306
Views
21
CrossRef citations to date
0
Altmetric
Reviews

The role of histone methyltransferase EZH2 in myelodysplastic syndromes

&
Pages 177-185 | Published online: 10 Jan 2014

References

  • Portela A, Esteller M. Epigenetic modifications and human disease. Nat. Biotechnol. 28(10), 1057–1068 (2010).
  • Issa JP. Epigenetic changes in the myelodysplastic syndrome. Hematol. Oncol. Clin. North Am. 24(2), 317–330 (2010).
  • Kulis M, Esteller M. DNA methylation and cancer. Adv. Genet. 70, 27–56 (2010).
  • Sparmann A, van Lohuizen M. Polycomb silencers control cell fate, development and cancer. Nat. Rev. Cancer 6(11), 846–856 (2006).
  • Rajasekhar VK, Begemann M. Concise review: roles of polycomb group proteins in development and disease: a stem cell perspective. Stem Cells 25(10), 2498–2510 (2007).
  • Weinhofer I, Hehenberger E, Roszak P, Hennig L, Kohler C. H3K27me3 profiling of the endosperm implies exclusion of polycomb group protein targeting by DNA methylation. PLoS Genet. 6(10), e1001152 (2010).
  • Viré E, Brenner C, Deplus R et al. The polycomb group protein EZH2 directly controls DNA methylation. Nature 439(7078), 871–874 (2006).
  • Schlesinger Y, Straussman R, Keshet I et al. Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer. Nat. Genet. 39(2), 232–236 (2007).
  • Levine SS, King IF, Kingston RE. Division of labor in polycomb group repression. Trends Biochem. Sci. 29(9), 478–485 (2004).
  • Cao R, Wang L, Wang H et al. Role of histone H3 lysine 27 methylation in polycomb-group silencing. Science 298(5595), 1039–1043 (2002).
  • Kirmizis A, Bartley SM, Kuzmichev A et al. Silencing of human polycomb target genes is associated with methylation of histone H3 Lys 27. Genes Dev. 18(13), 1592–1605 (2004).
  • Iwama A, Oguro H, Negishi M, Kato Y, Nakauchia H. Epigenetic regulation of hematopoietic stem cell self-renewal by polycomb group genes. Int. J. Hematol. 81(4), 294–300 (2005).
  • Kamminga LM, Bystrykh LV, de Boer A et al. The polycomb group gene Ezh2 prevents hematopoietic stem cell exhaustion. Blood 107(5), 2170–2179 (2006).
  • Majewski IJ, Blewitt ME, de Graaf CA et al. Polycomb repressive complex 2 (PRC2) restricts hematopoietic stem cell activity. PLoS Biol. 6(4), e93 (2008).
  • Fiskus W, Pranpat M, Balasis M et al. Histone deacetylase inhibitors deplete enhancer of zeste 2 and associated polycomb repressive complex 2 proteins in human acute leukemia cells. Mol. Cancer Ther. 5(12), 3096–3104 (2006).
  • Villa R, Pasini D, Gutierrez A et al. Role of the polycomb repressive complex 2 in acute promyelocytic leukemia. Cancer Cell 11(6), 513–525 (2007).
  • Nikoloski G, Langemeijer SM, Kuiper RP et al. Somatic mutations of the histone methyltransferase gene EZH2 in myelodysplastic syndromes. Nat. Genet. 42(8), 665–667 (2010).
  • Ernst T, Chase AJ, Score J et al. Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat. Genet. 42(8), 722–726 (2010).
  • Kantarjian H, Oki Y, Garcia-Manero G et al. Results of a randomized study of 3 schedules of low-dose decitabine in higher-risk myelodysplastic syndrome and chronic myelomonocytic leukemia. Blood 109(1), 52–57 (2007).
  • Fenaux P, Mufti GJ, Hellstrom-Lindberg E et al. Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, Phase III study. Lancet Oncol. 10(3), 223–232 (2009).
  • Tan J, Yang X, Zhuang L et al. Pharmacologic disruption of polycomb-repressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells. Genes Dev. 21(9), 1050–1063 (2007).
  • Puppe J, Drost R, Liu X et al. BRCA1-deficient mammary tumor cells are dependent on EZH2 expression and sensitive to polycomb repressive complex 2-inhibitor 3-deazaneplanocin A. Breast Cancer Res. 11(4), R63 (2009).
