175
Views
12
CrossRef citations to date
0
Altmetric
Review

Platelet biology: the role of shear

Pages 205-212 | Published online: 10 Jan 2014

References

  • George JN. Platelets. Lancet 355(9214), 1531–1539 (2000).
  • Smyth SS, McEver RP, Weyrich AS et al.; 2009 Platelet Colloquium Participants. Platelet functions beyond hemostasis. J. Thromb. Haemost. 7(11), 1759–1766 (2009).
  • Ruggeri ZM. Platelets in atherothrombosis. Nat. Med. 8(11), 1227–1234 (2002).
  • Davì G, Patrono C. Platelet activation and atherothrombosis. N. Engl. J. Med. 357(24), 2482–2494 (2007).
  • Virchow R. Gesammelte Abhandlungen zur Wissenschaftlichen Medicin. Meidinger Sohn & Co, Frankfurt, Germany, 219–732 (1856).
  • Brass L. Understanding and evaluating platelet function. Hematology Am. Soc. Hematol. Educ. Program 2010, 387–396 (2010).
  • Rivera J, Lozano ML, Navarro-Núñez L, Vicente V. Platelet receptors and signaling in the dynamics of thrombus formation. Haematologica 94(5), 700–711 (2009).
  • Zwaginga JJ, Nash G, King MR et al.; Biorheology Subcommittee of the Scientific and Standardization Committee of the International Society on Thrombosis and Hemostasis. Flow-based assays for global assessment of hemostasis. Part 1: biorheologic considerations. J. Thromb. Haemost. 4(11), 2486–2487 (2006).
  • Lowe GD. Rheological influences on thrombosis. Baillieres Best Pract. Res. Clin. Haematol. 12(3), 435–449 (1999).
  • Mazzucato M, Santomaso A, Canu P, M Ruggeri Z, De Marco L. Flow dynamics and haemostasis. Ann. Ist. Super. Sanita 43(2), 130–138 (2007).
  • Aarts PA, van den Broek SA, Prins GW, Kuiken GD, Sixma JJ, Heethaar RM. Blood platelets are concentrated near the wall and red blood cells, in the center in flowing blood. Arteriosclerosis 8(6), 819–824 (1988).
  • Tilles AW, Eckstein EC. The near-wall excess of platelet-sized particles in blood flow: its dependence on hematocrit and wall shear rate. Microvasc. Res. 33(2), 211–223 (1987).
  • Nesbitt WS, Mangin P, Salem HH, Jackson SP. The impact of blood rheology on the molecular and cellular events underlying arterial thrombosis. J. Mol. Med. 84(12), 989–995 (2006).
  • Zhao R, Kameneva MV, Antaki JF. Investigation of platelet margination phenomena at elevated shear stress. Biorheology 44(3), 161–177 (2007).
  • Jordan A, David T, Homer-Vanniasinkam S, Graham A, Walker P. The effects of margination and red cell augmented platelet diffusivity on platelet adhesion in complex flow. Biorheology 41(5), 641–653 (2004).
  • Ruggeri ZM. Platelet adhesion under flow. Microcirculation 16(1), 58–83 (2009).
  • Ruggeri ZM, Mendolicchio GL. Adhesion mechanisms in platelet function. Circ. Res. 100(12), 1673–1685 (2007).
  • Strony J, Beaudoin A, Brands D, Adelman B. Analysis of shear stress and hemodynamic factors in a model of coronary artery stenosis and thrombosis. Am. J. Physiol. 265(5 Pt 2), H1787–H1796 (1993).
  • Jackson SP, Nesbitt WS, Westein E. Dynamics of platelet thrombus formation. J. Thromb. Haemost. 7(Suppl. 1), 17–20 (2009).
  • Bark DL Jr, Ku DN. Wall shear over high degree stenoses pertinent to atherothrombosis. J. Biomech. 43(15), 2970–2977 (2010).
  • Varga-Szabo D, Pleines I, Nieswandt B. Cell adhesion mechanisms in platelets. Arterioscler. Thromb. Vasc. Biol. 28(3), 403–412 (2008).
  • Savage B, Saldívar E, Ruggeri ZM. Initiation of platelet adhesion by arrest onto fibrinogen or translocation on von Willebrand factor. Cell 84(2), 289–297 (1996).
