(6), 709–719 (1999).
  • Eilers M, Eisenman RN. MYC’s broad reach. Genes Dev.22(20), 2755–2766 (2008).
  • Zippo A, De Robertis A, Serafini R, Oliviero S. PIM1-dependent phosphorylation of histone H3 at serine 10 is required for MYC-dependent transcriptional activation and oncogenic transformation. Nat. Cell Biol.9(8), 932–944 (2007).
  • Zhang Y, Wang Z, Li X, Magnuson NS. PIM kinase-dependent inhibition of c-MYC degradation. Oncogene27(35), 4809–4819 (2008).
  • Zippo A, Serafini R, Rocchigiani M, Pennacchini S, Krepelova A, Oliviero S. Histone crosstalk between H3S10ph and H4K16ac generates a histone code that mediates transcription elongation. Cell138(6), 1122–1136 (2009).
  • Wang J, Kim J, Roh M et al. PIM1 kinase synergizes with c-MYC to induce advanced prostate carcinoma. Oncogene29(17), 2477–2487 (2010).
  • Rainio EM, Sandholm J, Koskinen PJ. Cutting edge: transcriptional activity of NFATc1 is enhanced by the PIM-1 kinase. J. Immunol.168(4), 1524–1527 (2002).
  • Koike N, Maita H, Taira T, Ariga H, Iguchi-Ariga SM. Identification of heterochromatin protein 1 (HP1) as a phosphorylation target by PIM-1 kinase and the effect of phosphorylation on the transcriptional repression function of HP1(1). FEBS Lett.467(1), 17–21 (2000).
  • Maita H, Harada Y, Nagakubo D et al. PAP-1, a novel target protein of phosphorylation by PIM-1 kinase. Eur. J. Biochem. FEBS267(16), 5168–5178 (2000).
  • Ishibashi Y, Maita H, Yano M et al. PIM-1 translocates sorting nexin 6/TRAF4-associated factor 2 from cytoplasm to nucleus. FEBS Lett.506(1), 33–38 (2001).
  • Didichenko SA, Spiegl N, Brunner T, Dahinden CA. IL-3 induces a PIM1-dependent antiapoptotic pathway in primary human basophils. Blood112(10), 3949–3958 (2008).
  • Danial NN. BAD: undertaker by night, candyman by day. Oncogene27(Suppl. 1), S53–S70 (2008).
  • Yan B, Zemskova M, Holder S et al. The PIM-2 kinase phosphorylates BAD on serine 112 and reverses BAD-induced cell death. J. Biol. Chem.278(46), 45358–45367 (2003).
  • Aho TL, Sandholm J, Peltola KJ, Mankonen HP, Lilly M, Koskinen PJ. PIM-1 kinase promotes inactivation of the pro-apoptotic BAD protein by phosphorylating it on the Ser112 gatekeeper site. FEBS Lett.571(1–3), 43–49 (2004).
  • Macdonald A, Campbell DG, Toth R, Mclauchlan H, Hastie CJ, Arthur JS. PIM kinases phosphorylate multiple sites on BAD and promote 14-3-3 binding and dissociation from Bcl-XL. BMC Cell Biol.7, 1 (2006).
  • Datta SR, Dudek H, Tao X et al. AKT phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell91(2), 231–241 (1997).
  • Zha J, Harada H, Yang E, Jockel J, Korsmeyer SJ. Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L). Cell87(4), 619–628 (1996).
  • Danial NN, Gramm CF, Scorrano L et al. BAD and glucokinase reside in a mitochondrial complex that integrates glycolysis and apoptosis. Nature424(6951), 952–956 (2003).
  • Zhang F, Beharry ZM, Harris TE et al. PIM1 protein kinase regulates PRAS40 phosphorylation and mTOR activity in FDCP1 cells. Cancer Biol. Ther.8(9), 846–853 (2009).
  • Gu JJ, Wang Z, Reeves R, Magnuson NS. PIM1 phosphorylates and negatively regulates ASK1-mediated apoptosis. Oncogene28(48), 4261–4271 (2009).
