49
Views
7
CrossRef citations to date
0
Altmetric
Review

Immune mechanisms of intraocular inflammation

, &
Pages 43-58 | Published online: 09 Jan 2014

References

  • Jabs DA, Nussenblatt RB, Rosenbaum JT. Standardization of uveitis nomenclature for reporting clinical data. Results of the First International Workshop. Am. J. Ophthalmol.140(3), 509–516 (2005).
  • Deschenes J, Murray PI, Rao NA, Nussenblatt RB. International Uveitis Study Group (IUSG): clinical classification of uveitis. Ocul. Immunol. Inflamm.16(1), 1–2 (2008).
  • Dick AD. Immune mechanisms of uveitis: insights into disease pathogenesis and treatment. Int. Ophthalmol. Clin.40(2), 1–18 (2000).
  • Lowder CY, Char DH. Uveitis. A review. West J. Med.140(3), 421–432 (1984).
  • Imrie FR, Dick AD. Biologics in the treatment of uveitis. Curr. Opin. Ophthalmol.18(6), 481–486 (2007).
  • Imrie FR, Dick AD. Nonsteroidal drugs for the treatment of noninfectious posterior and intermediate uveitis. Curr. Opin. Ophthalmol.18(3), 212–219 (2007).
  • Teoh SC, Hogan AC, Dick AD, Lee RW. Mycophenolate mofetil for the treatment of uveitis. Am. J. Ophthalmol.146(5), 752–760, 760.e1–3 (2008).
  • Hogan AC, McAvoy CE, Dick AD, Lee RW. Long-term efficacy and tolerance of tacrolimus for the treatment of uveitis. Ophthalmology114(5), 1000–1006 (2007).
  • Durrani OM, Meads CA, Murray PI. Uveitis: a potentially blinding disease. Ophthalmologica218(4), 223–236 (2004).
  • Gritz DC, Wong IG. Incidence and prevalence of uveitis in Northern California; the Northern California Epidemiology of Uveitis Study. Ophthalmology111(3), 491–500; discussion 500 (2004).
  • Suttorp-Schulten MS, Rothova A. The possible impact of uveitis in blindness: a literature survey. Br. J. Ophthalmol.80(9), 844–848 (1996).
  • Chiang YP, Bassi LJ, Javitt JC. Federal budgetary costs of blindness. Milbank Q.70(2), 319–340 (1992).
  • Forrester JV. Intermediate and posterior uveitis. Chem. Immunol. Allergy92, 228–243 (2007).
  • Wacker WB, Lipton MM. Experimental allergic uveitis: homologous retina as uveitogenic antigen. Nature206(981), 253–254 (1965).
  • Wacker WB, Donoso LA, Kalsow CM, Yankeelov JA Jr, Organisciak DT. Experimental allergic uveitis. Isolation, characterization, and localization of a soluble uveitopathogenic antigen from bovine retina. J. Immunol.119(6), 1949–1958 (1977).
  • Thurau SR, Chan CC, Nussenblatt RB, Caspi RR. Oral tolerance in a murine model of relapsing experimental autoimmune uveoretinitis (EAU): induction of protective tolerance in primed animals. Clin. Exp. Immunol.109(2), 370–376 (1997).
  • Laliotou B, Liversidge J, Forrester JV, Dick AD. Interphotoreceptor retinoid binding protein is a potent tolerogen in Lewis rat: suppression of experimental autoimmune uveoretinitis is retinal antigen specific. Br. J. Ophthalmol.81(1), 61–67 (1997).
  • Paques M, Guyomard J-L, Simonutti M et al. Panretinal, high-resolution color photography of the mouse fundus. Invest. Ophthalmol. Vis. Sci.48(6), 2769–2774 (2007).
  • Copland DA, Wertheim MS, Armitage WJ et al. The clinical time-course of experimental autoimmune uveoretinitis using topical endoscopic fundal imaging with histologic and cellular infiltrate correlation. Invest. Ophthalmol. Vis. Sci.49(12), 5458–5465 (2008).
  • de Smet MD, Yamamoto JH, Mochizuki M et al. Cellular immune responses of patients with uveitis to retinal antigens and their fragments. Am. J. Ophthalmol.110(2), 135–142 (1990).
  • Saxena S, Rajasingh J, Biswas S et al. Cellular immune response to retinal S-antigen and interphotoreceptor retinoid-binding protein fragments in Eales’ disease patients. Pathobiology67(1), 39–44 (1999).
  • Yamamoto JH, Minami M, Inaba G, Masuda K, Mochizuki M. Cellular autoimmunity to retinal specific antigens in patients with Behcet’s disease. Br. J. Ophthalmol.77(9), 584–589 (1993).
