58
Views
11
CrossRef citations to date
0
Altmetric
Review

Current efforts and the potential of nanomedicine in treating fungal keratitis

, , &
Pages 365-384 | Published online: 09 Jan 2014

References

  • Shukla PK, Kumar M, Keshava GB. Mycotic keratitis: an overview of diagnosis and therapy. Mycoses51(3), 183–199 (2008).
  • Thomas PA. Current perspectives on ophthalmic mycoses. Clin. Microbiol. Rev.16(4), 730–797 (2003).
  • Galarreta DJ, Tuft SJ, Ramsay A, Dart JK. Fungal keratitis in London: microbiological and clinical evaluation. Cornea26(9), 1082–1086 (2007).
  • Bharathi MJ, Ramakrishnan R, Vasu S, Meenakshi R, Palaniappan R. Epidemiological characteristics and laboratory diagnosis of fungal keratitis. A three-year study. Indian J. Ophthalmol.51(4), 315–321 (2003).
  • Carvalho ACA, Ruthes HI, Maia M et al. Ceratite fúngica no estado do Paraná- Brasil: aspectos epidemiológicos, etiológicos e diagnósticos. Rev. Iberoam. Micol.18(2), 76–78 (2001).
  • Gopinathan U, Sharma S, Garg P et al. Review of epidemiological features, microbiological diagnosis and treatment outcome of microbial keratitis: experience of over a decade. Indian J. Ophthalmol.57(4), 273–279 (2009).
  • Panda A, Satpathy G, Nayak N, Kumar S, Kumar A. Demographic pattern, predisposing factors and management of ulcerative keratitis: evaluation of one thousand unilateral cases at a tertiary care centre. Clin. Experiment. Ophthalmol.35(1), 44–50 (2007).
  • Perez-Balbuena A, Vanzzini-Rosano V, Valadez-Virgen JD, Campos-Moller X. Fusarium keratitis in Mexico. Cornea28(6), 626–630 (2009).
  • Tanure MA, Cohen EJ, Sudesh S, Rapuano CJ, Laibson PR. Spectrum of fungal keratitis at Wills Eye Hospital, Philadelphia, Pennsylvania. Cornea19(3), 307–312 (2000).
  • Tuft SJ, Tullo AB. Fungal keratitis in the United Kingdom 2003–2005. Eye23(6), 1308–1313 (2009).
  • Ritterband DC, Seedor JA, Shah MK, Koplin RS, McCormick SA. Fungal keratitis at the New York Eye and Ear Infirmary. Cornea25(3), 264–267 (2006).
  • Xie LX, Zhong WX, Shi WY, Sun SY. Spectrum of fungal keratitis in north China. Ophthalmology113(11), 1943–1948 (2006).
  • Leck AK, Thomas PA, Hagan M et al. Aetiology of suppurative corneal ulcers in Ghana and south India, and epidemiology of fungal keratitis. Br. J. Ophthalmol.86(11), 1211–1215 (2002).
  • Gopinathan U, Garg P, Fernandes M, Sharma S, Athmanathan S, Rao GN. The epidemiological features and laboratory results of fungal keratitis: a 10-year review at a referral eye care center in south India. Cornea21(6), 555–559 (2002).
  • Ibrahim MM, Vanini R, Ibrahim FM et al. Epidemiologic aspects and clinical outcome of fungal keratitis in southeastern Brazil. Eur. J. Ophthalmol19(3), 355–361 (2009).
  • Thew MRJ, Todd B. Fungal keratitis in far north Queensland, Australia. Clin. Experiment. Ophthalmol.36(8), 721–724 (2008).
  • Sirikul T, Prabriputaloong T, Smathivat A, Chuck RS, Vongthongsri A. Predisposing factors and etiologic diagnosis of ulcerative keratitis. Cornea27(3), 283–287 (2008).
  • Liesegang TJ, Forster RK. Spectrum of microbial keratitis in South Florida. Am. J. Ophthalmol.90(1), 38–47 (1980).
  • Upadhyay MP, Karmacharya PC, Koirala S et al. Epidemiologic characteristics, predisposing factors, and etiologic diagnosis of corneal ulceration in Nepal. Am. J. Ophthalmol.111(1), 92–99 (1991).
  • Khairallah SH, Byrne KA, Tabbara KF. Fungal keratitis in Saudi Arabia. Doc.Ophthalmol.79(3), 269–276 (1992).
  • Hagan M, Wright E, Newman M, Dolin P, Johnson G. Causes of suppurative keratitis in Ghana. Br J. Ophthalmol.79(11), 1024–1028 (1995).
  • Hall LR, Lass JH, Diaconu E, Strine ER, Pearlman E. An essential role for antibody in neutrophil and eosinophil recruitment to the cornea: B cell-deficient (microMT) mice fail to develop Th2-dependent, helminth-mediated keratitis. J. Immunol.163(9), 4970–4975 (1999).
  • Kaur IP, Rana C, Singh H. Development of effective ocular preparations of antifungal agents. J. Ocul. Pharmacol. Ther.24(5), 481–493 (2008).
  • FlorCruz NV, Peczon I. Medical interventions for fungal keratitis. Cochrane Database Syst. Rev.1, CD004241 (2008).
  • Srinivasan M. Fungal keratitis. Curr. Opin. Ophthalmol.15(4), 321–327 (2004).
  • Thomas PA. Mycotic keratitis – an underestimated mycosis. J. Med. Vet. Mycol.32(4), 235–256 (1994).
  • Wang LY, Sun ST, Jing Y, Han L, Zhang HM, Yue J. Spectrum of fungal keratitis in central China. Clin. Experiment. Ophthalmol.37(8), 763–771 (2009).
  • Godoy P, Cano J, Gene J, Guarro J, Hofling-Lima AL, Lopes CA. Genotyping of 44 isolates of Fusarium solani, the main agent of fungal keratitis in Brazil. J. Clin. Microbiol.42(10), 4494–4497 (2004).
  • Thomas PA. Fungal infections of the cornea. Eye (Lond.)17(8), 852–862 (2003).