  • Hammerman PS, Fox CJ, Cinalli RM et al. Lymphocyte transformation by PIM-2 is dependent on nuclear factor-κB activation. Cancer Res.64(22), 8341–8348 (2004).
  • Hammerman PS, Fox CJ, Birnbaum MJ, Thompson CB. PIM and AKT oncogenes are independent regulators of hematopoietic cell growth and survival. Blood105(11), 4477–4483 (2005).
  • Kane LP, Mollenauer MN, Xu Z, Turck CW, Weiss A. AKT-dependent phosphorylation specifically regulates Cot induction of NF-kappa B-dependent transcription. Mol. Cell Biol.22(16), 5962–5974 (2002).
  • Mcgowan KA, Li JZ, Park CY et al. Ribosomal mutations cause p53-mediated dark skin and pleiotropic effects. Nat. Genet.40(8), 963–970 (2008).
  • Hogan C, Hutchison C, Marcar L et al. Elevated levels of oncogenic protein kinase PIM-1 induce the p53 pathway in cultured cells and correlate with increased MDM in mantle cell lymphoma. J. Biol. Chem.283(26), 18012–18023 (2008).
  • Gibbons JJ, Abraham RT, Yu K. Mammalian target of rapamycin: discovery of rapamycin reveals a signaling pathway important for normal and cancer cell growth. Semin. Oncol.36(Suppl. 3), S3–S17 (2009).
  • Laplante M, Sabatini DM. mTOR signaling at a glance. J. Cell Sci.122(Pt 20), 3589–3594 (2009).
  • Fox CJ, Hammerman PS, Thompson CB. The PIM kinases control rapamycin-resistant T cell survival and activation. J. Exp. Med.201(2), 259–266 (2005).
  • Schatz JH, Wendel HG. Oncogenic PIM kinase activity provides resistance to MTOR inhibition in vitro and in vivo. ASH Annual Meeting Abstracts114(22), 3974 (2009).
  • Beharry Z, Mahajan S, Zemskova M et al. The PIM protein kinases regulate energy metabolism and cell growth. Proc. Natl Acad. Sci. USA108(2), 528–533 (2011).
  • Szakacs G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM. Targeting multidrug resistance in cancer. Nat. Rev. Drug Discov.5(3), 219–234 (2006).
  • Brahimi-Horn MC, Chiche J, Pouyssegur J. Hypoxia signalling controls metabolic demand. Curr. Opin. Cell Biol.19(2), 223–229 (2007).
  • Niu G, Briggs J, Deng J et al. Signal transducer and activator of transcription 3 is required for hypoxia-inducible factor-1α RNA expression in both tumor cells and tumor-associated myeloid cells. Mol. Cancer Res.6(7), 1099–1105 (2008).
  • Horiguchi A, Asano T, Kuroda K et al. STAT3 inhibitor WP1066 as a novel therapeutic agent for renal cell carcinoma. Br. J. Cancer102(11), 1592–1599 (2010).
  • Liu M, Li D, Aneja R et al. PO(2)-dependent differential regulation of multidrug resistance 1 gene expression by the c-Jun NH2-terminal kinase pathway. J. Biol. Chem.282(24), 17581–17586 (2007).
  • Rohwer N, Cramer T. Hypoxia-mediated drug resistance: novel insights on the functional interaction of HIFs and cell death pathways. Drug Resist. Updat.14(3), 191–201 (2011).
  • Chen J, Kobayashi M, Darmanin S et al. PIM-1 plays a pivotal role in hypoxia-induced chemoresistance. Oncogene28(28), 2581–2592 (2009).
  • Xie YN, Burcu M, Baer MR. PKC412 directly inhibits the serine/threonine protein kinase PIM-1 in cell lines and acute myeloid leukemia cells as a novel mechanism of inhibition of multidrug resistance. ASH Annual Meeting Abstracts112(11), 2655 (2008).
  • Chen W, Kumar AR, Hudson WA et al. Malignant transformation initiated by Mll-AF9: gene dosage and critical target cells. Cancer Cell13(5), 432–440 (2008).