  • Szpak Y, Vieville J-C, Tabary T et al. Spontaneous retinopathy in HLA-A29 transgenic mice. Proc. Natl Acad. Sci. USA98(5), 2572–2576 (2001).
  • Pennesi G, Mattapallil MJ, Sun SH et al. A humanized model of experimental autoimmune uveitis in HLA class II transgenic mice. J. Clin. Invest.111(8), 1171–1180 (2003).
  • Stein-Streilein J, Streilein JW. Anterior chamber associated immune deviation (ACAID): regulation, biological relevance, and implications for therapy. Int. Rev. Immunol.21(2), 123–152 (2002).
  • Medawar PB. A second study of the behaviour and fate of skin homografts in rabbits: a report to the War Wounds Committee of the Medical Research Council. J. Anat.79(Pt 4), 157–176.4 (1945).
  • Medawar PB. Immunity to homologous grafted skin; the fate of skin homografts transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye. Br. J. Exp. Pathol.29(1), 58–69 (1948).
  • Forrester JV. Privilege revisited: an evaluation of the eye’s defence mechanisms. Eye23(4), 756–766 (2009).
  • Goldmann J, Kwidzinski E, Brandt C et al. T cells traffic from brain to cervical lymph nodes via the cribroid plate and the nasal mucosa. J. Leukoc. Biol.80(4), 797–801 (2006).
  • Plsková J, Holán V, Filipec M, Forrester JV. Lymph node removal enhances corneal graft survival in mice at high risk of rejection. BMC Ophthalmol.4(1), 3 (2004).
  • Camelo S, Kezic J, Shanley A, Rigby P, McMenamin PG. Antigen from the anterior chamber of the eye travels in a soluble form to secondary lymphoid organs via lymphatic and vascular routes. Invest. Ophthalmol. Vis. Sci.47(3), 1039–1046 (2006).
  • Simard AR, Rivest S. Bone marrow stem cells have the ability to populate the entire central nervous system into fully differentiated parenchymal microglia. FASEB J.18(9), 998–1000 (2004).
  • Heping X, Mei C, Eric JM, John VF, Andrew DD. Turnover of resident retinal microglia in the normal adult mouse. Glia55(11), 1189–1198 (2007).
  • Xu H, Manivannan A, Liversidge J et al. Requirements for passage of T lymphocytes across non-inflamed retinal microvessels. J. Neuroimmunol.142(1–2), 47–57 (2003).
  • Kerr EC, Raveney BJE, Copland DA, Dick AD, Nicholson LB. Analysis of retinal cellular infiltrate in experimental autoimmune uveoretinitis reveals multiple regulatory cell populations. J. Autoimmun.31(4), 354–361 (2008).
  • Zeevi A, Girnita A, Duquesnoy R. HLA antibody analysis. Immunol. Res.36(1), 255–264 (2006).
  • Streilein JW, Toews GB, Bergstresser PR. Corneal allografts fail to express Ia antigens. Nature282(5736), 326–327 (1979).
  • Brissette-Storkus CS, Reynolds SM, Lepisto AJ, Hendricks RL. Identification of a novel macrophage population in the normal mouse corneal stroma. Invest. Ophthalmol. Vis. Sci.43(7), 2264–2271 (2002).
  • Nussenblatt RB, Kuwabara T, de Monasterio FM, Wacker WB. S-antigen uveitis in primates. A new model for human disease. Arch. Ophthalmol.99(6), 1090–1092 (1981).
  • Sosnova M, Bradl M, Forrester JV. CD34+ corneal stromal cells are bone marrow-derived and express hemopoietic stem cell markers. Stem Cells23(4), 507–515 (2005).
  • Kuffova L, Netukova M, Duncan L et al. Cross presentation of antigen on MHC class II via the draining lymph node after corneal transplantation in mice. J. Immunol.180(3), 1353–1361 (2008).
  • Dick AD. Influence of microglia on retinal progenitor cell turnover and cell replacement. Eye23, 1939–1945 (2009).
  • Nicholson LB, Raveney BJ, Munder M. Monocyte dependent regulation of autoimmune inflammation. Curr. Mol. Med.9(1), 23–29 (2009).
  • Taylor AW. Ocular immunosuppressive microenvironment. Chem. Immunol. Allergy92, 71–85 (2007).
  • Niederkorn JY, Mayhew E. Role of splenic B cells in the immune privilege of the anterior chamber of the eye. Eur. J. Immunol.25(10), 2783–2787 (1995).
  • Lin H-H, Faunce DE, Stacey M et al. The macrophage F4/80 receptor is required for the induction of antigen-specific efferent regulatory T cells in peripheral tolerance. J. Exp. Med.201(10), 1615–1625 (2005).
  • Sonoda K-H, Exley M, Snapper S, Balk SP, Stein-Streilein J. CD1-reactive natural killer T cells are required for development of systemic tolerance through an immune-privileged site. J. Exp. Med.190(9), 1215–1226 (1999).