  • Salera CM, Tanure MAG, Lima WTM, Trindade FC, Moreira JA. Perfil das ceratites fúngicas no Hospital São Geraldo Belo Horizonte – MG. Arq. Bras. Oftalmol.65, 9–13 (2002).
  • Alfonso EC, Miller D, Cantu-Dibildox J, O’Brien TP, Schein OD. Fungal keratitis associated with non-therapeutic soft contact lenses. Am. J. Ophthalmol.142(1), 154–155 (2006).
  • Klotz SA, Penn CC, Negvesky GJ, Butrus SI. Fungal and parasitic infections of the eye. Clin. Microbiol. Rev.13(4), 662–685 (2000).
  • Klotz SA, Au YK, Misra RP. A partial-thickness epithelial defect increases the adherence of Pseudomonas aeruginosa to the cornea. Invest. Ophthalmol. Vis. Sci.30(6), 1069–1074 (1989).
  • Ahearn DG, Zhang S, Stulting RD et al.Fusarium keratitis and contact lens wear: facts and speculations. Med. Mycol.46(5), 397–410 (2008).
  • Rao SK, Lam PTH, Li EYM, Yuen HKL, Lam DSC. A case series of contact lens-associated Fusarium keratitis in Hong Kong. Cornea26(10), 1205–1209 (2007).
  • Chang DC, Grant GB, O’Donnell K et al. Multistate outbreak of Fusarium keratitis associated with use of a contact lens solution. JAMA296(8), 953–963 (2006).
  • Gaujoux T, Chatel MA, Chaumeil C, Laroche L, Borderie VM. Outbreak of contact lens-related Fusarium keratitis in France. Cornea27(9), 1018–1021 (2008).
  • Khor WB, Aung T, Saw SM et al. An outbreak of Fusarium keratitis associated with contact lens wear in Singapore. JAMA295(24), 2867–2873 (2006).
  • Gorscak JJ, Ayres BD, Bhagat N et al. An outbreak of Fusarium keratitis associated with contact lens use in the northeastern United States. Cornea26(10), 1187–1194 (2007).
  • Granados JM, Puerto N, Carrilero MJ. Efficiency of voriconazole in fungal keratitis caused by Candida albicans. Arch. Soc. Esp. Oftalmol.79(11), 565–568 (2004).
  • Krishnan S, Manavathu EK, Chandrasekar PH. Aspergillus flavus: an emerging non-fumigatus Aspergillus species of significance. Mycoses52(3), 206–222 (2009).
  • Mendicute J, Orbegozo J, Ruiz M, Saiz A, Eder F, Aramberri J. Keratomycosis after cataract surgery. J. Cataract Refract. Surg.26(11), 1660–1666 (2000).
  • Nayak N. Fungal infections of the eye: laboratory diagnosis and treatment. Nepal. Med. Coll. J.10(1), 48–63 (2008).
  • Behrens-Baumann W. Topical antimycotics in ophthalmology. Ophthalmologica211(Suppl. 1), 33–38 (1997).
  • Ti SE, Scott A, Janardhanan P, Tan DTH. Therapeutic keratoplasty for advanced suppurative keratitis. Am. J. Ophthalmol.143(5), 755–762 (2007).
  • Yuan XY, Wilhelmus KR, Matoba AY, Alexandrakis G, Miller D, Huang AJW. Pathogenesis and outcome of Paecilomyces keratitis. Am. J. Ophthalmol.147(4), 691–696 (2009).
  • Banitt M, Berenbom A, Shah M, Buxton D, Milman T. A case of polymicrobial keratitis violating an intact lens capsule. Cornea27(9), 1057–1061 (2008).
  • Bashir G, Hussain W, Rizvi A. Bipolaris hawaiiensis keratomycosis and endophthalmitis. Mycopathologia167(1), 51–53 (2009).
  • Gupta AK, Sauder DN, Shear NH. Antifungal agents: an overview. Part I. J. Am. Acad. Dermatol.30(5 Pt 1), 677–698 (1994).
  • Smith EB. History of antifungals. J. Am. Acad. Dermatol.23(4 Pt 2), 776–778 (1990).
  • Luke RG, Boyle JA. Renal effects of amphotericin B lipid complex. Am. J. Kidney Dis.31(5), 780–785 (1998).
  • Kauffman CA, Carver PL. Antifungal agents in the 1990s. Current status and future developments. Drugs53(4), 539–549 (1997).
  • te Welscher YM, ten Napel HH, Balagué MM et al. Natamycin blocks fungal growth by binding specifically to ergosterol without permeabilizing the membrane. J. Biol. Chem.283(10), 6393–6401 (2008).
  • Georgopapadakou NH, Walsh TJ. Human mycoses: drugs and targets for emerging pathogens. Science264(5157), 371–373 (1994).
  • O’Day DM, Ray WA, Head WS, Robinson RD. Influence of the corneal epithelium on the efficacy of topical antifungal agents. Invest. Ophthalmol. Vis. Sci.25(7), 855–859 (1984).
  • Loh AR, Hong K, Lee S, Mannis M, Acharya NR. Practice patterns in the management of fungal corneal ulcers. Cornea28(8), 856–859 (2009).
  • Lalitha P, Shapiro BL, Srinivasan M et al. Antimicrobial susceptibility of Fusarium, Aspergillus, and other filamentous fungi isolated from keratitis. Arch. Ophthalmol.125(6), 789–793 (2007).
  • Xie LX, Zhai HL, Zhao J, Sun SY, Shi WY, Dong XG. Antifungal susceptibility for common pathogens of fungal keratitis in Shandong Province, China. Am. J. Ophthalmol.146(2), 260–265 (2008).
  • O’Day DM, Head WS, Robinson RD, Clanton JA. Corneal penetration of topical amphotericin B and natamycin. Curr. Eye Res.5(11), 877–882 (1986).
  • Torrado JJ, Espada R, Ballesteros MP, Torrado-Santiago S. Amphotericin B formulations and drug targeting. J. Pharm. Sci.97(7), 2405–2425 (2008).