  • Savage B, Almus-Jacobs F, Ruggeri ZM. Specific synergy of multiple substrate–receptor interactions in platelet thrombus formation under flow. Cell 94(5), 657–666 (1998).
  • Jackson SP, Nesbitt WS, Kulkarni S. Signaling events underlying thrombus formation. J. Thromb. Haemost. 1(7), 1602–1612 (2003).
  • Wei AH, Schoenwaelder SM, Andrews RK, Jackson SP. New insights into the haemostatic function of platelets. Br. J. Haematol. 147(4), 415–430 (2009).
  • Goldsmith HL, Turitto VT. Rheological aspects of thrombosis and haemostasis: basic principles and applications. ICTH Report – Subcommittee on Rheology of the International Committee on Thrombosis and Haemostasis. Thromb. Haemost. 55(3), 415–435 (1986).
  • Ikeda Y, Handa M, Kawano K et al. The role of von Willebrand factor and fibrinogen in platelet aggregation under varying shear stress. J. Clin. Invest. 87(4), 1234–1240 (1991).
  • Siedlecki CA, Lestini BJ, Kottke-Marchant KK, Eppell SJ, Wilson DL, Marchant RE. Shear-dependent changes in the three-dimensional structure of human von Willebrand factor. Blood 88(8), 2939–2950 (1996).
  • Schneider SW, Nuschele S, Wixforth A et al. Shear-induced unfolding triggers adhesion of von Willebrand factor fibers. Proc. Natl Acad. Sci. USA 104(19), 7899–7903 (2007).
  • Di Stasio E, De Cristofaro R. The effect of shear stress on protein conformation: physical forces operating on biochemical systems: the case of von Willebrand factor. Biophys. Chem. 153(1), 1–8 (2010).
  • Tsai HM. Physiologic cleavage of von Willebrand factor by a plasma protease is dependent on its conformation and requires calcium ion. Blood 87(10), 4235–4244 (1996).
  • Dong JF. Cleavage of ultra-large von Willebrand factor by ADAMTS-13 under flow conditions. J. Thromb. Haemost. 3(8), 1710–1716 (2005).
  • Jackson SP. The growing complexity of platelet aggregation. Blood 109(12), 5087–5095 (2007).
  • Maxwell MJ, Westein E, Nesbitt WS, Giuliano S, Dopheide SM, Jackson SP. Identification of a 2-stage platelet aggregation process mediating shear-dependent thrombus formation. Blood 109(2), 566–576 (2007).
  • Mody NA, King MR. Platelet adhesive dynamics. Part I: characterization of platelet hydrodynamic collisions and wall effects. Biophys. J. 95(5), 2539–2555 (2008).
  • Mody NA, Lomakin O, Doggett TA, Diacovo TG, King MR. Mechanics of transient platelet adhesion to von Willebrand factor under flow. Biophys. J. 88(2), 1432–1443 (2005).
  • Goncalves I, Nesbitt WS, Yuan Y, Jackson SP. Importance of temporal flow gradients and integrin αIIbβ3 mechanotransduction for shear activation of platelets. J. Biol. Chem. 280(15), 15430–15437 (2005).
  • Li Z, Delaney MK, O’Brien KA, Du X. Signaling during platelet adhesion and activation. Arterioscler. Thromb. Vasc. Biol. 30(12), 2341–2349 (2010).
  • Watson SP. Platelet activation by extracellular matrix proteins in haemostasis and thrombosis. Curr. Pharm. Des. 15(12), 1358–1372 (2009).
  • Watson SP, Auger JM, McCarty OJ, Pearce AC. GPVI and integrin αIIb β3 signaling in platelets. J. Thromb. Haemost. 3(8), 1752–1762 (2005).
  • Stegner D, Nieswandt B. Platelet receptor signaling in thrombus formation. J. Mol. Med. 89(2), 109–121 (2011).
  • Offermanns S. Activation of platelet function through G protein-coupled receptors. Circ. Res. 99(12), 1293–1304 (2006).
  • Smyth SS, Woulfe DS, Weitz JI et al.; 2008 Platelet Colloquium Participants. G-protein-coupled receptors as signaling targets for antiplatelet therapy. Arterioscler. Thromb. Vasc. Biol. 29(4), 449–457 (2009).
  • Gachet C. P2 receptors, platelet function and pharmacological implications. Thromb. Haemost. 99(3), 466–472 (2008).
