6
Views
1
CrossRef citations to date
0
Altmetric
Review

Human chorionic gonadotropin (hCG) and hyperglycosylated hCG: the mediators that control human pregnancy

Pages 273-283 | Published online: 10 Jan 2014

References

  • Aschner B. Ueber die function der hypophyse. Pflug. Arch. Gest. Physiol.146, 1–147 (1912).
  • Fellner OO. Experimentelle untersuchungen uber die wirkung von gewebsextrakten aus der plazenta und den weiblichen sexualorganen auf das genital. Arch. Gynakol.100, 641 (1913).
  • Hirose T. Experimentalle histologische studie zur genese corpus luteum. Mitt. Med. Fakultd. Univ. ZU23, 63–70 (1919).
  • Aschheim S, Zondek B. Das hormon des hypophysenvorderlappens: testobjekt zum Nachweis des hormons. Klin. Wochenschr.6, 248–252 (1927).
  • Hunter MG, Baker TG. Effect of hCG, cAMP and FSH on steroidogenesis by human corpora lutea in vitro. J. Reprod. Fert.63, 285–288 (1981).
  • Strott CA, Yoshimi T, Ross GT, Lipsett MB. Ovarian physiology: relationship between plasma LH and steroidogenesis by the follicle and corpus luteum; effect of hCG. J. Clin. Endocrinol. Metab.29, 1157–1167 (1969).
  • Cedard L, Varangot J, Yannotti S. The metabolism of estrogens in human placentas artificially maintained in survival by perfusion in vitro. Hebd. Seances Acad. Sci.254, 1870–1871 (1962).
  • Azuma K, Calderon I, Besanko M, MacLachlan V, Healy DL. Is the luteo-placental shift a myth? Analysis of low progesterone levels in successful ART pregnancies. J. Clin. Endocrinol. Metab.77, 195–198 (1993).
  • Mayerhofer A, Fritz S, Grunert R et al. D1-receptor, DARPP-32, and PP-1 in the primate corpus luteum and luteinized granulosa cells: evidence for phosphorylation of DARPP-32 by dopamine and human chorionic gonadotropin. J. Clin. Endocrinol. Metab.85, 4750–4757 (2000).
  • Pierce JG, Parsons TF. Glycoprotein hormones: structure and function. Ann. Rev. Biochem.50, 65–95 (1981).
  • Rao CV. Differential properties of human chorionic gonadotropin and human luteinizing hormone binding to plasma membranes of bovine corpora luteal. Acta Endocrinol.90, 696–710 (1979).
  • Berndt S, Blacher S, Perrier d’Hauterive S. Chorionic gonadotropin stimulation of angiogenesis and pericyte recruitment. J. Clin. Endocrinol. Metab.94, 4567–4574 (2009).
  • Toth P, Li X, Rao CV et al. Expression of functional human chorionic gonadotropin/human luteinizing hormone receptor gene in human uterine arteries. J. Clin. Endocrinol. Metab.79, 307–315 (1994).
  • Lei ZM, Reshef E, Rao CV. The expression of human chorionic gonadotropin/luteinizing hormone receptors in human endometrial and myometrial blood vessels. J. Clin. Endocrinol. Metab.75, 651–659 (1992).
  • Zygmunt M, Herr F, Keller-Schoenwetter S et al. Characterization of human chorionic gonadotropin as a novel angiogenic factor. J. Clin. Endocrinol. Metab.87, 5290–5296 (2002).
  • Herr F, Baal N, Reisinger K et al. hCG in the regulation of placental angiogenesis. Results of an in vitro study. Placenta28(Suppl. A), S85–S93 (2007).
  • Zygmunt M, Herr F, Munstedt K, Lang U, Liang OD. Angiogenesis and vasculogenesis in pregnancy. Euro. J. Obstet. Gynecol. Reprod. Biol.110(Suppl. 1), S10–S18 (2003).
  • Toth P, Lukacs H, Gimes G et al. Clinical importance of vascular hCG/LH receptors – a review. Reprod. Biol.1, 5–11 (2001).
