10
Views
1
CrossRef citations to date
0
Altmetric
Review

Normal and abnormal female sexual differentiation

, &
Pages 415-427 | Published online: 10 Jan 2014

References

  • Miyamoto N, Yoshida M, Kuratani S, Matsuo I, Aizawa S. Defects of urogenital development in mice lacking Emx2. Development124, 1653–1664 (1997).
  • Birk OS, Casiano DE, Wassif CA et al. The LIM homeobox gene Lhx9 is essential for mouse gonad formation. Nature403, 909–913 (2000).
  • Nef S, Verma-Kurvari S, Merenmies J et al. Testis determination requires insulin receptor family function in mice. Nature426, 291–295 (2003).
  • Cui S, Ross A, Stallings N, Parker KL, Capel B, Quaggin SE. Disrupted gonadogenesis and male-to-female sex reversal in Pod1 knockout mice. Development131, 4095–4105 (2004).
  • Pritchard-Jones K, Fleming S, Davidson D et al. The candidate Wilms tumour gene is involved in genitourinary development. Nature346, 194–197 (1990).
  • Kreidberg JA, Sariola H, Loring JM et al. WT-1 is required for early kidney development. Cell74, 679–691 (1993).
  • Köhler B, Schumacher V, l’Allemand D, Royer-Pokora B, Grüters A. Germline Wilms tumor suppressor gene (WT1) mutation leading to isolated genital malformation without Wilms tumor or nephropathy. J. Pediat.138, 421–424 (2001).
  • Jeanpierre C, Denamur E, Henry I et al. Identification of constitutional WT1 mutations in patients with isolated diffuse mesangial sclerosis and analysis of genotype/phenotype correlations by use of a computerized mutation database. Am. J. Hum. Genet.62, 824–833 (1998).
  • Morohashi K. Gonadal and extragonadal functions of Ad4BP/SF-1: developmental aspects. Trends Endocrinol. Metab.10, 169 (1999).
  • Luo XR, Ikeda YY, Parker KL. A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation. Cell77, 481–490 (1994).
  • Witschi E. Migration of the germ cells of human embryos from the yolk sac to the primitive gonadal folds. Contr. Embryol. Carnegie Inst.209(32), 69–80 (1948).
  • Bendel-Stenzel M, Anderson R, Heasman J, Wylie C. The origin and migration of primordial germ cells in the mouse. Semin. Cell. Dev. Biol.9, 393–400 (1998).
  • Bendsen E, Byskov AG, Andersen CY, Westergaard LG. Number of germ cells and somatic cells in human fetal ovaries during the first weeks after sex differentiation. Hum. Reprod.21, 30–35 (2006).
  • Bendsen E, Byskov AG, Laursen SB, Larsen CY. Number of germ cells and somatic cells in human fetal testes during the first weeks after sex differentiation. Hum. Reprod.18, 13–18 (2006).
  • Ying Y, Zhao GQ. Cooperation of endoderm-derived BMP2 and extraembryonic ectoderm-derived BMP4 in primordial germ cell generation in the mouse. Dev. Biol.232, 484–492 (2001).
  • Ying Y, Qi X, Zhao GQ. Induction of primordial germ cells from murine epiblasts by synergic action of BMP4 and BMP8B signaling pathways. Proc. Natl Acad. Sci. USA, 98, 7858–7862 (2001).
  • Ying Y, Liu XM, Marble A, Lawson KA, Zhao GQ. Requirement of BMP8b for the generation of primordial germ cells in the mouse. Mol. Endocrinol.14, 1053–1063 (2000).
  • Tanaka SS, Yamaguchi YL, Tsoi B, Lickert H, Tam PPL. IFITM/Mil/Fragilis family proteins IFITM1 and IFITM3 play distinct roles in mouse primordial germ cell homing and repulsion. Developmental Cell9, 745–756 (2005).
  • Motro B, van der Koy D, Rossant J, Reith A, Berstein A. Continuous patterns of c-kit and steel expression: analysis of mutations on the W and Sl loci. Development113, 1207–1221 (1991).
  • Pesce M, DiCarlo A, DeFelici M. The c-kit receptor is involved in the adhesion of mouse primordial germ cells to somatic cells in culture. Mech. Develop.68, 37–44 (1997).
  • Wylie C. Germ cells. Cell96, 165–174 (1999).
  • Rucker EB, Dierisseau P, Wagner KU et al. Bcl-x and Bax regulate mouse primordial germ cell survival and apoptosis during embryogenesis. Mol. Endocrinol.14, 1038–1052 (2000).