  • Fiskus W, Wang Y, Sreekumar A et al. Combined epigenetic therapy with the histone methyltransferase EZH2 inhibitor 3-deazaneplanocin A and the histone deacetylase inhibitor panobinostat against human AML cells. Blood 114(13), 2733–2743 (2009).
  • Cheung P, Lau P. Epigenetic regulation by histone methylation and histone variants. Mol. Endocrinol. 19(3), 563–573 (2005).
  • Margueron R, Justin N, Ohno K et al. Role of the polycomb protein EED in the propagation of repressive histone marks. Nature 461(7265), 762–767 (2009).
  • Cao R, Zhang Y. SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED–EZH2 complex. Mol. Cell 15(1), 57–67 (2004).
  • Sarma K, Margueron R, Ivanov A, Pirrotta V, Reinberg D. Ezh2 requires PHF1 to efficiently catalyze H3 lysine 27 trimethylation in vivo. Mol. Cell Biol. 28(8), 2718–2731 (2008).
  • Landeira D, Sauer S, Poot R et al. Jarid2 is a PRC2 component in embryonic stem cells required for multi-lineage differentiation and recruitment of PRC1 and RNA polymerase II to developmental regulators. Nat. Cell Biol. 12(6), 618–624 (2010).
  • Peng JC, Valouev A, Swigut T et al. Jarid2/Jumonji coordinates control of PRC2 enzymatic activity and target gene occupancy in pluripotent cells. Cell 139(7), 1290–1302 (2009).
  • Kondo Y, Shen L, Cheng AS et al. Gene silencing in cancer by histone H3 lysine 27 trimethylation independent of promoter DNA methylation. Nat. Genet. 40(6), 741–750 (2008).
  • Gal-Yam EN, Egger G, Iniguez L et al. Frequent switching of polycomb repressive marks and DNA hypermethylation in the PC3 prostate cancer cell line. Proc. Natl Acad. Sci. USA 105(35), 12979–12984 (2008).
  • McGarvey KM, Greene E, Fahrner JA, Jenuwein T, Baylin SB. DNA methylation and complete transcriptional silencing of cancer genes persist after depletion of EZH2. Cancer Res. 67(11), 5097–5102 (2007).
  • van der Vlag J, Otte AP. Transcriptional repression mediated by the human polycomb-group protein EED involves histone deacetylation. Nat. Genet. 23(4), 474–478 (1999).
  • Fan T, Jiang S, Chung N et al. EZH2-dependent suppression of a cellular senescence phenotype in melanoma cells by inhibition of p21/CDKN1A expression. Mol. Cancer Res. 9(4), 418–429 (2011).
  • Kuzmichev A, Nishioka K, Erdjument-Bromage H, Tempst P, Reinberg D. Histone methyltransferase activity associated with a human multiprotein complex containing the enhancer of zeste protein. Genes Dev. 16(22), 2893–2905 (2002).
  • Simon JA, Lange CA. Roles of the EZH2 histone methyltransferase in cancer epigenetics. Mutat. Res. 647(12), 21–29 (2008).
  • Plath K, Fang J, Mlynarczyk-Evans SK et al. Role of histone H3 lysine 27 methylation in X inactivation. Science 300(5616), 131–135 (2003).
  • Tsai MC, Manor O, Wan Y et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science 329(5992), 689–693 (2010).
  • Khalil AM, Guttman M, Huarte M et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc. Natl Acad. Sci. USA 106(28), 11667–11672 (2009).
  • Guttman M, Donaghey J, Carey BW et al. lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature 477(7364), 295–300 (2011).
  • Kaneko S, Li G, Son J et al. Phosphorylation of the PRC2 component Ezh2 is cell cycle-regulated and up-regulates its binding to ncRNA. Genes Dev. 24(23), 2615–2620 (2010).
  • Brill LM, Xiong W, Lee KB et al. Phosphoproteomic analysis of human embryonic stem cells. Cell Stem Cell 5(2), 204–213 (2009).
  • Huttlin EL, Jedrychowski MP, Elias JE et al. A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143(7), 1174–1189 (2010).
  • Chen S, Bohrer LR, Rai AN et al. Cyclin-dependent kinases regulate epigenetic gene silencing through phosphorylation of EZH2. Nat. Cell Biol. 12(11), 1108–1114 (2010).
  • Palacios D, Mozzetta C, Consalvi S et al. TNF/p38α/polycomb signaling to Pax7 locus in satellite cells links inflammation to the epigenetic control of muscle regeneration. Cell Stem Cell 7(4), 455–469 (2010).