  • Shi QJ, Lei ZM, Rao CV, Lin J. Novel role of human chorionic gonadotropin in differentiation of human cytotrophoblasts. Endocrinology132, 387–395 (1993).
  • Cronier L, Bastide B, Herve JC, Deleze J, Malassine A. Gap junctional communication during human trophoblast differentiation: influence of human chorionic gonadotropin. Endocrinology135, 402–408 (1994).
  • Akoum A, Metz CN, Morin M. Marked increase in macrophage migration inhibitory factor synthesis and secretion in human endometrial cells in response to human chorionic gonadotropin hormone. J. Clin. Endocrinol. Metab.90, 2904–2910 (2005).
  • Matsuura T, Sugimura M, Iwaki T, Ohashi R, Kanayama N, Nishihira J. Anti-macrophage inhibitory factor antibody inhibits PMSG-hCG-induced follicular growth and ovulation in mice. J. Assist. Reprod. Genet.19, 591–595 (2002).
  • Wan H, Marjan A, Cheung VW et al. Chorionic gonadotropin can enhance innate immunity by stimulating macrophage function. J. Leukocyte Biol.82, 926–933 (2007).
  • Kamada M, Ino H, Naka O et al. Immunosuppressive 30-kDa protein in urine of pregnant women and patients with trophoblastic diseases. Eur. J. Obstet. Gynecol. Reprod. Biol.50, 219–225 (1993).
  • Noonan FP, Halliday WJ, Morton H, Clunie GJA. Early pregnancy factor is immunosuppressive. Nature278, 649–651 (1879).
  • Majumdar S, Bapna BC, Mapa MK, Gupta AN, Devi PK, Subrahmanyam D. Pregnancy specific proteins: suppression of in vitro blastogenic response to mitogen by these proteins. Int. J. Fertil.27, 66–69 (1982).
  • Reshef E, Lei ZM, Rao CV, Pridham DD, Chegini N, Luborsky JL. The presence of gonadotropin receptors in nonpregnant human uterus, human placenta, fetal membranes, and decidua. J. Clin. Endocrinol. Metab.70, 421–430 (1990).
  • Zuo J, Lei ZM, Rao CV. Human myometrial chorionic gonadotropin/luteinizing hormone receptors in preterm and term deliveries. J. Clin. Endocrinol. Metab.79, 907–911 (1994).
  • Eta E, Ambrus G, Rao V. Direct regulation of human myometrial contractions by human chorionic gonadotropin. J. Clin. Endocrinol. Metab.79, 1582–1586 (1994).
  • Doheny HC, Houlihan DD, Ravikumar N, Smith TJ, Morrison JJ. Human chorionic gonadotrophin relaxation of human pregnant myometrium and activation of the BKCa channel. J. Clin. Endocrinol. Metab.88, 4310–4315 (2003).
  • Edelstam G, Karlsson C, Westgren M, Löwbeer C, Swahn ML. Human chorionic gonadatropin (hCG) during third trimester pregnancy. Scand. J. Clin. Lab. Invest.67, 519–525 (2007).
  • Goldsmith PC, McGregor WG, Raymoure WJ, Kuhn RW, Jaffe RB. Cellular localization of chorionic gonadotropin in human fetal kidney and liver. J. Clin. Endocrinol. Metab.57, 54–61 (1983).
  • Abdallah MA, Lei ZM, Li X et al. Human fetal nongonadal tissues contain human chorionic gonadotropin/luteinizing hormone receptors. J. Clin. Endocrinol. Metab.89, 952–956 (2004).
  • Rao CV. Paradigm shift on the targets of hCG actions (chapter 11). In: Human Chorionic Gonadotropin (hCG). Cole LA (Ed.). Elsevier, Oxford, UK (2010).
  • Rao CV. Nongonadal actions of LH and hCG in reproductive biology and medicine. Semin. Reprod. Med.19, 1–119 (2001).