  • George FW, Wilson JD. Conversion of androgen to estrogen by the human fetal ovary. J. Clin. Endocrinol. Metab.47, 550–555 (1978).
  • Vaskivuo TE, Maentausta M, Torn S et al. Estrogen receptors and estrogen-metabolizing enzymes in human ovaries during fetal development. J. Clin. Endocrinol. Metab.90(6), 3752–3756 (2005).
  • Gondos B, Westergaard L, Byskov AG. Initiation of oogenesis in the human fetal ovary: ultrastructural and squash preparation study. Am. J. Obstet. Gynecol.155, 189–195 (1986).
  • Bowles J, Knight D, Smith C et al. Retinoid signaling determines germ cell fate in mice. Science312, 596–600 (2006).
  • Koubova J, Menke DB, Zhou Q, Capel B, Griswold MD, Page DC. Retinoic acid regulates sex-specific timing of meiotic initiation in mice. Proc. Natl Acad. Sci. USA103, 2474–2479 (2006).
  • Kurilo LF. Oogenesis in antenatal development in man. Hum. Genet.57, 86–92 (1981).
  • Baker TG. A quantitative and cytological study of germ cells in human ovaries. Proc. R. Soc. B158, 417–433 (1963).
  • Vainio S, Heikkila M, Kispert A, Chin N, MacMahon AP. Female development in mammals is regulated by Wnt-4 signalling. Nature397, 405–409 (1999).
  • Maatouk DM, DiNapoli L, Alvers A et al. Stabilization of β-catenin in XY gonads causes male-to-female sex reversal. Hum. Mol. Genet.17, 2949–2955 (2008).
  • Mandel H, Shemer R, Borochowitz ZU et al. SERKAL syndrome: an autosomal-recessive disorder caused by a loss-of-function mutation in Wnt4. Am. J. Hum. Genet.82, 39–47 (2008).
  • Parma P, Radi O, Vidal V et al. R-spondin1 is essential in sex determination, skin differentiation and malignancy. Nat. Genet.38, 1304–1309 (2006).
  • Jeays-Ward K, Dandonneau M, Swain A. Wnt4 is required for proper male as well as female sexual development. Develop. Biol.276, 431–440 (2004).
  • Yao HH, Matzuk MM, Jorgez CJ et al. Follistatin operates downstream of Wnt4 in mammalian ovary organogenesis. Dev. Dyn.230, 210–215 (2004).
  • Pailhoux E, Vigier B, Chaffaux S et al. A 11.7-kb deletion triggers intersexuality and polledness in goats. Nat. Genet.29, 453–458 (2001).
  • Uhlenhaut NH, Treier M. Foxl2 function in ovarian development. Mol. Genet. Metab.88, 225–234 (2006).
  • Uda M, Ottolenghi C, Crisponi L et al. Foxl2 disruption causes mouse ovarian failure by pervasive blockage of follicle development. Hum. Mol. Genet.13, 1171–1181 (2004).
  • Ottolenghi C, Pelosi E, Tran J et al. Loss of Wnt4 and Foxl2 leads to female-to-male sex reversal extending to germ cells. Hum. Mol. Genet.16, 2795–2804 (2007).
  • Hersmus R, Kalfa N, de Leeuw B et al. Foxl2 and Sox9 as parameters of female and male gonadal differentiation in patients with various forms of disorders of sex development (DSD). J. Path.215, 31–38 (2008).
  • Crisponi L, Deiana M, Loi A et al. The putative forkhead transcription factor FOXL2 is mutated in blepharophimosis/ptosis/epicanthus inversus syndrome. Nat. Genet.27, 159–166 (2001).
  • Yu RN, Ito M, Saunders TL, Camper SA, Jameson JL. Role of Ahch in gonadal development and gametogenesis. Nat. Genet.20, 353–357 (1998).
  • Mumm S, Zucchi L, Pilia G. SOX3 gene maps near DXS984 in Xq27.1, within candidate regions for several X-linked disorders. Am. J. Med. Genet.72, 376–378 (1997).
  • McLaren A. Lawson KA. How is the mouse germ cell lineage established? Differentiation73, 435–437 (2005).
  • McLaren A. Primordial germ cells in the mouse. Dev. Biol.262, 1–15 (2003).
  • Ruggiu M, Speed R, Taggart M et al. The mouse Dazla gene encodes a cytoplasmic protein essential for gametogenesis. Nature389, 73–77 (1997).