  • Ashour HM, Niederkorn JY. gd T cells promote anterior chamber-associated immune deviation and immune privilege through their production of IL-10. J. Immunol.177(12), 8331–8337 (2006).
  • Sonoda KH, Sakamoto T, Qiao H et al. The analysis of systemic tolerance elicited by antigen inoculation into the vitreous cavity: vitreous cavity-associated immune deviation. Immunology116(3), 390–399 (2005).
  • Anand V, Duffy B, Yang Z et al. A deviant immune response to viral proteins and transgene product is generated on subretinal administration of adenovirus and adeno-associated virus. Mol. Ther.5(2), 125–132 (2002).
  • Banerjee S, Dick AD, Nicholls SM. Factors affecting rejection of second corneal transplants in rats. Transplantation77(4), 492–496 (2004).
  • Charukamnoetkanok P, Fukushima A, Whitcup SM, Gery I, Egwuagu CE. Expression of ocular autoantigens in the mouse thymus. Curr. Eye Res.17(8), 788–792 (1998).
  • Egwuagu CE, Charukamnoetkanok P, Gery I. Thymic expression of autoantigens correlates with resistance to autoimmune disease. J. Immunol.159(7), 3109–3112 (1997).
  • Takase H, Yu CR, Mahdi RM et al. Thymic expression of peripheral tissue antigens in humans: a remarkable variability among individuals. Int. Immunol.17(8), 1131–1140 (2005).
  • Avichezer D, Grajewski RS, Chan CC et al. An immunologically privileged retinal antigen elicits tolerance: major role for central selection mechanisms. J. Exp. Med.198(11), 1665–1676 (2003).
  • Anderson MS, Venanzi ES, Klein L et al. Projection of an immunological self shadow within the thymus by the aire protein. Science298(5597), 1395–1401 (2002).
  • DeVoss J, Hou Y, Johannes K et al. Spontaneous autoimmunity prevented by thymic expression of a single self-antigen. J. Exp. Med.203(12), 2727–2735 (2006).
  • de Smet MD, Bitar G, Mainigi S, Nussenblatt RB. Human S-antigen determinant recognition in uveitis. Invest. Ophthalmol. Vis. Sci.42(13), 3233–3238 (2001).
  • Rai G, Saxena S, Kumar H, Singh VK. Human retinal S-antigen: T cell epitope mapping in posterior uveitis patients. Exp. Mol. Pathol.70(2), 140–145 (2001).
  • Tripathi P, Saxena S, Yadav VS, Naik S, Singh VK. Human S-antigen: peptide determinant recognition in uveitis patients. Exp. Mol. Pathol.76(2), 122–128 (2004).
  • de Smet MD, Dayan M, Nussenblatt RB. A novel method for the determination of T-cell proliferative responses in patients with uveitis. Ocul. Immunol. Inflamm.6(3), 173–178 (1998).
  • Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor a-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol.155(3), 1151–1164 (1995).
  • Nanke Y, Kotake S, Goto M et al. Decreased percentages of regulatory T cells in peripheral blood of patients with Behcet’s disease before ocular attack: a possible predictive marker of ocular attack. Mod. Rheumatol.18(4), 354–358 (2008).
  • Yeh S, Li Z, Forooghian F et al. CD4+Foxp3+ T-regulatory cells in noninfectious uveitis. Arch. Ophthalmol.127(4), 407–413 (2009).
  • Chen L, Yang P, Zhou H et al. Decreased frequency and diminished function of CD4+CD25high regulatory T cells are associated with active uveitis in patients with Vogt–Koyanagi–Harada syndrome. Invest. Ophthalmol. Vis. Sci.49(8), 3475–3482 (2008).
  • Keino H, Takeuchi M, Usui Y et al. Supplementation of CD4+CD25+ regulatory T cells suppresses experimental autoimmune uveoretinitis. Br. J. Ophthalmol.91(1), 105–110 (2007).
  • Grajewski RS, Silver PB, Agarwal RK et al. Endogenous IRBP can be dispensable for generation of natural CD4+CD25+ regulatory T cells that protect from IRBP-induced retinal autoimmunity. J. Exp. Med.203(4), 851–856 (2006).
  • Luger D, Caspi RR. New perspectives on effector mechanisms in uveitis. Semin. Immunopathol.30(2), 135–143 (2008).
  • Prendergast RA, Iliff CE, Coskuncan NM et al. T cell traffic and the inflammatory response in experimental autoimmune uveoretinitis. Invest. Ophthalmol. Vis. Sci.39(5), 754–762 (1998).
  • Thurau SR, Mempel TR, Flugel A et al. The fate of autoreactive, GFP+ T cells in rat models of uveitis analyzed by intravital fluorescence microscopy and FACS. Int. Immunol.16(11), 1573–1582 (2004).