  • DiDomenico B. Novel antifungal drugs. Curr. Opin. Microbiol.2(5), 509–515 (1999).
  • Al Assiri A, Al Jastaneiah S, Al Khalaf A, Al Fraikh H, Wagoner MD. Late-onset donor-to-host transmission of Candida glabrata following corneal transplantation. Cornea25(1), 123–125 (2006).
  • Levy J, Benharroch D, Peled N, Lifshitz T. Blastoschizomyces capitatus keratitis and melting in a corneal graft. Can. J. Ophthalmol.41(6), 772–774 (2006).
  • Park KA, Ahn K, Chung ES, Chung TY. Pichia anomala fungal keratitis. Cornea27(5), 619–620 (2008).
  • Khoo SH, Bond J, Denning DW. Administering amphotericin B: a practical approach. J. Antimicrob. Chemother.33(2), 203–213 (1994).
  • Kaushik S, Ram J, Brar GS, Jain AK, Chakraborti A, Gupta A. Intracameral amphotericin B: initial experience in severe keratomycosis. Cornea20(7), 715–719 (2001).
  • Yilmaz S, Ture M, Maden A. Efficacy of intracameral amphotericin B injection in the management of refractory keratomycosis and endophthalmitis. Cornea26(4), 398–402 (2007).
  • Garcia-Valenzuela E, Song CD. Intracorneal injection of amphothericin B for recurrent fungal keratitis and endophthalmitis. Arch. Ophthalmol.123(12), 1721–1723 (2005).
  • Gupta A, Srinivasan R, Kaliaperumal S, Saha I. Post-traumatic fungal endophthalmitis – a prospective study. Eye22(1), 13–17 (2008).
  • Koltin Y, Hitchcock CA. The search for new triazole antifungal agents. Curr. Opin. Chem. Biol.1(2), 176–182 (1997).
  • Foster CS, Stefanyszyn M. Intraocular penetration of miconazole in rabbits. Arch.Ophthalmol.97(9), 1703–1706 (1979).
  • Anderson RL, Carroll TF, Harvey JT, Myers MG. Petriellidium(Allescheria) boydii orbital and brain abscess treated with intravenous miconazole. Am. J. Ophthalmol.97(6), 771–775 (1984).
  • Fitzsimons R, Peters AL. Miconazole and ketoconazole as a satisfactory first-line treatment for keratomycosis. Am. J. Ophthalmol.101(5), 605–608 (1986).
  • Foster CS. Miconazole therapy for keratomycosis. Am. J. Ophthalmol.91(5), 622–629 (1981).
  • Ishibashi Y, Matsumoto Y, Takei K. The effects of intravenous miconazole on fungal keratitis. Am. J. Ophthalmol.98(4), 433–437 (1984).
  • Zaidman GW. Miconazole corneal toxicity. Cornea10(1), 90–91 (1991).
  • Galan A, Martin-Suarez EM, Gallardo JM, Molleda JM. Clinical findings and progression of 10 cases of equine ulcerative keratomycosis (2004–2007). Equine Vet. Educ.21(5), 236–242 (2009).
  • Myers DA, Lsaza R, Ben Shlomo G, Abbott J, Plummer CE. Fungal keratitis in a gopher tortoise (Gopherus polyphemus). J. Zoo Wildl. Med.40(3), 579–582 (2009).
  • Andrew SE, Brooks DE, Smith PJ, Gelatt KN, Chmielewski NT, Whittaker CJG. Equine ulcerative keratomycosis: visual outcome and ocular survival in 39 cases (1987–1996). Equine Vet. J.30(2), 109–116 (1998).
  • Hemady RK, Chu W, Foster CS. Intraocular penetration of ketoconazole in rabbits. Cornea11(4), 329–333 (1992).
  • Therese KL, Bagyalakshmi R, Madhavan HN, Deepa P. In vitro susceptibility testing by agar dilution method to determine the minimum inhibitory concentrations of amphotericin B, fluconazole and ketoconazole against ocular fungal isolates. Indian J. Med. Microbiol.24(4), 273–279 (2006).
  • Marangon FB, Miller D, Giaconi JA, Alfonso EC. In vitro investigation of voriconazole susceptibility for keratitis and endophthalmitis fungal pathogens. Am. J. Ophthalmol.137(5), 820–825 (2004).
  • Manikandan P, Varga J, Kocsube S et al. Mycotic keratitis due to Aspergillus nomius. J. Clin. Microbiol.47(10), 3382–3385 (2009).
  • Kredics L, Varga J, Kocsube S et al. Infectious keratitis caused by Aspergillus tubingensis. Cornea28(8), 951–954 (2009).
  • Dursun D, Fernandez V, Miller D, Alfonso EC. Advanced Fusarium keratitis progressing to endophthalmitis. Cornea22(4), 300–303 (2003).
  • Torres MA, Mohamed J, Cavazos-Adame H, Martinez LA. Topical ketoconazole for fungal keratitis. Am. J. Ophthalmol.100(2), 293–298 (1985).
  • Zhang JJ, Wang LY, Gao CF, Zhang L, Xia HY. Ocular pharmacokinetics of topically-applied ketoconazole solution containing hydroxypropyl β-cyclodextrin to rabbits. J. Ocul. Pharmacol. Ther.24(5), 501–506 (2008).
  • Behrens-Baumann W, Klinge B, Ruchel R. Topical fluconazole for experimental Candida keratitis in rabbits. Br. J. Ophthalmol.74(1), 40–42 (1990).
  • Chung PC, Lin HC, Hwang YS et al. Paecilomyces lilacinus scleritis with secondary keratitis. Cornea26(2), 232–234 (2007).
  • Sonego-Krone S, Sanchez-Di Martino D, Ayala-Lugo R et al. Clinical results of topical fluconazole for the treatment of filamentous fungal keratitis. Graefes Arch.Clin. Exp. Ophthalmol.244(7), 782–787 (2006).