  • Edelmann W, Cohen PE, Kneitz B et al. Mammalian MutS homologue 5 is required for chromosome pairing in meiosis. Nat. Genet.21, 123–127 (1999).
  • Menke DB, Koubova J, Page DC. Sexual differentiation of germ cells in XX mouse gonads occurs in an anterior-to-posterior wave. Dev. Biol.262, 303–312 (2003).
  • Pepling ME. From primordial germ cell to primordial follicle: mammalian female germ cell development. Genesis44, 622–632 (2006).
  • Gosden R, Clarke H, Miller D. Female gametogenesis. In: Reproductive Medicine. Fauser BCJM (Ed.). The Parthenon Publishing Group, TN, USA 365–380 (2003).
  • Jeyasuria P, Ikeda Y, Jamin SP et al. Cell-specific knockout of steroidogenic factor 1 reveals its essential roles in gonadal function. Mol. Endocrinol.18, 1610–1619 (2004).
  • Biason-Lauber A, Schoenle EJ. Apparently normal ovarian differentiation in a prepubertal girl with transcriptionally inactive steroidogenic factor 1 (NR5A1/SF1) and adrenocortical insufficiency. Am. J. Hum. Genet.67, 1563–1568 (2000).
  • Durlinger AL, Kramer P, Karels Bet al. Control of primordial follicle recruitment by anti-Müllerian hormone in the mouse ovary. Endocrinology140, 5789–5796 (1999).
  • Dong J, Albertini DF, Nishimori K, Kumar TR, Lu N, Matzuk MM. Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature383, 531–535 (1996).
  • Soyal SM, Amleh A, Dean J. FIGα, a germ cell-specific transcription factor required for ovarian follicle formation. Development127, 4645–4654 (2000).
  • Le Naour F, Rubinstein E, Jasmin C, Prenant M, Boucheix C. Severely reduced female fertility in CD9-deficient mice. Science287, 319–321 (2000).
  • Couse JF, Hewitt SC, Bunch DO et al. Postnatal sex reversal of the ovaries in mice lacking estrogen receptors α and β. Science286, 2328–2331 (1999).
  • Adham IM, Steding G, Thamm T et al. The overexpression of the Insl3 in female mice causes descent of the ovaries. Mol. Endocrinol.16(2), 244–252 (2002).
  • Gruenwald P. The relation of the growing Müllerian duct and its importance for the genesis of malformations. Anat. Rec.81, 1–19 (1941).
  • Streeter GL. Developmental horizons in human embryos (Carnegie stages XV–XVIII). Contr. Embryol. Carnegie Inst.211(32), 133–203 (1948).
  • Orvis GD, Behringer RR. Cellular mechanisms of Müllerian duct formation in the mouse. Dev. Biol.306, 493–504 (2007).
  • Kobayashi A, Shawlot W, Kania A, Behringer RR. Requirement of Lim1 for female reproductive tract development. Development131, 539–549 (2004).
  • Klattig J, Englert C. The Müllerian duct: recent insights into its development and regression. Sex. Dev.1, 271–278 (2007).
  • Carroll TJ, Park JS, Hayashi S, Majumdar A, MacMahon AP. Wnt9b plays a central role in the regulation of the mesenchymal to epithelial transitions underlying organogenesis of the mammalian urogenital system. Dev. Cell9, 283–292 (2005).
  • Torres M, Gomez-Pardo E, Dressler GR, Gruss P. Pax-2 controls multiple steps of urogenital development. Development121, 4057–4065 (1995).
  • Mittag J, Winterhager E, Bauer K, Grummer R. Congenital hypothyroid female Pax8-deficient mice are infertile despite thyroid hormone replacement therapy. Endocrinology148, 719–725 (2007).
  • Bouchard M, Souabni A, Mandler M, Neubuser A, Busslinger M. Nephric lineage specification by Pax2 and Pax8. Genes Dev.16, 2958–2970 (2002).
  • Warot X, Fromental-Ramain C, Fraulob V, Chambon P, Dollé P. Gene dosage-dependent effects of the Hoxa-13 and Hoxd-13 mutations on morphogenesis of the terminal parts of the digestive and urogenital tracts. Development124(23), 4781–4791 (1997).
  • Mendelsohn C, Lohnes D, Decimo D, Lufkin T, Lemeur M. Function of the retinoic acid receptors (RARs) during development (II). Multiple abnormalities at various stages of organogenesis in RAR double mutants. Development120, 2749–2771 (1994).