  • Su SB, Grajewski RS, Luger D et al. Altered chemokine profile associated with exacerbated autoimmune pathology under conditions of genetic interferon-γ deficiency. Invest. Ophthalmol. Vis. Sci.48(10), 4616–4625 (2007).
  • Forrester JV, Huitinga I, Lumsden L, Dijkstra CD. Marrow-derived activated macrophages are required during the effector phase of experimental autoimmune uveoretinitis in rats. Curr. Eye Res.17(4), 426–437 (1998).
  • Kitaichi N, Kotake S, Morohashi T et al. Diminution of experimental autoimmune uveoretinitis (EAU) in mice depleted of NK cells. J. Leukoc. Biol.72(6), 1117–1121 (2002).
  • Rizzo LV, Silver P, Wiggert B et al. Establishment and characterization of a murine CD4+ T cell line and clone that induce experimental autoimmune uveoretinitis in B10.A mice. J. Immunol.156(4), 1654–1660 (1996).
  • Carneiro LAM, Travassos LH, Girardin SE. Nod-like receptors in innate immunity and inflammatory diseases. Ann. Med.39(8), 581–593 (2007).
  • Borzutzky A, Fried A, Chou J, Bonilla FA, Kim S, Dedeoglu F. NOD2-associated diseases: bridging innate immunity and autoinflammation. Clin. Immunol. doi:10.1016/j.clim.2009.05.005 (2009) (Epub ahead of print).
  • Chang JH, McCluskey PJ, Wakefield D. Toll-like receptors in ocular immunity and the immunopathogenesis of inflammatory eye disease. Br. J. Ophthalmol.90(1), 103–108 (2006).
  • Brito BE, Zamora DO, Bonnah RA et al. Toll-like receptor 4 and CD14 expression in human ciliary body and TLR-4 in human iris endothelial cells. Exp. Eye Res.79(2), 203–208 (2004).
  • Chang JH, McCluskey P, Wakefield D. Expression of Toll-like receptor 4 and its associated lipopolysaccharide receptor complex by resident antigen-presenting cells in the human uvea. Invest. Ophthalmol. Vis. Sci.45(6), 1871–1878 (2004).
  • Chang JH, McCluskey PJ, Wakefield D. Acute anterior uveitis and HLA-B27. Surv. Ophthalmol.50(4), 364–388 (2005).
  • Cho Y, Wang JJ, Chew EY et al. Toll-like receptor polymorphisms and age-related macular degeneration: replication in three case–control samples. Invest. Ophthalmol. Vis. Sci.50, 5614–5618 (2009).
  • Jiang G, Ke Y, Sun D et al. Regulatory role of TLR ligands on the activation of autoreactive T cells by retinal astrocytes. Invest. Ophthalmol. Vis. Sci.50, 4769–4776 (2009).
  • Ferrero-Miliani L, Nielsen OH, Andersen PS, Girardin SE. Chronic inflammation: importance of NOD2 and NALP3 in interleukin-1b generation. Clin. Exp. Immunol.147(2), 227–235 (2007).
  • Miceli-Richard C, Lesage S, Rybojad M et al.CARD15 mutations in Blau syndrome. Nat. Genet.29(1), 19–20 (2001).
  • Hugot J-P, Chamaillard M, Zouali H et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature411(6837), 599–603 (2001).
  • Rosenzweig HL, Martin TM, Jann MM et al.NOD2, the gene responsible for familial granulomatous uveitis, in a mouse model of uveitis. Invest. Ophthalmol. Vis. Sci.49(4), 1518–1524 (2008).
  • Rosenzweig HL, Martin TM, Planck SR et al. Activation of NOD2in vivo induces IL-1b production in the eye via caspase-1 but results in ocular inflammation independently of IL-1 signaling. J. Leukoc. Biol.84(2), 529–536 (2008).
  • Rosenzweig HL, Kawaguchi T, Martin TM et al. Nucleotide oligomerization domain-2 (NOD2)-induced uveitis: dependence on IFN-γ. Invest. Ophthalmol. Vis. Sci.50(4), 1739–1745 (2009).
  • Matzinger P. Tolerance, danger, and the extended family. Annu. Rev. Immunol.12(1), 991–1045 (1994).
  • McGonagle D, McDermott MF. A proposed classification of the immunological diseases. PLoS Med.3(8), e297 (2006).
  • McDermott MF. Genetic clues to understanding periodic fevers, and possible therapies. Trends Mol. Med.8(12), 550–554 (2002).
  • Lachmann HJ, Lowe P, Felix SD et al.In vivo regulation of interleuki 1b in patients with cryopyrin-associated periodic syndromes. J. Exp. Med.206(5), 1029–1036 (2009).