  • Holgado S, Luna JD, Juarez CP. Postoperative Candida keratitis treated successfully with fluconazole. Ophthalmic Surg.24(2), 132 (1993).
  • Sodhi PK, Mehta DK. Fluconazole in managment of ocular infections due to Curvularia. Ann. Ophthalmol.35(1), 68–72 (2003).
  • Yilmaz S, Maden A. Severe fungal keratitis treated with subconjunctival fluconazole. Am. J. Ophthalmol.140(3), 454–458 (2005).
  • Su CY, Lin CP, Wang HZ et al. Intraocular use of fluconazole in the management of ocular fungal infection. Kaohsiung J. Med. Sci.15(4), 218–225 (1999).
  • Avunduk AM, Beuerman RW, Warnel ED, Kaufman HE, Greer D. Comparison of efficacy of topical and oral fluconazole treatment in experimental Aspergillus keratitis. Curr. Eye Res.26(2), 113–117 (2003).
  • Akler ME, Vellend H, McNeely DM, Walmsley SL, Gold WL. Use of fluconazole in the treatment of candidal endophthalmitis. Clin. Infect. Dis.20(3), 657–664 (1995).
  • Abbasoglu OE, Hosal BM, Sener B, Erdemoglu N, Gursel E. Penetration of topical fluconazole into human aqueous humor. Exp. Eye Res.72(2), 147–151 (2001).
  • Li L, Wang Z, Li R, Luo S, Sun X. In vitro evaluation of combination antifungal activity against Fusarium species isolated from ocular tissues of keratomycosis patients. Am. J. Ophthalmol.146(5), 724–728 (2008).
  • Fungtomc JC, Minassian B, Huczko E, Kolek B, Bonner DP, Kessler RE. In vitro antifungal and fungicidal spectra of a new pradimicin derivative, BMS-181184. Antimicrob. Agents Chemother.39(2), 295–300 (1995).
  • Gonzalez G. In vitro activities of isavuconazole against opportunistic filamentous and dimorphic fungi. Med. Mycol.47(1), 71–76 (2009).
  • Li LH, McCarthy P, Hui SW. High-efficiency electrotransfection of human primary hematopoietic stem cells. FASEB J.15(3), 586–588 (2001).
  • Qiu WY, Yao YF, Zhu YF et al. Fungal spectrum identified by a new slide culture and in vitro drug susceptibility using Etest in fungal keratitis. Curr. Eye Res.30(12), 1113–1120 (2005).
  • Savani DV, Perfect JR, Cobo LM, Durack DT. Penetration of new azole compounds into the eye and efficacy in experimental Candida endophthalmitis. Antimicrob. Agents Chemother.31(1), 6–10 (1987).
  • Saracli MA, Erdem U, Gonlum A, Yildiran ST. Scedosporium apiospermum keratitis treated with itraconazole. Med. Mycol.41(2), 111–114 (2003).
  • Kalavathy CM, Parmar P, Kaliamurthy J et al. Comparison of topical itraconazole 1% with topical natamycin 5% for the treatment of filamentous fungal keratitis. Cornea24(4), 449–452 (2005).
  • Martinez-Ramos M, Claros B, Vale-Oviedo MA et al. Effect of the vehicle on the topical itraconazole efficacy for treating corneal ulcers caused by Aspergillus fumigatus. Clin. Experiment. Ophthalmol.36(4), 335–338 (2008).
  • Yavas GF, Oztuerk F, Kusbeci T et al. Antifungal efficacy of voriconazole, itraconazole and amphotericin B in experimental Fusarium solani keratitis. Graefes Arch. Clin. Experiment. Ophthalmol.246(2), 275–279 (2008).
  • Abdel-Rahman SM, Nahata MC. Oral terbinafine: a new antifungal agent. Ann. Pharmacother.31(4), 445–456 (1997).
  • Schelenz S, Goldsmith DJA. Aspergillus endophthalmitis: an unusual complication of disseminated infection in renal transplant patients. J. Infect.47(4), 336–343 (2003).
  • Tu EY, Park AJ. Recalcitrant Beauveria bassiana keratitis: confocal microscopy findings and treatment with posaconazole (noxafil). Cornea26(8), 1008–1010 (2007).
  • Amiel H, Chohan AAB, Snibson GR, Vajpayee R. Atypical fungal sclerokeratitis. Cornea27(3), 382–383 (2008).
  • Vyzantiadis TA, Kioumi A, Papadakis E et al. Rhino-cerebral zygomycosis resistant to antimycotic treatment: a case report. Mycoses52(1), 87–90 (2009).
  • Sabo JA, Abdel-Rahman SM. Voriconazole: a new triazole antifungal. Ann. Pharmacother.34(9), 1032–1043 (2000).
  • Johnson LB, Kauffman CA. Voriconazole: a new triazole antifungal agent. Clin. Infect. Dis.36(5), 630–637 (2003).
  • Ruhnke M, Schmidt-Westhausen A, Trautmann M. In vitro activities of voriconazole (UK-109,496) against fluconazole-susceptible and -resistant Candida albicans isolates from oral cavities of patients with human immunodeficiency virus infection. Antimicrob. Agents Chemother.41(3), 575–577 (1997).
  • Bunya VY, Hammersmith KM, Rapuano CJ, Ayres BD, Cohen EJ. Topical and oral voriconazole in the treatment of fungal keratitis. Am. J. Ophthalmol.143(1), 151–153 (2007).
  • Creti A, Esposito V, Bocchetti M et al. Voriconazole curative treatment for Acremonium species keratitis developed in a patient with concomitant Staphylococcus aureus corneal infection: a case report. In Vivo20(1), 169–171 (2006).
  • Durand ML, Kim IK, D’Amico DJ et al. Successful treatment of Fusarium endophthalmitis with voriconazole and Aspergillus endophthalmitis with voriconazole plus caspofungin. Am. J. Ophthalmol.140(3), 552–554 (2005).
  • Freda R. Use of oral voriconazole as adjunctive treatment of severe cornea fungal infection: case report. Arq. Bras. Oftalmol.69(3), 431–434 (2006).