  • Wei Y, Chen YH, Li LY et al. CDK1-dependent phosphorylation of EZH2 suppresses methylation of H3K27 and promotes osteogenic differentiation of human mesenchymal stem cells. Nat. Cell Biol. 13(1), 87–94 (2011).
  • Cha TL, Zhou BP, Xia W et al. Akt-mediated phosphorylation of EZH2 suppresses methylation of lysine 27 in histone H3. Science 310(5746), 306–310 (2005).
  • Varambally S, Dhanasekaran SM, Zhou M et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419(6907), 624–629 (2002).
  • Bachmann IM, Halvorsen OJ, Collett K et al. EZH2 expression is associated with high proliferation rate and aggressive tumor subgroups in cutaneous melanoma and cancers of the endometrium, prostate, and breast. J. Clin. Oncol. 24(2), 268–273 (2006).
  • Tsang DP, Cheng AS. Epigenetic regulation of signaling pathways in cancer: role of the histone methyltransferase EZH2. J. Gastroenterol. Hepatol. 26(1), 19–27 (2011).
  • Varambally S, Cao Q, Mani RS et al. Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science 322(5908), 1695–1699 (2008).
  • Lu J, He ML, Wang L et al. MiR-26a inhibits cell growth and tumorigenesis of nasopharyngeal carcinoma through repression of EZH2. Cancer Res. 71(1), 225–233 (2011).
  • Alajez NM, Shi W, Hui AB et al. Enhancer of zeste homolog 2 (EZH2) is overexpressed in recurrent nasopharyngeal carcinoma and is regulated by miR-26a, miR-101, and miR-98. Cell Death Dis. 1, e85 (2010).
  • Kisliouk T, Yosefi S, Meiri N. miR-138 inhibits EZH2 methyltransferase expression and methylation of histone H3 at lysine 27, and affects thermotolerance acquisition. Eur. J. Neurosci. 33(2), 224–235 (2011).
  • Cheng AS, Lau SS, Chen Y et al. EZH2-mediated concordant repression of Wnt antagonists promotes b-catenin-dependent hepatocarcinogenesis. Cancer Res. 71(11), 4028–4039 (2011).
  • Jiang X, Tan J, Li J et al. DACT3 is an epigenetic regulator of Wnt/β-catenin signaling in colorectal cancer and is a therapeutic target of histone modifications. Cancer Cell 13(6), 529–541 (2008).
  • Hussain M, Rao M, Humphries AE et al. Tobacco smoke induces polycomb-mediated repression of Dickkopf-1 in lung cancer cells. Cancer Res. 69(8), 3570–3578 (2009).
  • Gonzalez ME, Li X, Toy K et al. Downregulation of EZH2 decreases growth of estrogen receptor invasive breast carcinoma and requires BRAC1. Oncogene 28(6), 843–853 (2009).
  • Kotake Y, Cao R, Viatour P, Sage J, Zhang Y, Xiong Y. pRB family proteins are required for H3K27 trimethylation and polycomb repression complexes binding to and silencing p16INK4α tumor suppressor gene. Genes Dev. 21(1), 49–54 (2007).
  • Bracken AP, Kleine-Kohlbrecher D, Dietrich N et al. The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells. Genes Dev. 21(5), 525–530 (2007).
  • Min J, Zaslavsky A, Fedele G et al. An oncogene–tumor suppressor cascade drives metastatic prostate cancer by coordinately activating Ras and nuclear factor-κB. Nat. Med. 16(3), 286–294 (2010).
  • Song LB, Li J, Liao WT et al. The polycomb group protein Bmi-1 represses the tumor suppressor PTEN and induces epithelial–mesenchymal transition in human nasopharyngeal epithelial cells. J. Clin. Invest. 119(12), 3626–3636 (2009).
  • Yu J, Cao Q, Mehra R et al. Integrative genomics analysis reveals silencing of β-adrenergic signaling by polycomb in prostate cancer. Cancer Cell 12(5), 419–431 (2007).
  • Schuringa JJ, Vellenga E. Role of the polycomb group gene BMI1 in normal and leukemic hematopoietic stem and progenitor cells. Curr. Opin. Hematol. 17(4), 294–299 (2010).
  • Lessard J, Schumacher A, Thorsteinsdottir U, van Lohuizen M, Magnuson T, Sauvageau G. Functional antagonism of the polycomb-group genes EED and Bmi1 in hemopoietic cell proliferation. Genes Dev. 13(20), 2691–2703 (1999).