  • Schnabel CA, Selleri L, Cleary ML. Pbx1 is essential for adrenal development and urogenital differentiation. Genesis37, 123–130 (2003).
  • Konishi I, Fujii S, Okamura H, Mori T. Development of smooth muscle in the human fetal uterus: an ultrastructural study. J. Anat.139, 239–252 (1984).
  • Hashimoto R. Development of the Müllerian duct in the sexually undifferentiated stage. Anat. Rec.272A, 514–519 (2003).
  • Ulfelder H, Robboy SJ. The embryologic development of the human vagina. Am. J. Obst. Gynecol.126, 769–776 (1976).
  • Minh H-N, Chayo M, Smadja A, de Sigalony JP. L’embryogénèse du vagin: une mise au point. Gynécologie35, 105–110 (1984).
  • Forsberg JG. Cervicovaginal epithelium: its origin and development. Am. J. Obst. Gynecol.115, 1025–1043 (1973).
  • Mauch RB, Thiedmann K-U, Drews U. The vagina is formed by downgrowth of Wolffian and Müllerian ducts. Graphical reconstructions from normal and Tfm mouse embryos. Anat. Embryol.172, 75–87 (1985).
  • Drews U, Sulak O, Schenk PA. Androgens and the development of the vagina. Biol. Reprod.67, 1353–1359 (2002).
  • Koff AK. Development of the vagina in the human fetus. Contr. Embryol. Carnegie Inst.140(24), 59–91 (1933).
  • Acien P, Acien M, Sanchez-Ferrer M. Complex malformations of the female genital tract. New types and revision of classification. Hum. Reprod.19, 2377–2384 (2004).
  • Parr BA, MacMahon AP. Sexually dimorphic development of the mammalian reproductive tract requires Wnt-7a. Nature395, 707–710 (1998).
  • Strong LC, Hollander WF. Hereditary loop-tail in the house mouse accompanied by imperforate vagina and craniorachischisis when homozygous. J. Hered.40, 329–334 (1949).
  • Heisenberg CP, Tada M. Wnt signalling: a moving picture emerges from van Gogh. Curr. Biol.12(4), R126–R128 (2002).
  • Taylor HS, Vanden-Heuvel GB, Igarashi P. A conserved Hox axis in the mouse and human female reproductive system: late establishment and persistent adult expression of the Hoxa cluster genes. Biol. Reprod.57, 1338–1345 (1997).
  • Moore KL, Persaud TVN. Development of external genitalia. In: The Developing Human. Clinically Oriented Embryology (7th Edition). Moore KL, Persaud TVN (Eds). Saunders, PA, USA, 315–320 (2003).
  • Klonisch T, Fowler PA, Hombach-Klonisch S. Molecular and genetic regulation of testis descent and external genitalia development. Dev. Biol.270, 1–18 (2004).
  • The American Fertility Society. The American Fertility Society classifications of adnexal adhesions, distal tubal occlusion, tubal occlusion secondary to tubal ligation, tubal pregnancy, mullerian anomalies and intrauterine adhesions. Fertil. Steril.49, 944–955 (1988).
  • Oppelt P, Renner SP, Brucker S et al. The VCUAM (vaginal cervix uterus adnex-associated malformation) classification: a new classification for genital malformations. Fertil. Steril.84, 1493–1497 (2005).
  • Turner HH. A syndrome of infantilism, congenital webbed neck, and cubitus valgus. Endocrinology23, 566 (1938).
  • Reynaud K, Cortvrindt R, Verlinde F, De Schepper J, Bourgain C, Smitz J. Number of ovarian follicles in human fetuses with the 45,X karyotype. Fertil. Steril.81, 1112–1119 (2004).
  • Tarani L, Lampariello S, Ragus G et al. Pregnancy in patients with Turner’s syndrome: six new cases and review of literature. Gynecol. Endocrinol.12, 83–87 (1998).
  • Wray HL, Freeman MVR, Ming PML. Pregnancy in the Turner syndrome with only 45,X chromosomal constitution. Fertil. Steril.35(5), 509–513 (1981).
  • Singh RP, Carr DH. The anatomy and histology of XO human embryos and fetuses. Anat. Rec.155, 369–375 (1966).
  • Weiss L. Additional evidence of gradual loss of germ cells in the pathogenesis of streak ovaries in Turner’s syndrome. J. Med. Genet.8, 540–544 (1971).