  • Lequerre T, Vittecoq O, Saugier-Veber P et al. A cryopyrin-associated periodic syndrome with joint destruction. Rheumatology46(4), 709–714 (2007).
  • Martin TM, Zhang Z, Kurz P et al. The NOD2 defect in Blau syndrome does not result in excess interleukin-1 activity. Arthritis Rheum.60(2), 611–618 (2009).
  • Arostegui JI, Arnal C, Merino R et al.NOD2 gene-associated pediatric granulomatous arthritis: clinical diversity, novel and recurrent mutations, and evidence of clinical improvement with interleukin-1 blockade in a Spanish cohort. Arthritis Rheum.56(11), 3805–3813 (2007).
  • Wang X-C, Norose K, Yano A, Ohta K, Segawa K. Two-color flow cytometric analysis of activated T lymphocytes in aqueous humor of patients with endogenous vs. exogenous uveitis. Curr. Eye Res.14(6), 425–433 (1995).
  • Calder VL, Zhao ZS, Wang Y, Barton K, Lightman SL. Effects of CD8 depletion on retinal soluble antigen induced experimental autoimmune uveoretinitis. Immunology79(2), 255–262 (1993).
  • McPherson SW, Yang J, Chan CC, Dou C, Gregerson DS. Resting CD8 T cells recognize β-galactosidase expressed in the immune-privileged retina and mediate autoimmune disease when activated. Immunology110(3), 386–396 (2003).
  • Shao H, Peng Y, Liao T et al. A shared epitope of the interphotoreceptor retinoid-binding protein recognized by the CD4+ and CD8+ autoreactive T cells. J. Immunol.175(3), 1851–1857 (2005).
  • Norose K, Yano A, Aosai F, Segawa K. Immunologic analysis of cerebrospinal fluid lymphocytes in Vogt–Koyanagi–Harada disease. Invest. Ophthalmol. Vis. Sci.31(7), 1210–1216 (1990).
  • Ohta K, Norose K, Wang X-C, Ito S, Yoshimura N. Abnormal naive and memory T lymphocyte subsets in the peripheral blood of patients with uveitis. Curr. Eye Res.16(7), 650–655 (1997).
  • Murphy CC, Duncan L, Forrester JV, Dick AD. Systemic CD4+ T cell phenotype and activation status in intermediate uveitis. Br. J. Ophthalmol.88(3), 412–416 (2004).
  • Ilhan F, Demir T, Turkcuoglu P et al. Th1 polarization of the immune response in uveitis in Behcet’s disease. Can. J. Ophthalmol.43(1), 105–108 (2008).
  • Imai Y, Sugita M, Nakamura S, Toriyama S, Ohno S. Cytokine production and helper T cell subsets in Vogt–Koyanagi–Harada’s disease. Curr. Eye Res.22(4), 312–318 (2001).
  • Li B, Yang P, Zhou H et al. Upregulation of T-bet expression in peripheral blood mononuclear cells during Vogt–Koyanagi–Harada disease. Br. J. Ophthalmol.89(11), 1410–1412 (2005).
  • Muhaya M, Calder V, Towler HM et al. Characterization of T cells and cytokines in the aqueous humour (AH) in patients with Fuchs’ heterochromic cyclitis (FHC) and idiopathic anterior uveitis (IAU). Clin. Exp. Immunol.111(1), 123–128 (1998).
  • Murray PI, Clay CD, Mappin C, Salmon M. Molecular analysis of resolving immune responses in uveitis. Clin. Exp. Immunol.117(3), 455–461 (1999).
  • Liu X, Yang P, Lin X et al. Inhibitory effect of cyclosporin A and corticosteroids on the production of IFN-γ and IL-17 by T cells in Vogt–Koyanagi–Harada syndrome. Clin. Immunol.131(2), 333–342 (2009).
  • Frassanito MA, Dammacco R, Fusaro T et al. Combined cyclosporin-A/prednisone therapy of patients with active uveitis suppresses IFN-γ production and the function of dendritic cells. Clin. Exp. Immunol.133(2), 233–239 (2003).
  • Vignali DA. Multiplexed particle-based flow cytometric assays. J. Immunol. Methods243(1–2), 243–255 (2000).
  • Banerjee S, Savant V, Scott RA et al. Multiplex bead analysis of vitreous humor of patients with vitreoretinal disorders. Invest. Ophthalmol. Vis. Sci.48(5), 2203–2207 (2007).
  • Curnow SJ, Falciani F, Durrani OM et al. Multiplex bead immunoassay analysis of aqueous humor reveals distinct cytokine profiles in uveitis. Invest. Ophthalmol. Vis. Sci.46(11), 4251–4259 (2005).