  • Majewski IJ, Ritchie ME, Phipson B et al. Opposing roles of polycomb repressive complexes in hematopoietic stem and progenitor cells. Blood 116(5), 731–739 (2010).
  • Mochizuki-Kashio M, Mishima Y, Miyagi S et al. Dependency on the polycomb gene Ezh2 distinguishes fetal from adult hematopoietic stem cells. Blood 118(25), 6553–6561 (2011).
  • Grubach L, Juhl-Christensen C, Rethmeier A et al. Gene expression profiling of Polycomb, Hox and Meis genes in patients with acute myeloid leukaemia. Eur. J. Haematol. 81(2), 112–122 (2008).
  • Paul TA, Bies J, Small D, Wolff L. Signatures of polycomb repression and reduced H3K4 trimethylation are associated with p15INK4b DNA methylation in AML. Blood 115(15), 3098–3108 (2010).
  • Xu F, Li X, Wu L et al. Overexpression of the EZH2, RING1 and BMI1 genes is common in myelodysplastic syndromes: relation to adverse epigenetic alteration and poor prognostic scoring. Ann. Hematol. 90(6), 643–653 (2010).
  • Bejar R, Stevenson K, Abdel-Wahab O et al. Clinical effect of point mutations in myelodysplastic syndromes. N. Engl. J. Med. 364(26), 2496–2506 (2011).
  • Morin RD, Johnson NA, Severson TM et al. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat. Genet. 42(2), 181–185 (2010).
  • Sneeringer CJ, Scott MP, Kuntz KW et al. Coordinated activities of wild-type plus mutant EZH2 drive tumor-associated hypertrimethylation of lysine 27 on histone H3 (H3K27) in human B-cell lymphomas. Proc. Natl Acad. Sci. USA 107(49), 20980–20985 (2010).
  • Yap DB, Chu J, Berg T et al. Somatic mutations at EZH2 Y641 act dominantly through a mechanism of selectively altered PRC2 catalytic activity, to increase H3K27 trimethylation. Blood 117(8), 2451–2459 (2011).
  • Sauvageau M, Sauvageau G. Polycomb group proteins: multi-faceted regulators of somatic stem cells and cancer. Cell Stem Cell 7(3), 299–313 (2010).
  • Olsen EA, Kim YH, Kuzel TM et al. Phase IIB multicenter trial of vorinostat in patients with persistent, progressive, or treatment refractory cutaneous T-cell lymphoma. J. Clin. Oncol. 25(21), 3109–3115 (2007).
  • Glazer RI, Hartman KD, Knode MC et al. 3-deazaneplanocin: a new and potent inhibitor of S-adenosyl homocysteine hydrolase and its effects on human promyelocytic leukemia cell line HL-60. Biochem. Biophys. Res. Commun. 135(2), 688–694 (1986).
  • Sun F, Chan E, Wu Z, Yang X, Marquez VE, Yu Q. Combinatorial pharmacologic approaches target EZH2-mediated gene repression in breast cancer cells. Mol. Cancer Ther. 8(12), 3191–3202 (2009).
  • Chiba T, Suzuki E, Negishi M et al. 3-deazaneplanocin A is a promising therapeutic agent for the eradication of tumor-initiating hepatocellular carcinoma cells. Int. J. Cancer doi:10.1002/ijc.26264 (2011) (Epub ahead of print).
  • Miranda TB, Cortez CC, Yoo CB et al. DZNep is a global histone methylation inhibitor that reactivates developmental genes not silenced by DNA methylation. Mol. Cancer Ther. 8(6), 1579–1588 (2009).
  • Hayden A, Johnson PW, Packham G, Crabb SJ. S-adenosylhomocysteine hydrolase inhibition by 3-deazaneplanocin analogues induces anti-cancer effects in breast cancer cell lines and synergy with both histone deacetylase and HER2 inhibition. Breast Cancer Res. Treat. 127(1), 109–119 (2011).
  • Hua WF, Fu YS, Liao YJ et al. Curcumin induces down-regulation of EZH2 expression through the MAPK pathway in MDA-MB-435 human breast cancer cells. Eur. J. Pharmacol. 637(1–3), 16–21 (2010).
  • Suv ML, Riggi N, Janiszewska M et al. EZH2 is essential for glioblastoma cancer stem cell maintenance. Cancer Res. 69(24), 9211–9218 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.