  • Foudila T, Söderström-Anttila V, Hovatta O. Turner’s syndrome and pregnancies after oocyte donation. Hum. Reprod.14, 532–535 (1999).
  • Jagiello GM, Fang J-S, Nogawa T, Sung WK, Ducayen M, Bowne W. Chromosome 21 behavior during fetal oogenesis in Down’s syndrome. Obstet. Gynecol.70, 878–882 (1987).
  • Barr ML, Sergovich FR, Carr DH, Saver EL. The triplo-X female: an appraisal based on a study of 12 cases and a review of the literature. Can. Med. Assoc. J.101, 247–258 (1969).
  • Bione S, Sala C, Manzini C et al. A human homologue of the Drosophila melanogaster diaphanous gene is disrupted in a patient with premature ovarian failure: evidence for conserved function in oogenesis and implication for human sterility. Am. J. Hum. Genet.62, 533–541 (1998).
  • Toniolo D. X-linked premature ovarian failure: a complex disease. Curr. Opin. Genet. Dev.16, 293–300 (2006).
  • Sherman SL. Premature ovarian failure in the fragile X syndrome. Am. J. Genet.97, 189–194 (2000).
  • Van Rooij IA, Broekmans FJ, Scheffer GJ et al. Serum antimullerian hormone levels best reflect the reproductive decline with age in normal women with proven fertility: a longitudinal study. Fertil. Steril.83(4), 979–987 (2005).
  • Rohr J, Allen EG, Charen K et al. Anti-Mullerian hormone indicates early ovarian decline in fragile X mental retardation (FMR1) premutation carriers: a preliminary study. Hum. Reprod.23, 1220–1225 (2008).
  • Baron D, Batista F, Chaffaux S et al. Foxl2 gene and the development of the ovary: a story about goat, mouse, fish and woman. Reprod. Nutr. Dev.45, 377–382 (2005).
  • DeSanctis C, Lala R, Matarazzo P. McCune Albright syndrome: a longitudinal clinical study of 32 patients. Pediat. Endocrinol. Metab.12, 817–826 (1999).
  • Kalantaridou SN, Chrousos GP. Monogenic disorders of puberty. J. Clin. Endocrinol. Metab.87, 2481–2494 (2002).
  • Gitzelmann R, Steinmann B. Galactosemia. Eur. J. Pediat.15(Suppl. 2), 7 (1995).
  • Evans TN, Poland M, Boving RL. Vaginal malformations. Am. J. Obstet. Gynecol.141, 910–920 (1981).
  • Kobayashi A, Behringer RR. Developmental genetics of the female reproductive tract in mammals. Nat. Rev. Genet.4, 969–980 (2003).
  • Petrozza JC, Gray MR, Davis AJ, Reindollar RH. Congenital absence of the uterus and vagina is not commonly transmitted as a dominant genetic trait: outcomes of surrogate pregnancies. Fertil. Steril.67, 387–389 (1997).
  • Ludwig KS. The Mayer Rokitansky Küster syndrome. An analysis of its morphology and embryology. Arch. Gynecol. Obstet.262, 1–26 (1998).
  • Strübbe EH, Willemsen WN, Lemmens JA, Thijn CJ, Rolland R. MRKH syndrome: distinction between two forms based on excretory urographic, sonographic and laparoscopic findings. Am. J. Roentgenol.160, 331–334 (1993).
  • Potter EL. Bilateral renal agenesis. J. Pediat.29, 68–76 (1946).
  • Braun-Quentin C, Billes C, Böwing B, Kotzot D. MURCS association: case report and review. J. Med. Genet.33, 618–620 (1996).
  • Willemsen WN. Combination of the Mayer Rokitansky Küster syndrome and Klippel–Feil syndrome – a case report and literature review. Eur. J. Obstet. Gynecol. Reprod. Biol.13, 229–235 (1982).
  • Oppelt P, Renner SP, Kellermann A et al. Clinical aspects of Mayer Rokitansky Küster syndrome: recommendations for clinical diagnosis and staging. Hum. Reprod.21(3), 792–797 (2006).
  • Clément-Ziza M, Khem N, Gonzalès Jet al. Exclusion of WNT4 as a major gene in Rokitansky–Kuster–Hauser syndrome. Am. J. Med. Genet.137, 98–99 (2005).
  • Stone DL, Slavotinek A, Bouffard GG et al. Mutation of a gene encoding a putative chaperonin causes McKusick–Kaufman syndrome. Nat. Genet.25, 79–82 (2000).