  • Kim KT, Baird K, Ahn JY et al. PIM-1 is up-regulated by constitutively activated FLT3 and plays a role in FLT3-mediated cell survival. Blood105(4), 1759–1767 (2005).
  • Agrawal S, Koschmieder S, Baumer N et al. PIM2 complements FLT3 wild-type receptor in hematopoietic progenitor cell transformation. Leukemia22(1), 78–86 (2008).
  • Hu YL, Passegue E, Fong S, Largman C, Lawrence HJ. Evidence that the PIM1 kinase gene is a direct target of HOXA9. Blood109(11), 4732–4738 (2007).
  • Hsi ED, Jung SH, Lai R et al.Ki67 and PIM1 expression predict outcome in mantle cell lymphoma treated with high dose therapy, stem cell transplantation and rituximab: a cancer and leukemia group B 59909 correlative science study. Leuk. Lymphoma49(11), 2081–2090 (2008).
  • Poulsen CB, Borup R, Nielsen FC et al. Microarray-based classification of diffuse large B-cell lymphoma. Eur. J. Haematol.74(6), 453–465 (2005).
  • Wright G, Tan B, Rosenwald A, Hurt EH, Wiestner A, Staudt LM. A gene expression-based method to diagnose clinically distinct subgroups of diffuse large B cell lymphoma. Proc. Natl Acad. Sci. USA100(17), 9991–9996 (2003).
  • Grundler R, Brault L, Gasser C et al. Dissection of PIM serine/threonine kinases in FLT3-ITD-induced leukemogenesis reveals PIM1 as regulator of CXCL12-CXCR4-mediated homing and migration. J. Exp. Med.206(9), 1957–1970 (2009).
  • Spoo AC, Lubbert M, Wierda WG, Burger JA. CXCR4 is a prognostic marker in acute myelogenous leukemia. Blood109(2), 786–791 (2007).
  • Lapidot T, Dar A, Kollet O. How do stem cells find their way home? Blood106(6), 1901–1910 (2005).
  • Busillo JM, Benovic JL. Regulation of CXCR4 signaling. Biochim. Biophys. Acta1768(4), 952–963 (2007).
  • Nieborowska-Skorska M, Hoser G, Kossev P, Wasik MA, Skorski T. Complementary functions of the antiapoptotic protein A1 and serine/threonine kinase PIM-1 in the BCR/ABL-mediated leukemogenesis. Blood99(12), 4531–4539 (2002).
  • Adam M, Pogacic V, Bendit M et al. Targeting PIM kinases impairs survival of hematopoietic cells transformed by kinase inhibitor-sensitive and kinase inhibitor-resistant forms of Fms-like tyrosine kinase 3 and BCR/ABL. Cancer Res.66(7), 3828–3835 (2006).
  • Wernig G, Gonneville JR, Crowley BJ et al. The Jak2V617F oncogene associated with myeloproliferative diseases requires a functional FERM domain for transformation and for expression of the MYC and PIM proto-oncogenes. Blood111(7), 3751–3759 (2008).
  • Chen JL, Limnander A, Rothman PB. PIM-1 and PIM-2 kinases are required for efficient pre-B-cell transformation by v-Abl oncogene. Blood111(3), 1677–1685 (2008).
  • Brault L, Gasser C, Bracher F, Huber K, Knapp S, Schwaller J. PIM serine/threonine kinases in the pathogenesis and therapy of hematologic malignancies and solid cancers. Haematologica95(6), 1004–1015 (2010).
  • Gaidano G, Pasqualucci L, Capello D et al. Aberrant somatic hypermutation in multiple subtypes of AIDS-associated non-Hodgkin lymphoma. Blood102(5), 1833–1841 (2003).
  • Kumar A, Mandiyan V, Suzuki Y et al. Crystal structures of proto-oncogene kinase PIM1: a target of aberrant somatic hypermutations in diffuse large cell lymphoma. J. Mol. Biol.348(1), 183–193 (2005).
  • Kim J, Roh M, Abdulkadir S. Kinase-independent tumorigenicity of PIM1 oncogene. AACR Meeting Abstracts2008, 3469 (2008).