  • Rao CV. An overview of the past, present and future of nongonadal hCG/LH actions in reproductive biology and medicine. Sem. Reprod. Endocrinol.19, 7–17 (2001).
  • Rao CV, Lei ZM. The past, present and future of nongonadal hCG/LH actions in reproductive biology and medicine. Mol. Cell Endocrinol.269, 2–8 (2007).
  • McGregor WG, Raymoure WJ, Kuhn RW, Jaffe RB. Fetal tissues can synthesize a placental hormone. Evidence for chorionic gonadotropin β-subunit synthesis by human fetal kidney. J. Clin. Invest.68, 306–309 (1981).
  • Rao CV, Li X, Toth P, Lei ZM. Expression of epidermal growth factor, transforming growth factor-α and their common receptor genes in human umbilical cords. J. Clin. Endocrinol. Metab.80, 1012–1020 (1995).
  • Rao CV, Li X, Toth P, Lei ZM, Cook VD. Novel expression of functional human chorionic gonadotropin/luteinizing hormone receptor in human umbilical cords. J. Clin. Endocrinol. Metab.77, 1706–1714 (1993).
  • Wasowicz, Derecka K, Stepien A et al. Evidence for the presence of luteinizing hormone–chorionic gonadotrophin receptors in the pig umbilical cord. J. Reprod. Fertil.117, 1–9 (1999).
  • Ohlsson R, Larsson E, Nilsson O, Wahlstrom T, Sundstrom P. Blastocyst implantation precedes induction of insulin-like growth factor II gene expression in human trophoblasts. Development106, 555–559 (1989).
  • Perrierd’Hauterive S, Berndt BS, Tsampalas M et al. Dialogue between blastocyst hCG and endometrial hCG/LH receptor: which role in implantation? Gynecol. Obstet. Invest.64, 156–160 (2007).
  • Joshi NJ, Nandedkar TD. Effects of intrauterine instillation of antiserum to hCG during early pregnancy in mice. Acta Endocrinol.107, 268–274 (1984).
  • Srisuparp S, Strakova Z, Fazleabas AT. The role of chorionic gonadotropin (CG) in blastocyst implantation. Arch. Med. Res.32, 627–634 (2001).
  • Eblan A, Bao S, Lei ZM, Nakajima ST, Rao CV. The presence of functional luteinizing hormone/chorionic gonadotropin receptor in human sperm. J. Clin. Endocrinol. Metab.86, 2643–2648 (2001).
  • Tsampalasa M, Grideleta V, Berndt S, Foidart JM, Geenena V, Perrier d’Hauterive S. Human chorionic gonadotropin: a hormone with immunological and angiogenic properties. J. Repod. Immunol.85(1), 93–98 (2010).
  • Licht P, Russu V, Wildt L. On the role of human chorionic gonadotropin (hCG) in the embryo–endometrial microenvironment: implications for differentiation and implantation. Semin. Reprod. Med.19(1), 37–47 (2001).
  • Lei ZM, Toth P, Rao CV, Pridham D. Novel coexpression of human chorionic gonadotropin (hCG)/human luteinizing hormone receptors and their ligand hCG in human Fallopian tubes. J. Clin. Endocrinol. Metab.77, 863–872 (1993).
  • Rao CV. Physiological and pathological relevance of human uterine hCG/LH receptors. J. Soc. Gynecol. Invest.13, 77–78 (2006).
  • Gawronska B, Paukku T, Huhtaniemi I, Wasowicz G, Ziecik AJ. Oestrogen-dependent expression of hCG/LH receptors in pig Fallopian tube and their role in relaxation of the oviduct. J. Reprod. Fertil.115, 293–301 (1999).
  • Lei ZM, Rao CV, Kornyei J, Licht P, Hiatt ES. Novel expression of human chorionic gonadotropin/luteinizing hormone receptor gene in brain. Endocrinology132, 262–270 (1993).
  • Rao CV. Immunocytochemical localization of gonadotropin and gonadal steroid receptors in human pineal glands. J. Clin. Endocrinol. Metab.82, 2756–2757 (1997).