  • Kramer M, Kramer MR, Blau H et al. Intravitreal voriconazole for the treatment of endogenous Aspergillus endophthalmitis. Ophthalmology113(7), 1184–1186 (2006).
  • Al Badriyeh D, Leung L, Davies GE, Stewart K, Kong D. Successful salvage treatment of Scedosporium apiospermum keratitis with topical voriconazole after failure of natamycin. Ann. Pharmacother.43(6), 1139–1142 (2009).
  • Tu EY. Alternaria keratitis: clinical presentation and resolution with topical fluconazole or intrastromal voriconazole and topical caspofungin. Cornea28(1), 116–119 (2009).
  • Hariprasad SM, Mieler WF, Holz ER et al. Determination of vitreous, aqueous, and plasma concentration of orally administered voriconazole in humans. Arch. Ophthalmol.122(1), 42–47 (2004).
  • Nulens E, Eggink C, Rijs AJ, Wesseling P, Verweij PE. Keratitis caused by Scedosporium apiospermum successfully treated with a cornea transplant and voriconazole. J. Clin. Microbiol.41(5), 2261–2264 (2003).
  • Klont RR, Eggink CA, Rijs AJMM, Wesseling P, Verweij PE. Successful treatment of Fusarium keratitis with cornea transplantation and topical and systemic voriconazole. Clin. Infect. Dis.40(12), E110–E112 (2005).
  • Vemulakonda GA, Hariprasad SM, Mieler WF, Prince RA, Shah GK, Van Gelder RN. Aqueous and vitreous concentrations following topical administration of 1% voriconazole in humans. Arch. Ophthalmol.126(1), 18–22 (2008).
  • Lau D, Leung L, Ferdinands M et al. Penetration of 1% voriconazole eye drops into human vitreous humour: a prospective, open-label study. Clin. Experiment. Ophthalmol.37(2), 197–200 (2009).
  • Al Badriyeh D, Leung L, Roydhouse T et al. Prospective open-label study of the administration of two-percent voriconazole eye drops. Antimicrob. Agents Chemother.53(7), 3153–3155 (2009).
  • Clode AB, Davis JL, Salmon J, Michau TM, Gilger BC. Evaluation of concentration of voriconazole in aqueous humor after topical and oral administration in horses. Am. J. Vet. Res.67(2), 296–301 (2006).
  • Shen YC, Wang MY, Wang CY et al. Clearance of intravitreal voriconazole. Invest. Ophthalmol.Vis. Sci.48(5), 2238–2241 (2007).
  • Hector RF. Compounds active against cell walls of medically important fungi. Clin. Microbiol. Rev.6(1), 1–21 (1993).
  • Sucher AJ, Chahine EB, Balcer HE. Echinocandins: the newest class of antifungals. Ann. Pharmacother.43(10), 1647–1657 (2009).
  • Cleary JD. Echinocandins: pharmacokinetic and therapeutic issues. Curr. Med. Res. Opin.25(7), 1741–1750 (2009).
  • Goldblum D, Frueh BE, Sarra GM, Katsoulis K, Zimmerli S. Topical caspofungin for treatment of keratitis caused by Candida albicans in a rabbit model. Antimicrob. Agents Chemother.49(4), 1359–1363 (2005).
  • Ozturk F, Yavas GF, Kusbeci T et al. Efficacy of topical caspofungin in experimental Fusarium keratitis. Cornea26(6), 726–728 (2007).
  • Vorwerk CK, Tuchen S, Streit F, Binder L, Hofmuller W, Behrens-Baumann W. Aqueous humor concentrations of topically administered caspofungin in rabbits. Ophthalmic Res.41(2), 102–105 (2009).
  • Tawara S, Ikeda F, Maki K et al.In vitro activities of a new lipopeptide antifungal agent, FK463, against a variety of clinically important fungi. Antimicrob. Agents Chemother.44(1), 57–62 (2000).
  • Temesgen Z, Barreto J, Vento S. Micafungin: the newest echinocandin. Drugs Today.45(6), 469–478 (2009).
  • Hiraoka T, Kaji Y, Wakabayashi T, Nanbu PN, Okamoto F, Oshika T. Comparison of micafungin and fluconazole for experimental Candida keratitis in rabbits. Cornea26(3), 336–342 (2007).
  • Matsumoto Y, Dogru M, Goto E, Fujishima H, Tsubota K. Successful topical application of a new antifungal agent, micafungin, in the treatment of refractory fungal corneal ulcers: report of three cases and literature review. Cornea24(6), 748–753 (2005).
  • Hiraoka T, Wakabayashi T, Kaji Y et al. Toxicological evaluation of micafungin ophthalmic solution in rabbit eyes. J. Ocul. Pharmacol. Ther.21(2), 149–156 (2005).
  • Barar J, Javadzadeh AR, Omidi Y. Ocular novel drug delivery: impacts of membranes and barriers. Expert Opin. Drug Deliv.5(5), 567–581 (2008).
  • Schalenbourg A, Leys A, de Courten C, Coutteel C, Herbort CP. Corticosteroid-induced central serous chorioretinopathy in patients with ocular inflammatory disorders. Klin. Monbl. Augenheilkd.219(4), 264–267 (2002).
  • Cunningham MA, Edelman JL, Kaushal S. Intravitreal steroids for macular edema: the past, the present, and the future. Surv. Ophthalmol.53(2), 139–149 (2008).
  • Del Amo EM, Urtti A. Current and future ophthalmic drug delivery systems. A shift to the posterior segment. Drug Discov. Today13(3–4), 135–143 (2008).
  • Moshfeghi DM, Kaiser PK, Scott IU et al. Acute endophthalmitis following intravitreal triamcinolone acetonide injection. Am. J. Ophthalmol.136(5), 791–796 (2003).
  • Kredics L, Varga J, Kocsube S et al. Case of keratitis caused by Aspergillus tamarii. J. Clin. Microbiol.45(10), 3464–3467 (2007).