  • Rainio EM, Ahlfors H, Carter KL et al. PIM kinases are upregulated during Epstein–Barr virus infection and enhance EBNA2 activity. Virology333(2), 201–206 (2005).
  • Bajaj BG, Verma SC, Lan K, Cotter MA, Woodman ZL, Robertson ES. KSHV encoded LANA upregulates PIM-1 and is a substrate for its kinase activity. Virology351(1), 18–28 (2006).
  • Cheng F, Weidner-Glunde M, Varjosalo M et al. KSHV reactivation from latency requires PIM-1 and PIM-3 kinases to inactivate the latency-associated nuclear antigen LANA. PLoS Pathogens5(3), e1000324 (2009).
  • Jacobs MD, Black J, Futer O et al. PIM-1 ligand-bound structures reveal the mechanism of serine/threonine kinase inhibition by LY294002. J. Biol. Chem.280(14), 13728–13734 (2005).
  • Pogacic V, Bullock AN, Fedorov O et al. Structural analysis identifies imidazo[1,2-b]pyridazines as PIM kinase inhibitors with in vitro antileukemic activity. Cancer Res.67(14), 6916–6924 (2007).
  • Isaac M, Siu A, Jongstra J. The oncogenic PIM kinase family regulates drug resistance through multiple mechanisms. Drug Resist. Updat.14(4–5), 203–211 (2011).
  • Bullock AN, Russo S, Amos A et al. Crystal structure of the PIM2 kinase in complex with an organoruthenium inhibitor. PloS One4(10), e7112 (2009).
  • Holder S, Zemskova M, Zhang C et al. Characterization of a potent and selective small-molecule inhibitor of the PIM1 kinase. Mol. Cancer Ther.6(1), 163–172 (2007).
  • Cheney IW, Yan S, Appleby T et al. Identification and structure-activity relationships of substituted pyridones as inhibitors of PIM-1 kinase. Bioorgan. Med. Chem. Lett.17(6), 1679–1683 (2007).
  • Bullock AN, Debreczeni JE, Fedorov OY, Nelson A, Marsden BD, Knapp S. Structural basis of inhibitor specificity of the human protooncogene proviral insertion site in Moloney murine leukemia virus (PIM-1) kinase. J. Med. Chem.48(24), 7604–7614 (2005).
  • Lin Y, Song JH, Zhang Z et al. Novel small molecule PIM protein kinase inhibitors induce cell cycle arrest and apoptosis in human leukemias: a potential therapeutic approach. ASH Annual Meeting Abstracts112(11), 1632 (2008).
  • Holder S, Lilly M, Brown ML. Comparative molecular field analysis of flavonoid inhibitors of the PIM-1 kinase. Bioorgan. Med. Chem.15(19), 6463–6473 (2007).
  • Fedorov O, Marsden B, Pogacic V et al. A systematic interaction map of validated kinase inhibitors with Ser/Thr kinases. Proc. Natl Acad. Sci. USA104(51), 20523–20528 (2007).
  • Debreczeni JE, Bullock AN, Atilla GE et al. Ruthenium half-sandwich complexes bound to protein kinase PIM-1. Angew. Chem. (Int. Ed.)45(10), 1580–1585 (2006).
  • Bregman H, Meggers E. Ruthenium half-sandwich complexes as protein kinase inhibitors: an N-succinimidyl ester for rapid derivatizations of the cyclopentadienyl moiety. Org. Lett.8(24), 5465–5468 (2006).
  • Grey R, Pierce AC, Bemis GW et al. Structure-based design of 3-aryl-6-amino-triazolo[4,3-b]pyridazine inhibitors of PIM-1 kinase. Bioorgan. Med. Chem. Lett.19(11), 3019–3022 (2009).
  • Gourley E, Liu XH, Lamb J et al. A potent small molecule PIM kinase inhibitor with activity in cell lines from hematological and solid malignancies. AACR Meeting Abstracts2008, 4974 (2008).
  • Barnett AL, Ding S, Murray C et al. Anti-tumor activity of CXR1002, a novel anti-cancer compound that induces ER stress: human tumor xenograft efficacy and in vitro mode of action. Program and Abstracts of the AACR Meeting (2010) (Abstract 3566).