  • Amadi-Obi A, Yu C-R, Liu X et al. Th17 cells contribute to uveitis and scleritis and are expanded by IL-2 and inhibited by IL-27/STAT1. Nat. Med.13(6), 711–718 (2007).
  • Chi W, Yang P, Li B et al. IL-23 promotes CD4+ T cells to produce IL-17 in Vogt–Koyanagi–Harada disease. J. Allergy Clin. Immunol.119(5), 1218–1224 (2007).
  • Chi W, Zhu X, Yang P et al. Upregulated IL-23 and IL-17 in Behcet patients with active uveitis. Invest. Ophthalmol. Vis. Sci.49(7), 3058–3064 (2008).
  • Szabo SJ, Kim ST, Costa GL et al. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell100(6), 655–669 (2000).
  • Zheng W-P, Flavell RA. The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell89(4), 587–596 (1997).
  • Jones LS, Rizzo LV, Agarwal RK et al. IFN-γ-deficient mice develop experimental autoimmune uveitis in the context of a deviant effector response. J. Immunol.158(12), 5997–6005 (1997).
  • Tarrant TK, Silver PB, Chan C-C, Wiggert B, Caspi RR. Endogenous IL-12 is required for induction and expression of experimental autoimmune uveitis. J. Immunol.161(1), 122–127 (1998).
  • Tarrant TK, Silver PB, Wahlsten JL et al. Interleukin 12 protects from a T helper type 1-mediated autoimmune disease, experimental autoimmune uveitis, through a mechanism involving interferon g, nitric oxide, and apoptosis. J. Exp. Med.189(2), 219–230 (1999).
  • Becher B, Durell BG, Noelle RJ. Experimental autoimmune encephalitis and inflammation in the absence of interleukin-12. J. Clin. Invest.110(4), 493–497 (2002).
  • Oppmann B, Lesley R, Blom B et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity13(5), 715–725 (2000).
  • Cua DJ, Sherlock J, Chen Y et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature421(6924), 744–748 (2003).
  • Murphy CA, Langrish CL, Chen Y et al. Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J. Exp. Med.198(12), 1951–1957 (2003).
  • Weaver CT, Hatton RD, Mangan PR, Harrington LE. IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu. Rev. Immunol.25(1), 821–852 (2007).
  • Ivanov II, McKenzie BS, Zhou L et al. The orphan nuclear receptor RORgt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell126(6), 1121–1133 (2006).
  • Manel N, Unutmaz D, Littman DR. The differentiation of human Th-17 cells requires transforming growth factor-b and induction of the nuclear receptor RORgt. Nat. Immunol.9(6), 641–649 (2008).
  • Miossec P, Korn T, Kuchroo VK. Interleukin-17 and type 17 helper T cells. N. Engl. J. Med.361(9), 888–898 (2009).
  • Yang XO, Pappu BP, Nurieva R et al. T helper 17 lineage differentiation is programmed by orphan nuclear receptors RORa and RORg. Immunity28(1), 29–39 (2008).
  • Yang L, Anderson DE, Baecher-Allan C et al. IL-21 and TGF-b are required for differentiation of human Th17 cells. Nature454(7202), 350–352 (2008).
  • Korn T, Bettelli E, Oukka M, Kuchroo VK. IL-17 and Th17 cells. Annu. Rev. Immunol.27(1), 485–517 (2009).
  • Langrish CL, Chen Y, Blumenschein WM et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med.201(2), 233–240 (2005).
  • Luger D, Silver PB, Tang J et al. Either a Th17 or a Th1 effector response can drive autoimmunity: conditions of disease induction affect dominant effector category. J. Exp. Med.205(4), 799–810 (2008).
  • Kim SJ, Zhang M, Vistica BP et al. Induction of ocular inflammation by T-helper lymphocytes type 2. Invest. Ophthalmol. Vis. Sci.43(3), 758–765 (2002).
  • Grajewski RS, Hansen AM, Agarwal RK et al. Activation of invariant NKT cells ameliorates experimental ocular autoimmunity by a mechanism involving innate IFN-γ production and dampening of the adaptive Th1 and Th17 responses. J. Immunol.181(7), 4791–4797 (2008).
  • Pflanz S, Timans JC, Cheung J et al. IL-27, a heterodimeric cytokine composed of EBI3 and p28 protein, induces proliferation of naive CD4+ T cells. Immunity16(6), 779–790 (2002).
  • Stumhofer JS, Laurence A, Wilson EH et al. Interleukin 27 negatively regulates the development of interleukin 17-producing T helper cells during chronic inflammation of the central nervous system. Nat. Immunol.7(9), 937–945 (2006).
  • Batten M, Li J, Yi S et al. Interleukin 27 limits autoimmune encephalomyelitis by suppressing the development of interleukin 17-producing T cells. Nat. Immunol.7(9), 929–936 (2006).