  • Wolf EJ, Braunstein A, Shih C, Braunstein RE. Incidence of visually significant pseudophakic macular edema after uneventful phacoemulsification in patients treated with nepafenac. J. Cataract Refract. Surg.33(9), 1546–1549 (2007).
  • Yasueda S, Inada K, Matsuhisa K, Terayama H, Ohtori A. Evaluation of ophthalmic suspensions using surface tension. Eur. J. Pharm. Biopharm.57(2), 377–382 (2004).
  • Bourlais CL, Acar L, Zia H, Sado PA, Needham T, Leverge R. Ophthalmic drug delivery systems: recent advances. Prog. Retin. Eye Res.17(1), 33–58 (1998).
  • Giobbia M, Rossi MC, Conti E et al. Post-traumatic Aspergillus fumigatus keratitis. J. Mycol. Med.12(1), 32–33 (2002).
  • Suzuki T, Hori N, Miyake T, Hori Y, Mochizuki K. Keratitis caused by a rare fungus, Malassezia restricta. Jpn. J. Ophthalmol.51(4), 292–294 (2007).
  • Kovacs K, Stampf G, Klebovich I, Antal I, Ludanyi K. Aqueous solvent system for the solubilization azole compounds. Eur. J. Pharm. Sci.36(2–3), 352–358 (2009).
  • Esclusa-Diaz MT, Guimaraens-Mendez M, Perez-Marcos MB, Vila-Jato JL, Torres-Labandeira JJ. Characterization and in vitro dissolution behaviour of ketoconazole/β- and 2-hydroxypropyl-β-cyclodextrin inclusion compounds. Int. J. Pharm.143(2), 203–210 (1996).
  • Owens PK, Fell AF, Coleman MW, Berridge JC. Complexation of voriconazole stereoisomers with neutral and anionic derivatised cyclodextrins. J. Incl. Phenom. Macrocycl. Chem.38(1–4), 133–151 (2000).
  • Cohen T, SauvageonMartre H, Brossard D et al. Amphotericin B eye drops as a lipidic emulsion. Int. J. Pharm.137(2), 249–254 (1996).
  • Wang CH, Wang WT, Hsiue GH. Development of polyion complex micelles for encapsulating and delivering amphotericin B. Biomaterials30(19), 3352–3358 (2009).
  • Brauninger GE, Shah DO, Kaufman HE. Direct physical demonstration of oily layer on tear film surface. Am. J. Ophthalmol.73(1), 132–134 (1972).
  • Nanjawade BK, Manvi FV, Manjappa AS. In situ forming hydrogels for sustained ophthalmic drug delivery. J. Control. Release122(2), 119–134 (2007).
  • Hirose H, Terasaki H, Awaya S, Yasuma T. Treatment of fungal corneal ulcers with amphotericin B ointment. Am. J. Ophthalmol.124(6), 836–838 (1997).
  • Delpalacio A, Perezblazquez E, Cuetara MS et al. Keratomycosis due to Scedosporium-apiospermum. Mycoses34(11–12), 483–487 (1991).
  • Goldblum D, Frueh BE, Zimmerli S, Bohnke M. Treatment of postkeratitis fusarium endophthalmitis with amphotericin B lipid complex. Cornea19(6), 853–856 (2000).
  • Manzouri B, Vafidis GC, Wyse RK. Pharmacotherapy of fungal eye infections. Expert Opin. Pharmacother.2(11), 1849–1857 (2001).
  • Prausnitz MR, Noonan JS. Permeability of cornea, sclera, and conjunctiva: a literature analysis for drug delivery to the eye. J. Pharm. Sci.87(12), 1479–1488 (1998).
  • Sahoo SK, Dilnawaz F, Krishnakumar S. Nanotechnology in ocular drug delivery. Drug Discov. Today13(3–4), 144–151 (2008).
  • Wang W, Sasaki H, Chien DS, Lee VHL. Lipophilicity influence on conjunctival drug penetration in the pigmented rabbit: a comparison with corneal penetration. Curr. Eye Res.10(6), 571–579 (1991).
  • Lockman PR, Mumper RJ, Khan MA, Allen DD. Nanoparticle technology for drug delivery across the blood–brain barrier. Drug Dev. Ind. Pharm.28(1), 1–13 (2002).
  • Date AA, Joshi MD, Patravale VB. Parasitic diseases: liposomes and polymeric nanoparticles versus lipid nanoparticles. Adv. Drug Deliv. Rev.59(6), 505–521 (2007).
  • Couvreur P, Vauthier C. Nanotechnology: intelligent design to treat complex disease. Pharm. Res.23(7), 1417–1450 (2006).
  • Hsu J. Drug delivery methods for posterior segment disease. Curr. Opin. Ophthalmol.18(3), 235–239 (2007).
  • Calvo P, VilaJato JL, Alonso MJ. Evaluation of cationic polymer-coated nanocapsules as ocular drug carriers. Int. J. Pharm.153(1), 41–50 (1997).
  • Bin Choy Y, Park JH, Prausnitz MR. Mucoadhesive microparticles engineered for ophthalmic drug delivery. J. Phys. Chem. Solids69(5–6), 1533–1536 (2008).
  • Chiang CH, Tung SM, Lu DW, Yeh MK. In vitro and in vivo evaluation of an ocular delivery system of 5-fluorouracil microspheres. J. Ocul. Pharmacol. Ther.17(6), 545–553 (2001).
  • Espuelas MS, Legrand P, Loiseau PM, Bories C, Barratt G, Irache JM. In vitro antileishmanial activity of amphotericin B loaded in poly(ε-caprolactone) nanospheres. J. Drug Target.10(8), 593–599 (2002).
  • Espuelas MS, Legrand P, Irache JM et al. Poly(ε-caprolacton) nanospheres as an alternative way to reduce amphotericin B toxicity. Int. J. Pharm.158(1), 19–27 (1997).
  • Sangeetha S, Venkatesh DN, Adhiyaman R, Santhi K, Suresh B. Formulation of sodium alginate nanospheres containing amphotericin B for the treatment of systemic candidiasis. Trop. J. Pharm. Res.6(1), 653–659 (2007).