  • Elliott MM, Kardana A, Lustbader JW, Cole LA. Carbohydrate and peptide structure of the α- and β-subunits of human chorionic gonadotropin from normal and aberrant pregnancy and choriocarcinoma. Endocrine7, 15–32 (1977).
  • Valmu L, Alfthan H, Hotakainen K, Birken S, Stenman UH. Site-specific glycan analysis of human chorionic gonadotropin β-subunit from malignancies and pregnancy by liquid chromatography – electrospray mass spectrometry. Glycobiology16, 1207–1218 (2006).
  • Kovalevskaya G, Genbacev O, Fisher SJ, Cacere E, O’Connor JF. Trophoblast origin of hCG isoforms: cytotrophoblasts are the primary source of choriocarcinoma-like hCG. Mol. Cell. Endocrinol.194, 147–155 (2002).
  • Handschuh K, Guibourdenche J, Tsatsaris V et al. Human chorionic gonadotropin expression in human trophoblasts from early placenta: comparative study between villous and extravillous trophoblastic cells. Placenta28, 175–184 (2007).
  • Sasaki Y, Ladner DG, Cole LA. Hyperglycosylated hCG the source of pregnancy failures. Fertil. Steril.89, 1871–1786 (2008).
  • Cole LA, Dai D, Butler SA, Leslie KK, Kohorn EI. Gestational trophoblastic diseases: 1. Pathophysiology of hyperglycosylated hCG-regulated neoplasia. Gynecol. Oncol.102, 144–149 (2006).
  • Cole LA, Khanlian SA, Riley JM, Butler SA. Hyperglycosylated hCG (hCG-H) in gestational implantation, and in choriocarcinoma and testicular germ cell malignancy tumorigenesis. J. Reprod. Med.51, 919–929 (2006).
  • Cole LA. Biological functions of hyperglycosylated hCG. In: Human Chorionic Gonadotropin (hCG) (Chapter 13). Cole LA (Ed.). Elsevier, Oxford, UK, 145–152 (2010).
  • Handschuh K, Guibourdenche J, Tsatsaris V et al. Human chorionic gonadotropin produced by the invasive trophoblast but not the villous trophoblast promotes cell invasion and is down-regulated by peroxisome proliferator-activated receptor-γ. Endocrinology148, 5011–5019 (2007).
  • Guibourdenche J, Handschuh K, Tsatsaris V et al. Hyperglycosylated hCG is a marker of early human trophoblast invasion. J. Clin. Endocrinol. Metab.95, E240–E244 (2010).
  • Kelly LS, Birken S, Puett D. Determination of hyperglycosylated human chorionic gonadotropin produced by malignant gestational trophoblastic neoplasias and male germ cell tumors using a lectin-based immunoassay and surface plasmon resonance. Mol. Cell Endocrinol.2, 33–39 (2007).
  • Kovalevskaya G, Birken S, Kakuma T et al. Differential expression of human chorionic gonadotropin (hCG) glycosylation isoforms in failing and continuing pregnancies: preliminary characterization of the hyperglycosylated hCG epitope. J. Endocrinol.172, 497–506 (2002).
  • Cole LA, Khanlian SA, Kohorn EI. Evolution of the human brain, chorionic gonadotropin and hemochorial implantation of the placenta: insights into origins of pregnancy failures, preeclampsia and choriocarcinoma. J. Reprod. Med.53, 449–557 (2008).
  • Cole LA. Hyperglycosylated hCG, a review. Placenta8, 653–664 (2010).
  • Rechtman MP, Zhang J, Salamonsen LA. Effect of inhibition of matrix metalloproteinases on endometrial decidualization and implantation in mated rats. J. Reprod. Fertil.117, 169–177 (1999).
  • Sharkey ME, Adler RR, Nieder L, Brenner CA. Matrix metalloproteinase expression during mouse peri-implantation development. Am. J. Reprod. Immunol.36, 72–80 (1996).