  • Hu H, Hoylaerts MF. The P2X1 ion channel in platelet function. Platelets 21(3), 153–166 (2010).
  • Kahn ML, Zheng YW, Huang W et al. A dual thrombin receptor system for platelet activation. Nature 394(6694), 690–694 (1998).
  • Mahaut-Smith MP, Tolhurst G, Evans RJ. Emerging roles for P2X1 receptors in platelet activation. Platelets 15(3), 131–144 (2004).
  • Nieswandt B, Varga-Szabo D, Elvers M. Integrins in platelet activation. J. Thromb. Haemost. 7(Suppl. 1), 206–209 (2009).
  • Huang PY, Hellums JD. Aggregation and disaggregation kinetics of human blood platelets: Part II. Shear-induced platelet aggregation. Biophys. J. 65(1), 344–353 (1993).
  • Hantgan RR, Hindriks G, Taylor RG, Sixma JJ, de Groot PG. Glycoprotein Ib, von Willebrand factor, and glycoprotein IIb:IIIa are all involved in platelet adhesion to fibrin in flowing whole blood. Blood 76(2), 345–353 (1990).
  • Ruggeri ZM, Orje JN, Habermann R, Federici AB, Reininger AJ. Activation-independent platelet adhesion and aggregation under elevated shear stress. Blood 108(6), 1903–1910 (2006).
  • Nesbitt WS, Westein E, Tovar-Lopez FJ et al. A shear gradient-dependent platelet aggregation mechanism drives thrombus formation. Nat. Med. 15(6), 665–673 (2009).
  • Furie B, Furie BC. In vivo thrombus formation. J. Thromb. Haemost. 5(Suppl. 1), 12–17 (2007).
  • Dubois C, Panicot-Dubois L, Gainor JF, Furie BC, Furie B. Thrombin-initiated platelet activation in vivo is vWF independent during thrombus formation in a laser injury model. J. Clin. Invest. 117(4), 953–960 (2007).
  • van Gestel MA, Heemskerk JW, Slaaf DW et al. Real-time detection of activation patterns in individual platelets during thromboembolism in vivo: differences between thrombus growth and embolus formation. J. Vasc. Res. 39(6), 534–543 (2002).
  • Kaplan ZS, Jackson SP. The role of platelets in atherothrombosis. Hematology Am. Soc. Hematol. Educ. Program 2011, 51–61 (2011).
  • Borst O, Münzer P, Gatidis S et al. The inflammatory chemokine CXC motif ligand 16 triggers platelet activation and adhesion via CXC motif receptor 6-dependent phosphatidylinositide 3-kinase/Akt signaling. Circ. Res. 111(10), 1297–1307 (2012).
  • Malek AM, Alper SL, Izumo S. Hemodynamic shear stress and its role in atherosclerosis. JAMA 282(21), 2035–2042 (1999).
  • Frangos SG, Gahtan V, Sumpio B. Localization of atherosclerosis: role of hemodynamics. Arch. Surg. 134(10), 1142–1149 (1999).
  • Wentzel JJ, Chatzizisis YS, Gijsen FJ, Giannoglou GD, Feldman CL, Stone PH. Endothelial shear stress in the evolution of coronary atherosclerotic plaque and vascular remodelling: current understanding and remaining questions. Cardiovasc. Res. 96(2), 234–243 (2012).
  • Slager CJ, Wentzel JJ, Gijsen FJ et al. The role of shear stress in the destabilization of vulnerable plaques and related therapeutic implications. Nat. Clin. Pract. Cardiovasc. Med. 2(9), 456–464 (2005).
  • Eshtehardi P, McDaniel MC, Suo J et al. Association of coronary wall shear stress with atherosclerotic plaque burden, composition, and distribution in patients with coronary artery disease. J. Am. Heart Assoc. 1(4), e002543 (2012).
  • Samady H, Eshtehardi P, McDaniel MC et al. Coronary artery wall shear stress is associated with progression and transformation of atherosclerotic plaque and arterial remodeling in patients with coronary artery disease. Circulation 124(7), 779–788 (2011).
  • Stone PH, Saito S, Takahashi S et al.; PREDICTION Investigators. Prediction of progression of coronary artery disease and clinical outcomes using vascular profiling of endothelial shear stress and arterial plaque characteristics: the PREDICTION Study. Circulation 126(2), 172–181 (2012).