  • Diveu C, McGeachy MJ, Boniface K et al. IL-27 blocks RORc expression to inhibit lineage commitment of Th17 cells. J. Immunol.182(9), 5748–5756 (2009).
  • Sonobe Y, Yawata I, Kawanokuchi J et al. Production of IL-27 and other IL-12 family cytokines by microglia and their subpopulations. Brain Res.1040(1–2), 202–207 (2005).
  • Koenders MI, Lubberts E, Oppers-Walgreen B et al. Blocking of interleukin-17 during reactivation of experimental arthritis prevents joint inflammation and bone erosion by decreasing RANKL and interleukin-1. Am. J. Pathol.167(1), 141–149 (2005).
  • Martine C, Pierre M. The combination of tumor necrosis factor a blockade with interleukin-1 and interleukin-17 blockade is more effective for controlling synovial inflammation and bone resorption in an ex vivo model. Arthritis Rheum.44(6), 1293–1303 (2001).
  • Dick AD, Carter D, Robertson M et al. Control of myeloid activity during retinal inflammation. J. Leukoc. Biol.74(2), 161–166 (2003).
  • Calder CJ, Nicholson LB, Dick AD. A selective role for the TNF p55 receptor in autocrine signaling following IFN-γ stimulation in experimental autoimmune uveoretinitis. J. Immunol.175(10), 6286–6293 (2005).
  • Raveney BJE, Copland DA, Dick AD, Nicholson LB. TNFR1-dependent regulation of myeloid cell function in experimental autoimmune uveoretinitis. J. Immunol.183, 2321–2329 (2009).
  • Robertson M, Liversidge J, Forrester JV, Dick AD. Neutralizing tumor necrosis factor-a activity suppresses activation of infiltrating macrophages in experimental autoimmune uveoretinitis. Invest. Ophthalmol. Vis. Sci.44(7), 3034–3041 (2003).
  • Murphy CC, Ayliffe WH, Booth A et al. Tumor necrosis factor a blockade with infliximab for refractory uveitis and scleritis. Ophthalmology111(2), 352–356 (2004).
  • Greiner K, Murphy CC, Willermain F et al. Anti-TNFα therapy modulates the phenotype of peripheral blood CD4+ T cells in patients with posterior segment intraocular inflammation. Invest. Ophthalmol. Vis. Sci.45(1), 170–176 (2004).
  • Broderick C, Hoek RM, Forrester JV et al. Constitutive retinal CD200 expression regulates resident microglia and activation state of inflammatory cells during experimental autoimmune uveoretinitis. Am. J. Pathol.161(5), 1669–1677 (2002).
  • Copland DA, Calder CJ, Raveney BJE et al. Monoclonal antibody-mediated CD200 receptor signaling suppresses macrophage activation and tissue damage in experimental autoimmune uveoretinitis. Am. J. Pathol.171(2), 580–598 (2007).
  • Kos CH. Methods in nutrition science: Cre/loxP system for generating tissue-specific knockout mouse models. Nutr. Rev.62(6), 243–246 (2004).
  • Mohammad DA, Sweet BV, Elner SG. Retisert: is the new advance in treatment of uveitis a good one? Ann. Pharmacother.41(3), 449–454 (2007).
  • Svenson S. Dendrimers as versatile platform in drug delivery applications. Eur. J. Pharm. Biopharm.71(3), 445–462 (2009).
  • Barker SE, Broderick CA, Robbie SJ et al. Subretinal delivery of adeno-associated virus serotype 2 results in minimal immune responses that allow repeat vector administration in immunocompetent mice. J. Gene Med.11(6), 486–497 (2009).
  • Broderick CA, Smith AJ, Balaggan KS et al. Local administration of an adeno-associated viral vector expressing IL-10 reduces monocyte infiltration and subsequent photoreceptor damage during experimental autoimmune uveitis. Mol. Ther.12(2), 369–373 (2005).
  • Williams GJ, Brannan S, Forrester JV et al. The prevalence of sight-threatening uveitis in Scotland. Br. J. Ophthalmol.91(1), 33–36 (2007).
  • Jabs DA, Rosenbaum JT, Foster CS et al. Guidelines for the use of immunosuppressive drugs in patients with ocular inflammatory disorders: recommendations of an expert panel. Am. J. Ophthalmol.130(4), 492–513 (2000).
  • Howe LJ, Stanford MR, Edelsten C, Graham EM. The efficacy of systemic corticosteroids in sight-threatening retinal vasculitis. Eye8(Pt 4) 443–447 (1994).
  • Schewitz LP, Lee RW, Dayan CM, Dick AD. Glucocorticoids and the emerging importance of T cell subsets in steroid refractory diseases. Immunopharmacol. Immunotoxicol.31(1), 1–22 (2009).