  • Nardo LG, Nikas G, Makrigiannakis A. Molecules in blastocyst implantation: role of matrix metalloproteinases, cytokines and growth factors. J. Reprod. Med.48, 137–147 (2003).
  • Qinglei L, Hongmei W, Yunge Z, Haiyan L, Qingxiang SA, Zhu C. Identification and specific expression of matrix metalloproteinase-26 in rhesus monkey endometrium during early pregnancy. Mol. Hum. Reprod.8, 934–940 (2002).
  • Biscof P, Campana A. A model for the implantation of the human blastocyst and early placentation. Hum. Reprod. Update48, 137–147 (2003).
  • Librach CL, Werb Z, Fitzgerald ML et al. 92-kD type IV collagenase mediates invasion of human cytotrophoblasts. J. Cell Biol.113, 437–449 (1991).
  • Norwitz ER, Schust DJ, Fisher SJ. Implantation and the survival of early pregnancy. N. Engl. J. Med.345, 1400–1408 (2001).
  • Lewis MP, Sullivan MH, Elder MG. Regulation by interleukin-1-β of growth and collagenase production by choriocarcinoma cells. Placenta15, 13–20 (1994).
  • Schuster N, Krieglstein K. Mechanisms of TGF-β-mediated apoptosis. Cell Tissue Res.307, 1–14 (2002).
  • Kamijo T, Rajabi MR, Mizunuma H, Ibuki Y. Biochemical evidence for autocrine/paracrine regulation of apoptosis in cultured uterine epithelial cells during mouse embryo implantation in vitro. Mol. Hum. Reprod.4, 990–998 (1998).
  • Pampferf S. Apoptosis in rodent peri-implantation embryos: differential susceptibility of inner cell mass and trophectoderm cell lineages – review. Placenta21, S3–S10 (2000).
  • Shooner C, Caron PC, Fréchette-Frigon G, Leblanc V, Déry MC, Asselin E. TGF-β expression during rat pregnancy and activity on decidual cell survival. Reprod. Biol. Endocrinol.3, 20 (2005).
  • Liu YX, Gao F, Wei P et al. Involvement of molecules related to angiogenesis, proteolysis and apoptosis in implantation in rhesus monkey and mouse. Contraception71, 249–262 (2005).
  • Knittel T, Mehde M, Kobold D, Saile B, Dinter C, Ramadori G. Expression patterns of matrix metalloproteinases and their inhibitors in parenchymal and non-parenchymal cells of rat liver regulation by TNF-α and TGF-β1. J. Hepatol.30, 48–60 (1999).
  • Murphy G, Reynolds JJ, Whitham SE, Docherty AJ, Angel P, Heath JK. Transforming growth factor β modulates the expression of collagenase and metalioproteinase inhibitor. Eur. Mol. Biol. Org. J.6, 1899–1904 (1987).
  • Qureshi HY, Sylvester J, El Mabrouk M, Zafarullah M. TGF-β-induced expression of tissue inhibitor of metalloproteinases-3 gene in chondrocytes is mediated by extracellular signal-regulated kinase pathway and Sp1 transcription factor. J. Cell Physiol.203(2), 345–352 (2005).
  • Stetler-Stevenson WG, Brown PD, Onisto M, Levy AT, Liotta LA. Tissue inhibitor of metalloproteinases-2 (TIMP-2) mRNA expression in tumor cell lines and human tumor tissues. J. Biol. Chem.265, 13933–13938 (1990).
  • Pringle K, Roberts C. New light on early post-implantation pregnancy in the mouse: roles for insulin-like growth factor-II (IGF-II)? Placenta28, 286–297 (2007).
  • Hwang JH, Koh SH, Han DI et al. Expression of transforming growth factor-1, 2 in the decidua of the early pregnancy: comparison of decidua basalis and decidua parietalis. Korean J. Obstet. Gynecol.44, 1145–1149 (2001).
  • Kingsley-Kallesen M, Johnson L, Scholtz B, Kelly D, Rizzino A. Transcriptional regulation of the TGF-β 2 gene in choriocarcinoma cells and breast carcinoma cells: differential utilization of cis-regulatory elements. In Vitro Cell Develop. Bio. Anim.33, 294–301 (1997).