  • Tong Y, Stewart KD, Thomas S et al. Isoxazolo[3,4-b]quinoline-3,4(1H,9H)-diones as unique, potent and selective inhibitors for PIM-1 and PIM-2 kinases: chemistry, biological activities, and molecular modeling. Bioorgan. Med. Chem. Lett.18(19), 5206–5208 (2008).
  • Qian K, Wang L, Cywin CL et al. Hit to lead account of the discovery of a new class of inhibitors of PIM kinases and crystallographic studies revealing an unusual kinase binding mode. J. Med. Chem.52(7), 1814–1827 (2009).
  • Cozza G, Mazzorana M, Papinutto E et al. Quinalizarin as a potent, selective and cell-permeable inhibitor of protein kinase CK2. Biochem. J.421(3), 387–395 (2009).
  • Pagano MA, Bain J, Kazimierczuk Z et al. The selectivity of inhibitors of protein kinase CK2: an update. Biochem. J.415(3), 353–365 (2008).
  • Miduturu CV, Deng X, Kwiatkowski N et al. High-throughput kinase profiling: a more efficient approach toward the discovery of new kinase inhibitors. Chem. Biol.18(7), 868–879 (2011).
  • Chen LS, Redkar S, Bearss D, Wierda WG, Gandhi V. PIM kinase inhibitor, SGI-1776, induces apoptosis in chronic lymphocytic leukemia cells. Blood114(19), 4150–4157 (2009).
  • Mumenthaler SM, Ng PY, Hodge A et al. Pharmacologic inhibition of PIM kinases alters prostate cancer cell growth and resensitizes chemoresistant cells to taxanes. Mol. Cancer Ther.8(10), 2882–2893 (2009).
  • Chen LS, Redkar S, Taverna P, Cortes JE, Gandhi V. Mechanisms of cytotoxicity to PIM kinase inhibitor, SGI-1776, in acute myeloid leukemia. Blood118(3), 693–702 (2011).
  • Kelly KR, Espitia CM, Taverna P et al. Targeting PIM kinase activity significantly augments the efficacy of cytarabine. Br. J. Haematol.156(1), 129–132 (2012).
  • Natarajan K, Burcu M, Baer MR. Inhibition of the serine/threonine kinase PIM-1 has anti-proliferative effects in acute myeloid leukemia (AML) and sensitizes multidrug resistant cells to chemotherapy. ASH Annual Meeting Abstracts116(21), 1832 (2010).
  • Herreros B, Bischoff JR, Rodriguez ME et al. Pharmacological inhibition of PIM kinases in chronic lymphocytic leukemia cases with unfavorable prognosis markers. ASH Annual Meeting Abstracts116(21), 2468 (2010).
  • Lin YW, Beharry ZM, Hill EG et al. A small molecule inhibitor of PIM protein kinases blocks the growth of precursor T-cell lymphoblastic leukemia/lymphoma. Blood115(4), 824–833 (2010).
  • Lin Y, Graham AM, Costa LJ et al. Dual inhibition of mTOR and PIM kinase pathways using small molecule inhibitors synergistically kills myeloid leukemic cells in vitro and in vivo. ASH Annual Meeting Abstracts116(21), 293 (2010).
  • Ebens AJ, Berry L, Chen YH et al. A selective PIM kinase inhibitor is highly active in multiple myeloma: the biology of single agent and PI3K/AKT/mTOR combination activity. ASH Annual Meeting Abstracts116(21), 3001 (2010).
  • Munugalavadla V, Berry L, Chen YH et al. A selective PIM kinase inhibitor is highly active in multiple myeloma: mechanism of action and signal transduction studies. ASH Annual Meeting Abstracts116(21), 4084 (2010).
  • O’Brien S, Haddach M, Borsan C et al. Discovery of selective small molecule pan-PIM kinase inhibitors with potent oral efficacy in murine xenograft models. ASH Annual Meeting Abstracts114(22), 1726 (2009).
  • Chang M, Kanwar N, Feng E et al. PIM kinase inhibitors downregulate STAT3(Tyr705) phosphorylation. Mol. Cancer Ther.9(9), 2478–2487 (2010).