  • Creed TJ, Lee RW, Newcomb PV et al. The effects of cytokines on suppression of lymphocyte proliferation by dexamethasone. J. Immunol.183(1), 164–171 (2009).
  • Lee RW, Creed TJ, Schewitz LP et al. CD4+CD25int T cells in inflammatory diseases refractory to treatment with glucocorticoids. J. Immunol.179(11), 7941–7948 (2007).
  • Lee RW, Schewitz LP, Nicholson LB, Dayan CM, Dick AD. Steroid refractory CD4+ T cells in patients with sight-threatening uveitis. Invest. Ophthalmol. Vis. Sci.50, 4273–4278 (2009).
  • Thurau SR, Wildner G. Oral tolerance for treating uveitis – new hope for an old immunological mechanism. Prog. Retin. Eye Res.21(6), 577–589 (2002).
  • Ludvigsson J, Faresjo M, Hjorth M et al. GAD treatment and insulin secretion in recent-onset Type 1 diabetes. N. Engl. J. Med.359(18), 1909–1920 (2008).
  • Bar-Or A, Vollmer T, Antel J et al. Induction of antigen-specific tolerance in multiple sclerosis after immunization with DNA encoding myelin basic protein in a randomized, placebo-controlled Phase 1/2 trial. Arch. Neurol.64(10), 1407–1415 (2007).
  • Faria AM, Weiner HL. Oral tolerance: therapeutic implications for autoimmune diseases. Clin. Dev Immunol.13(2–4), 143–157 (2006).
  • Sanui H, Redmond TM, Kotake S et al. Uveitis and immune responses in primates immunized with IRBP-derived synthetic peptides. Curr. Eye Research9(2), 193–199 (1990).
  • Chan C-C, Nussenblatt RB, Wiggert B et al. Immunohistochemical analysis of experimental autoimmune uveoretinitis (Eau) induced by interphotoreceptor retinoid-binding protein(Irbp) in the rat. Immunol. Invest.16(1), 63–74 (1987).
  • Caspi RR, Chan CC, Leake WC et al. Experimental autoimmune uveoretinitis in mice. Induction by a single eliciting event and dependence on quantitative parameters of immunization. J. Autoimmun.3(3), 237–246 (1990).
  • Wacker WB,Dodd MC. The immunologic response of rabbits to homologous and heterologous corneal and uveal tissue. J. Immunol.86(6), 690–703 (1961).
  • de Kozak Y, Sakai J, Thillaye B,Faure JP. S antigen-induced experimental autoimmune uveo-retinitis in rats. Curr. Eye Research1(6), 327–337 (1981).
  • Nussenblatt RB, Kuwabara T, de Monasterio FM, Wacker WB. S-Antigen uveitis in primates: a new model for human disease. Arch. Ophthalmol.99(6), 1090–1092 (1981).
  • Rosenbaum JT, McDevitt HO, Guss RB, Egbert PR. Endotoxin-induced uveitis in rats as a model for human disease. Nature286(5773), 611–613 (1980).
  • Lai JC, Fukushima A, Wawrousek EF et al. Immunotolerance against a foreign antigen transgenically expressed in the lens. Invest. Ophthalmol. Vis. Sci.39(11), 2049–2057 (1998).
  • Lambe T, Leung JCH, Bouriez-Jones T et al. CD4 T cell-dependent autoimmunity against a melanocyte neoantigen induces spontaneous vitiligo and depends upon fas–fas ligand interactions. J. Immunol.177(5), 3055–3062 (2006).
  • Schalken JJ, van Vugt AH, Winkens HJ et al. Experimental autoimmune uveoretinitis in rats induced by rod visual pigment: rhodopsin is more pathogenic than opsin. Graefes Arch. Clin. Exp. Ophthalmol.226(3), 255–261 (1988).
  • Ham D-I, Fujimoto C, Gentleman S et al. The level of thymic expression of RPE65 inversely correlates with its capacity to induce experimental autoimmune uveitis (EAU) in different rodent strains. Exp. Eye Res.83(4), 897–902 (2006).
  • Yamaki K, Gocho K, Hayakawa K, Kondo I, Sakuragi S. Tyrosinase family proteins are antigens specific to Vogt–Koyanagi–Harada disease. J. Immunol.165(12), 7323–7329 (2000).
  • Bora NS, Sohn J-H, Kang S-G et al. Type I collagen is the autoantigen in experimental autoimmune anterior uveitis. J. Immunol.172(11), 7086–7094 (2004).
  • Broekhuyse RM, Kuhlmann ED, Winkens HJ. Experimental melanin-protein induced uveitis (EMIU) is the sole type of uveitis evoked by a diversity of ocular melanin preparations and melanin-derived soluble polypeptides. Jpn. J. Ophthalmol.40(4), 459–468 (1996).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.