  • Filla MS, Kaul KL. Relative expression of epidermal growth factor receptor in placental cytotrophoblasts and choriocarcinoma cell lines. Placenta18, 17–27 (1997).
  • Lee SB, Wong AP, Kanasaki K et al. 2-methoxyestradiol induces cytotrophoblast invasion and vascular development specifically under hypoxic conditions. Am. J. Pathol.176, 710–720 (2010).
  • Schaffer L, Scheid A, Spielmann P. Oxygen-regulated expression of TGF β 3, a growth factor involved in trophoblast differentiation. Placenta2, 911–950 (2003).
  • Caniggia I, Lye SJ, Cross JC. Activin is a local regulator of human cytotrophoblast cell differentiation. Endocrinology138, 3976–3986 (1997).
  • Li RH, Zhuang LZ. The effects of growth factors on human normal placental cytotrophoblast cell proliferation. Hum. Reprod.12, 830–834 (1997).
  • Hamade AL, Nakabayashi K, Sato A et al. Transfection of antisense chorionic gonadotropin β gene into choriocarcinoma cells suppresses the cell proliferation and induces apoptosis. J. Clin. Endocrinol. Metab.90, 4873–4879 (2009).
  • Lapthorn AJ, Harris DC, Littlejohn A et al. Crystal structure of human chorionic gonadotrophin. Nature369, 455–461 (1994).
  • Wu H, Lustbader JW, Liu Y, Canfield RE, Hendrickson WA. Structure of human chorionic gonadotropin at 2.6 A resolution from MAD analysis of the selenomethionyl protein. Structure2, 545–558 (1994).
  • Laub M, Jennissen HP. Identification of the anthelix motif in the TGF-β superfamily by molecular 3D-rapid prototyping. Materialwissenschaft Werkstofftechnik34, 1113–1119 (2003).
  • Lehnert SA, Akhurst RA. Embryonic expression pattern of TGF β type-1 RNA suggests both paracrine and autocrine mechanisms of action. Development104, 263–273 (1988).
  • Khoo NK, Bechberger JF, Shepherd T et al. SV40 Tag transformation of the normal invasive trophoblast results in a premalignant phenotype I mechanisms responsible for hyperinvasiveness and resistance to anti-invasive action of TGFβ. Int. J. Cancer77, 429–439 (1998).
  • Iles RK. Ectopic hCGβ expression by epithelial cancer: malignant behavior metastasis and inhibition of tumor cell apoptosis. Mol. Cell. Endorcinol.2260, 264–270 (2007).
  • Butler SA, Ikram MS, Mathieu S, Iles RK. The increase in bladder carcinoma cell population induced by the free β subunit of hCG is a result of an anti-apoptosis effect and not cell proliferation. Brit. J. Cancer82, 1553–1556 (2000).
  • Cole LA, Kardana A, Andrade-Gordon P et al. The heterogeneity of hCG. III. The occurrence, biological and immunological activities of nicked hCG. Endocrinology129, 1559–1567 (1991).
  • Bahado-Singh RO, Oz AU, Kingston JM, Shahabi S, Hsu CD, Cole LA. The role of hyperglycosylated hCG in trophoblast invasion and the prediction of subsequent pre-eclampsia. Prenat. Diagnos.22, 478–481 (2002).
  • Lei ZM, Taylor DD, Gercel-Taylor C, Rao CV. Human chorionic gonadotropin promotes tumorigenesis in choriocarcinoma JAR cells. Troph. Res.13, 147–159 (1999).
  • Cole LA, Sutton JM, Higgins TN, Cembrowski GS. Between-method variation in hcg test results. Clin. Chem.50, 874–882 (2004).
  • Hussa RO. The expanding world of hCG, human chorionic gonadotropin. In: Human Chorionic Gonadotropin (hCG) (Chapter 1). Cole LA (Ed.). Elsevier, Oxford, UK, (2010).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.