  • Tiyaboonchai W, Limpeanchob N. Formulation and characterization of amphotericin B–chitosan–dextran sulfate nanoparticles. Int. J. Pharm.329(1–2), 142–149 (2007).
  • Italia JL, Yahya MM, Singh D, Kumar MNVR. Biodegradable nanoparticles improve oral bioavailability of amphotericin B and show reduced nephrotoxicity compared to intravenous Fungizone. Pharm. Res.26(6), 1324–1331 (2009).
  • Ren TB, Xu N, Cao CH et al. Preparation and therapeutic efficacy of polysorbate-80-coated amphotericin B/PLA-b-PEG nanoparticles. J. Biomater. Sci. Polym. Ed.20(10), 1369–1380 (2009).
  • Amaral AC, Bocca AL, Ribeiro AM et al. Amphotericin B in poly(lactic-co-glycolic acid) (PLGA) and dimercaptosuccinic acid (DMSA) nanoparticles against paracoccidioidomycosis. J. Antimicrob. Chemother.63(3), 526–533 (2009).
  • Peng HS, Liu XJ, Lv GX et al. Voriconazole into PLGA nanoparticles: improving agglomeration and antifungal efficacy. Int. J. Pharm.352(1–2), 29–35 (2008).
  • de Assis DN, Mosqueira VCF, Vilela JMC, Andrade MS, Cardoso VN. Release profiles and morphological characterization by atomic force microscopy and photon correlation spectroscopy of (99m)technetium-fluconazole nanocapsules. Int. J. Pharm.349(1–2), 152–160 (2008).
  • Rivera PA, Martinez-Oharriz MC, Rubio M, Irache JM, Espuelas S. Fluconazole encapsulation in PLGA microspheres by spray-drying. J. Microencapsul.21(2), 203–211 (2004).
  • Choi C, Jung H, Nam JP, Park Y, Jang MK, Nah JW. Preparation and characterization of deoxycholic acid-conjugated low molecular weight water-soluble chitosan nanoparticles for hydrophobic antifungal agent carrier. Polymer (Korea)33(4), 389–395 (2009).
  • Ebrahim S, Peyman GA, Lee PJ. Applications of liposomes in ophthalmology. Surv. Ophthalmol.50(2), 167–182 (2005).
  • Mehanna MM, Elmaradny HA, Samaha MW. Ciprofloxacin liposomes as vesicular reservoirs for ocular delivery: formulation, optimization, and in vitro characterization. Drug Dev. Ind. Pharm.35(5), 583–593 (2009).
  • Bejjani RA, Jeanny JC, Bochot A, Behar-Cohen F. The use of liposomes as intravitreal drug delivery system. J. Fr. Ophtalmol.26(9), 981–985 (2003).
  • Alghadyan AA, Peyman GA, Khoobehi B, Milner S, Liu KR. Liposome-bound cyclosporine: clearance after intravitreal injection. Int. Ophthalmol.12(2), 109–112 (1988).
  • Barza M, Stuart M, Szoka F Jr. Effect of size and lipid composition on the pharmacokinetics of intravitreal liposomes. Invest. Ophthalmol. Vis. Sci.28(5), 893–900 (1987).
  • Liu KR, Peyman GA, Khoobehi B, Alkan H, Fiscella R. Intravitreal liposome-encapsulated trifluorothymidine in a rabbit model. Ophthalmology94(9), 1155–1159 (1987).
  • Gupta SK, Velpandian T, Dhingra N, Jaiswal J. Intravitreal pharmacokinetics of plain and liposome-entrapped fluconazole in rabbit eyes. J. Ocul. Pharmacol. Ther.16(6), 511–518 (2000).
  • Gupta SK, Dhingra N, Velpandian T, Jaiswal J. Efficacy of fluconazole and liposome entrapped fluconazole for C. albicans induced experimental mycotic endophthalmitis in rabbit eyes. Acta Ophthalmol. Scand.78(4), 448–450 (2000).
  • Habib FS, Fouad EA, Abdel-Rahman MS, Fathalla D. Liposomes as an ocular delivery system for fluconazole: in vivo study. Bull. Pharmaceut. Sci.31, 249–263 (2008).
  • Kaji Y, Yamamoto E, Hiraoka T, Oshika T. Toxicities and pharmacokinetics of subconjunctival injection of liposomal amphotericin B. Graefes Arch. Clin. Experiment. Ophthalmol.247(4), 549–553 (2009).
  • Carrillo-Munoz AJ, Quindos G, Tur C et al. Comparative in vitro antifungal activity of amphotericin B lipid complex, amphotericin B and fluconazole. Chemotherapy46(4), 235–244 (2000).
  • Goldblum D, Rohrer K, Frueh BE, Theurillat R, Thormann W, Zimmerli S. Corneal concentrations following systemic administration of amphotericin B and its lipid preparations in a rabbit model. Ophthalmic Res.36(3), 172–176 (2004).
  • Anaissie E, Paetznick V, Proffitt R, Adler-Moore J, Bodey GP. Comparison of the in vitro antifungal activity of free and liposome-encapsulated amphotericin B. Eur. J. Clin. Microbiol. Infect. Dis.10(8), 665–668 (1991).
  • De Logu A, Fadda AM, Pellerano ML, Diana G, Schivo ML. Prevention by L-α-phosphatidylcholine of antifungal activity in vitro of liposome-encapsulated imidazoles determined by using time–killing curves. Int. J. Antimicrob. Agents15(1), 43–48 (2000).
  • Lee JW, Amantea MA, Francis PA et al. Pharmacokinetics and safety of a unilamellar liposomal formulation of amphotericin B (AmBisome) in rabbits. Antimicrob. Agents Chemother.38(4), 713–718 (1994).
  • Szoka FC Jr, Milholland D, Barza M. Effect of lipid composition and liposome size on toxicity and in vitro fungicidal activity of liposome-intercalated amphotericin B. Antimicrob. Agents Chemother.31(3), 421–429 (1987).