  • Squizzato A, Keller T, Romualdi E, Middeldorp S. Clopidogrel plus aspirin versus aspirin alone for preventing cardiovascular disease. Cochrane Database Syst. Rev. 1, CD005158 (2011).
  • CAPRIE Steering Committee. A randomised, blinded, trial of clopidogrel versus aspirin in patients at risk of ischaemic events (CAPRIE). Lancet 348(9038), 1329–1339 (1996).
  • ISIS-2 (Second International Study of Infarct Survival) Collaborative Group. Randomised trial of intravenous streptokinase, oral aspirin, both, or neither among 17,187 cases of suspected acute myocardial infarction: ISIS-2. Lancet 2(8607), 349–360 (1988).
  • Sweeny JM, Gorog DA, Fuster V. Antiplatelet drug ‘resistance’. Part 1: mechanisms and clinical measurements. Nat. Rev. Cardiol. 6(4), 273–282 (2009).
  • Musallam KM, Charafeddine K, Bitar A et al. Resistance to aspirin and clopidogrel therapy. Int. J. Lab. Hematol. 33(1), 1–18 (2011).
  • Matetzky S, Shenkman B, Guetta V et al. Clopidogrel resistance is associated with increased risk of recurrent atherothrombotic events in patients with acute myocardial infarction. Circulation 109(25), 3171–3175 (2004).
  • Krasopoulos G, Brister SJ, Beattie WS, Buchanan MR. Aspirin ‘resistance’ and risk of cardiovascular morbidity: systematic review and meta-analysis. BMJ 336(7637), 195–198 (2008).
  • Snoep JD, Hovens MM, Eikenboom JC, van der Bom JG, Huisman MV. Association of laboratory-defined aspirin resistance with a higher risk of recurrent cardiovascular events: a systematic review and meta-analysis. Arch. Intern. Med. 167(15), 1593–1599 (2007).
  • Sofi F, Marcucci R, Gori AM, Abbate R, Gensini GF. Residual platelet reactivity on aspirin therapy and recurrent cardiovascular events–a meta-analysis. Int. J. Cardiol. 128(2), 166–171 (2008).
  • Angiolillo DJ, Fernandez-Ortiz A, Bernardo E et al. Variability in individual responsiveness to clopidogrel: clinical implications, management, and future perspectives. J. Am. Coll. Cardiol. 49(14), 1505–1516 (2007).
  • Frossard M, Fuchs I, Leitner JM et al. Platelet function predicts myocardial damage in patients with acute myocardial infarction. Circulation 110(11), 1392–1397 (2004).
  • Steinhubl SR, Talley JD, Braden GA et al. Point-of-care measured platelet inhibition correlates with a reduced risk of an adverse cardiac event after percutaneous coronary intervention: results of the GOLD (AU-Assessing Ultegra) multicenter study. Circulation 103(21), 2572–2578 (2001).
  • Ferreiro JL, Sibbing D, Angiolillo DJ. Platelet function testing and risk of bleeding complications. Thromb. Haemost. 103(6), 1128–1135 (2010).
  • Price MJ. Monitoring platelet function to reduce the risk of ischemic and bleeding complications. Am. J. Cardiol. 103(Suppl. 3), 35A–39A (2009).
  • Vila PM, Zafar MU, Badimon JJ. Platelet reactivity and nonresponse to dual antiplatelet therapy: a review. Platelets 20(8), 531–538 (2009).
  • Ben-Dor I, Kleiman NS, Lev E. Assessment, mechanisms, and clinical implication of variability in platelet response to aspirin and clopidogrel therapy. Am. J. Cardiol. 104(2), 227–233 (2009).
  • Ulrichts H, Silence K, Schoolmeester A et al. Antithrombotic drug candidate ALX-0081 shows superior preclinical efficacy and safety compared with currently marketed antiplatelet drugs. Blood 118(3), 757–765 (2011).
  • Bae ON. Targeting von Willebrand factor as a novel anti-platelet therapy; application of ARC1779, an anti-vWF aptamer, against thrombotic risk. Arch. Pharm. Res. 35(10), 1693–1699 (2012).
  • Korin N, Kanapathipillai M, Matthews BD et al. Shear-activated nanotherapeutics for drug targeting to obstructed blood vessels. Science 337(6095), 738–742 (2012).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.