  • Tao ZF, Hasvold LA, Leverson JD et al. Discovery of 3H-benzo[4,5]thieno[3,2-d]pyrimidin-4-ones as potent, highly selective, and orally bioavailable inhibitors of the human protooncogene proviral insertion site in Moloney murine leukemia virus (PIM) kinases. J. Med. Chem.52(21), 6621–6636 (2009).
  • Macpherson IR, Bissett D, Petty RD et al. A first-in-human Phase 1 clinical trial of CXR1002 in patients (pts) with advanced cancer. ASCO Meeting Abstracts29(Suppl. 15), 3063 (2011).
  • Engelman JA. Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat. Rev.9(8), 550–562 (2009).
  • Franke TF, Yang SI, Chan TO et al. The protein kinase encoded by the AKT proto-oncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase. Cell81(5), 727–736 (1995).
  • Marte BM, Rodriguez-Viciana P, Wennstrom S, Warne PH, Downward J. R-Ras can activate the phosphoinositide 3-kinase but not the MAP kinase arm of the Ras effector pathways. Curr. Biol.7(1), 63–70 (1997).
  • Skorski T, Bellacosa A, Nieborowska-Skorska M et al. Transformation of hematopoietic cells by BCR/ABL requires activation of a PI-3k/AKT-dependent pathway. EMBO J.16(20), 6151–6161 (1997).
  • Huang S, Houghton PJ. Inhibitors of mammalian target of rapamycin as novel antitumor agents: from bench to clinic. Curr. Opin. Invest. Drugs3(2), 295–304 (2002).
  • Giles FJ. A PIM kinase inhibitor, please. Blood105(11), 4158–4159 (2005).
  • Edinger AL, Thompson CB. AKT maintains cell size and survival by increasing mTOR-dependent nutrient uptake. Mol. Biol. Cell13(7), 2276–2288 (2002).
  • Atkins MB, Hidalgo M, Stadler WM et al. Randomized Phase 2 study of multiple dose levels of CCI-779, a novel mammalian target of rapamycin kinase inhibitor, in patients with advanced refractory renal cell carcinoma. J. Clin. Oncol.22(5), 909–918 (2004).
  • Gao N, Zhang Z, Jiang BH, Shi X. Role of PI3K/AKT/mTOR signaling in the cell cycle progression of human prostate cancer. Biochem. Biophys. Res. Commun.310(4), 1124–1132 (2003).
  • Mohi MG, Boulton C, Gu TL et al. Combination of rapamycin and protein tyrosine kinase (PTK) inhibitors for the treatment of leukemias caused by oncogenic PTKs. Proc. Natl Acad. Sci. USA101(9), 3130–3135 (2004).
  • Panwalkar A, Verstovsek S, Giles FJ. Mammalian target of rapamycin inhibition as therapy for hematologic malignancies. Cancer100(4), 657–666 (2004).
  • Schatz JH, Oricchio E, Wolfe AL et al. Targeting cap-dependent translation blocks converging survival signals by AKT and PIM kinases in lymphoma. J. Exp. Med.208(9), 1799–1807 (2011).
  • Akagi T, Shih LY, Ogawa S et al. Single nucleotide polymorphism genomic arrays analysis of t(8;21) acute myeloid leukemia cells. Haematologica94(9), 1301–1306 (2009).
  • Hu XF, Li J, Vandervalk S, Wang Z, Magnuson NS, Xing PX. PIM-1-specific mAb suppresses human and mouse tumor growth by decreasing PIM-1 levels, reducing AKT phosphorylation, and activating apoptosis. J. Clin. Invest.119(2), 362–375 (2009).
  • Li J, Hu XF, Loveland BE, Xing PX. PIM-1 expression and monoclonal antibody targeting in human leukemia cell lines. Exp. Hematol.37(11), 1284–1294 (2009).
  • Olivotto M, Dello Sbarba P. Environmental restrictions within tumor ecosystems select for a convergent, hypoxia-resistant phenotype of cancer stem cells. Cell Cycle7(2), 176–187 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.