  • Wasan KM, Brazeau GA, Keyhani A, Hayman AC, Lopez-Berestein G. Roles of liposome composition and temperature in distribution of amphotericin B in serum lipoproteins. Antimicrob. Agents Chemother.37(2), 246–250 (1993).
  • Wasan KM, Rosenblum MG, Cheung L, Lopez-Berestein G. Influence of lipoproteins on renal cytotoxicity and antifungal activity of amphotericin B. Antimicrob. Agents Chemother.38(2), 223–227 (1994).
  • Singh M, Singh MP, Maiti SN, Gandhi A, Micetich RG, Atwal H. Preparations of liposomal fluconazole and their in vitro antifungal activity. J. Microencapsul.10(2), 229–236 (1993).
  • Hopfer RL, Mills K, Mehta R et al.In vitro antifungal activities of amphotericin B and liposome-encapsulated amphotericin B. Antimicrob. Agents Chemother.25(3), 387–389 (1984).
  • Martins S, Sarmento B, Ferreira DC, Souto EB. Lipid-based colloidal carriers for peptide and protein delivery: liposomes versus lipid nanoparticles. Int. J. Nanomedicine2(4), 595–607 (2007).
  • Wissing SA, Kayser O, Muller RH. Solid lipid nanoparticles for parenteral drug delivery. Adv. Drug Deliv. Rev.56(9), 1257–1272 (2004).
  • Muller RH, Radtke M, Wissing SA. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv. Drug Deliv. Rev.54(Suppl. 1), S131–S155 (2002).
  • Muller RH, Radtke M, Wissing SA. Nanostructured lipid matrices for improved microencapsulation of drugs. Int. J. Pharm.242(1–2), 121–128 (2002).
  • Souto EB, Wissing SA, Barbosa CM, Muller RH. Development of a controlled release formulation based on SLN and NLC for topical clotrimazole delivery. Int. J. Pharm.278(1), 71–77 (2004).
  • Souto EB, Muller RH. Investigation of the factors influencing the incorporation of clotrimazole in SLN and NLC prepared by hot high-pressure homogenization. J. Microencapsul.23(4), 377–388 (2006).
  • Souto EB, Muller RH. Rheological and in vitro release behaviour of clotrimazole-containing aqueous SLN dispersions and commercial creams. Pharmazie62(7), 505–509 (2007).
  • Souto EB, Muller RH. SLN and NLC for topical delivery of ketoconazole. J. Microencapsul.22(5), 501–510 (2005).
  • Souto EB, Muller RH. The use of SLN (R) and NLC (R) as topical particulate carriers for imidazole antifungal agents. Pharmazie61(5), 431–437 (2006).
  • Mukherjee S, Ray S, Thakur RS. Design and evaluation of itraconazole loaded solid lipid nanoparticulate system for improving the antifungal therapy. Pak. J. Pharm. Sci.22(2), 131–138 (2009).
  • Bhalekar MR, Pokharkar V, Madgulkar A, Patil N, Patil N. Preparation and evaluation of miconazole nitrate-loaded solid lipid nanoparticles for topical delivery. AAPS PharmSciTech10(1), 289–296 (2009).
  • Sanna V, Gavini E, Cossu M, Rassu G, Giunchedi P. Solid lipid nanoparticles (SLN) as carriers for the topical delivery of econazole nitrate: in vitro characterization, ex vivo and in vivo studies. J. Pharm. Pharmacol.59(8), 1057–1064 (2007).
  • Cavalli R, Gasco MR, Chetoni P, Burgalassi S, Saettone MF. Solid lipid nanoparticles (SLN) as ocular delivery system for tobramycin. Int. J. Pharm.238(1–2), 241–245 (2002).
  • Kalam MA, Sultana Y, Ali A, Aqil M. Gatifloxacin-loaded solid lipid nanoparticles for topical ocular delivery. J. Pharm. Pharmacol.61, A75 (2009).
  • Niu M, Shi K, Sun Y, Wang J, Cui F. Preparation of CyA-loaded solid lipid nanoparticles and application on ocular preparations. J. Drug Deliv. Sci. Technol.18(4), 293–297 (2008).
  • Attama AA, Reichl S, Muller-Goymann CC. Sustained release and permeation of timolol from surface-modified solid lipid nanoparticles through bioengineered human cornea. Curr. Eye Res.34(8), 698–705 (2009).
  • Xu Y, Pang GR, Zhao DQ et al.In vitro activity of thimerosal against ocular pathogenic fungi. Antimicrob. Agents Chemother.54(1), 536–539 (2010).
  • Iqbal NJ, Boey A, Park BJ, Brandt ME. Determination of in vitro susceptibility of ocular Fusarium spp. isolates from keratitis cases and comparison of Clinical and Laboratory Standards Institute M38-A2 and E test methods. Diagn. Microbiol. Infect. Dis.62(3), 348–350 (2008).
  • Lalitha P, Vijaykumar R, Prajna NV, Fothergill AW. In vitro natamycin susceptibility of ocular isolates of Fusarium and Aspergillus species: comparison of commercially formulated natamycin eye drops to pharmaceutical-grade powder. J. Clin. Microbiol.46(10), 3477–3478 (2008).
  • Oday DM, Ray WA, Robinson RD, Head WS. Correlation of in vitro and in vivo susceptibility of Candida albicans to amphotericin-B and natamycin. Invest. Ophthalmol. Vis. Sci.28(3), 596–603 (1987).
  • Ikeda F, Saika T, Sato Y et al. Antifungal activity of micafungin against Candida and Aspergillus spp. isolated from pediatric patients in Japan. Med. Mycol.47(2), 145–148 (2009).
  • Barasch A, Griffin AV. Miconazole revisited: new evidence of antifungal efficacy from laboratory and clinical trials. Future Microbiol.3(3), 265–269 (2008).
  • Isham N, Ghannoum MA. Determination of MICs of aminocandin for Candida spp. and filamentous fungi. J. Clin. Microbiol.44(12), 4342–4344 (2006).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.