  • David A, Bitoun P, Lacombe D et al. Hydrometrocolpos and polydactyly: a common neonatal presentation of Bardet–Biedl and McKusick–Kaufman syndromes. J. Med. Genet.36, 599–603 (1999).
  • Fath MA, Mullins RF, Searby C et al. Mkks-null mice have a phenotype resembling Bardet–Biedl syndrome. Hum. Mol. Genet.14, 1109–1118 (2005).
  • Slavotinek AM, Dutra A, Kpodzo D et al. A female with complete lack of Müllerian fusion, postaxial polydactyly, and tetralogy of Fallot: genetic heterogeneity of McKusick–Kaufman syndrome or a unique syndrome? Am. J. Med. Genet.129, 69–72 (2004).
  • Lindner TH, Njolstad PR, Horikawa Y, Bostad L, Bell GL, Sovik O. A novel syndrome of diabetes mellitus, renal dysfunction and genital malformation with a partial deletion of the pseudo-POU domain of hepatocyte nuclear factor-1 β. Hum. Mol. Genet.8, 2001–2008 (1999).
  • Jenkins D, Bitner-Glindzicz M, Thomasson L et al. Mutational analyses of UPIIIA, SHH, EFNB2 and HNF1β in persistent cloaca and associated kidney malformations. J. Pediatr. Urol.3, 2–9 (2007).
  • Lurie IW, Cherstvoy ED. Renal agenesis as a diagnostic feature of the cryptophthalmos-syndactyly syndrome. Clin. Genet.25, 528–532 (1984).
  • Pitera JE, Scambler PJ, Woolf AS. Fras1, a basement membrane-associated protein mutated in Fraser syndrome, mediates both the initiation of the mammalian kidney and the integrity of renal glomeruli. Hum. Mol. Genet.17, 3953–3964 (2008).
  • Slavotinek A, Lee SS, Davis R et al. Fryns syndrome phenotype caused by chromosome microdeletions at 15q26.2 and 8p23.1. J. Med. Genet.42, 730–736 (2005).
  • de Santa Barbara P, Roberts DJ. Tail gut endoderm and gut/genitourinary/tail development: a new tissue-specific role for Hoxa13. Development129, 551–561 (2002).
  • Utsch B, McCabe CD, Galbraith K et al. Molecular characterization of HOXA13 polyalanine expansion proteins in hand–foot–genital syndrome. Am. J. Med. Genet.143A, 3161–3168 (2007).
  • McDermid HE, Morrow BE. Genomic disorders on 22q11. Am. J. Hum. Genet.70, 1077–1088 (2002).
  • Hall R, Fleming S, Gysler M, McLorie G. The genital tract in female children with imperforate anus. Am. J. Obstet. Gynecol.151, 169–171 (1985).
  • Yao HH. The pathway to femaleness: current knowledge on embryonic development of the ovary. Mol. Cell. Endocrinol.230, 87–93 (2005).
  • Kajii T, Kida M, Takahashi K. The effect of thalidomide intake during 113 human pregnancies. Teratology8, 163–166 (1973).
  • McCrory W. The normal development of the kidney: a basis for understanding structural abnormalities. Birth Defects10, 3–11 (1974).
  • Herbst AL, Ulfelder H, Poskanzer DC. Adenocarcinoma of the vagina: association of maternal stilbestroltherapy with tumor appearance in young women. N. Engl. J. Med.284, 878–881 (1971).
  • Miller C, Degenhardt K, Sassoon DA. Fetal exposure to DES results in de-regulation of Wnt7a during uterine morphogenesis. Nat. Genet.20, 228–230 (1998).
  • Carta L, Sassoon D. Wnt7a is a suppressor of cell death in the female reproductive tract and is required for postnatal and estrogen-mediated growth. Biol. Reprod.71, 444–454 (2004).
  • Block K, Kardana A, Igarashi P, Taylor HS. In utero diethylstilbestrol (DES) exposure alters Hox gene expression in the developing Müllerian system. FASEB J.14, 1101–1108 (2000).
  • De Bruin J, Nikkels PG, Bruinse HW, van Haaften M, Looman CW, te Velde ER. Morphometry of human ovaries in normal and growth-restricted fetuses. Early Human Dev.60, 179–192 (2001).
  • Crain DA, Janssen SJ, Edwards TM et al. Female reproductive disorders: the roles of endocrine-disrupting compounds and developmental timing. Fertil. Steril.90, 911–940 (2008).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.