40
Views
0
CrossRef citations to date
0
Altmetric
Review

What is the best method for diagnosing glaucoma?

&
Pages 463-474 | Published online: 09 Jan 2014

References

  • Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br. J. Ophthalmol.90(3), 262–267 (2006).
  • Bochmann F, Azuara-Blanco A. Imaging technologies for the diagnosis of glaucoma. Eur. Ophthalmic Rev. (2010) (In Press).
  • Weinreb RN, Friedman DS, Fechtner RD et al. Risk assessment in the management of patients with ocular hypertension. Am. J. Ophthalmol.138(3), 458–467 (2004).
  • Jonas JB, Müller-Bergh JA, Schlötzer-Schrehardt UM, Naumann GO. Histomorphometry of the human optic nerve. Invest. Ophthalmol. Vis. Sci.31(4), 736–744 (1990).
  • Jampel HD. Glaucoma patients’ assessment of their visual function and quality of life. Trans. Am. Ophthalmol. Soc.99, 301–317 (2001).
  • Sharma P, Sample PA, Zangwill LM, Schuman JS. Diagnostic tools for glaucoma detection and management. Surv. Ophthalmol.53(Suppl. 1), S17–S32 (2008).
  • San Laureano J. When is glaucoma really glaucoma? Clin. Exp. Optom.90(5), 376–385 (2007).
  • Quigley HA, Katz J, Derick RJ, Gilbert D, Sommer A. An evaluation of optic disc and nerve fiber layer examinations in monitoring progression of early glaucoma damage. Ophthalmology99(1), 19–28 (1992).
  • Zangwill LM, Bowd C, Weinreb RN. Evaluating the optic disc and retinal nerve fiber layer in glaucoma. II: Optical image analysis. Semin. Ophthalmol.15(4), 206–220 (2000).
  • Susanna R Jr, Vessani RM. New findings in the evaluation of the optic disc in glaucoma diagnosis. Curr. Opin. Ophthalmol.18(2), 122–128 (2007).
  • Spaeth GL, Lopes JF, Junk AK, Grigorian AP, Henderer J. Systems for staging the amount of optic nerve damage in glaucoma: a critical review and new material. Surv. Ophthalmol.51(4), 293–315 (2006).
  • Kass MA, Heuer DK, Higginbotham EJ et al. The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch. Ophthalmol.120(6), 701–713 (2002).
  • Miglior S, Guareschi M, Albe’ E, Gomarasca S, Vavassori M, Orzalesi N. Detection of glaucomatous visual field changes using the Moorfields Regression Analysis of the Heidelberg Retina Tomograph. Am. J. Ophthalmol.136(1), 26–33 (2003).
  • Swindale NV, Stjepanovic G, Chin A, Mikelberg FS. Automated analysis of normal and glaucomatous optic nerve head topography images. Invest. Ophthalmol. Vis. Sci.41(7), 1730–1742 (2000).
  • Strouthidis NG, Garway-Heath DF. New developments in Heidelberg Retina Tomograph for glaucoma. Curr. Opin. Ophthalmol.19(2), 141–148 (2008).
  • Zangwill LM, Weinreb RN, Beiser JA et al. Baseline topographic optic disc measurements are associated with the development of primary open-angle glaucoma: the Confocal Scanning Laser Ophthalmoscopy Ancillary Study to the Ocular Hypertension Treatment Study. Arch. Ophthalmol.123(9), 1188–1197 (2005).
  • Bowd C, Balasubramanian M, Weinreb RN et al. Performance of confocal scanning laser tomograph topographic change analysis (TCA) for assessing glaucomatous progression. Invest. Ophthalmol. Vis. Sci.50, 691–701 (2009).
  • Chauhan B, McCormick T, Nicolela M, LeBlanc R. Optic disc and visual field changes in a prospective longitudinal study of patients with glaucoma: comparison of scanning laser tomography with conventional perimetry and optic disc photography. Arch. Ophthalmol.119, 1492–1499 (2001).
  • Kamal DS, Viswanathan AC, Garway-Heath DF, Hitchings RA, Poinoosawmy D, Bunce C. Detection of optic disc change with the Heidelberg Retina Tomograph before confirmed visual field change in ocular hypertensives converting to early glaucoma. Br. J. Ophthalmol.83, 290–294 (1999).
  • Zangwill LM, Chan K, Bowd C et al. Heidelberg Retina Tomograph measurements of the optic disc and parapapillary retina for detecting glaucoma analyzed by machine learning classifiers. Invest. Ophthalmol. Vis. Sci.45(9), 3144–3151 (2004).
  • Ferreras A, Pajarín AB, Polo V, Larrosa JM, Pablo LE, Honrubia FM. Diagnostic ability of Heidelberg Retina Tomograph 3 classifications: glaucoma probability score versus Moorfields Regression Analysis. Ophthalmology114(11), 1981–1987 (2007).
  • Weinreb RN, Dreher AW, Coleman A, Quigley H, Shaw B, Reiter K. Histopathologic validation of Fourier-ellipsometry measurements of retinal nerve fiber layer thickness. Arch. Ophthalmol.108(4), 557–560 (1990).
  • Lemij HG, Reus NJ. New developments in scanning laser polarimetry for glaucoma. Curr. Opin. Ophthalmol.19(2), 136–140 (2008).
  • Bowd C, Medeiros FA, Zhang Z et al. Relevance vector machine and support vector machine classifier analysis of scanning laser polarimetry retinal nerve fiber layer measurements. Invest. Ophthalmol. Vis. Sci.46(4), 1322–1329 (2005).
  • Akobeng AK. Understanding diagnostic tests 3: receiver operating characteristic curves. Acta Paediatrica96(5), 644–647 (2007).
  • Essock EA, Sinai MJ, Bowd C, Zangwill LM, Weinreb RN. Fourier analysis of optical coherence tomography and scanning laser polarimetry retinal nerve fiber layer measurements in the diagnosis of glaucoma. Arch. Ophthalmol.121(9), 1238–1245 (2003).
  • Medeiros FA, Zangwill LM, Bowd C, Bernd AS, Weinreb RN. Fourier analysis of scanning laser polarimetry measurements with variable corneal compensation in glaucoma. Invest. Ophthalmol. Vis. Sci.44(6), 2606–2612 (2003).
  • Medeiros FA, Zangwill LM, Bowd C, Weinreb RN. Comparison of the GDx VCC scanning laser polarimeter, HRT II confocal scanning laser ophthalmoscope, and stratus OCT optical coherence tomograph for the detection of glaucoma. Arch. Ophthalmol.122(6), 827–837 (2004).
  • Medeiros FA, Zangwill LM, Bowd C, Sample PA, Weinreb RN. Use of progressive glaucomatous optic disk change as the reference standard for evaluation of diagnostic tests in glaucoma. Am. J. Ophthalmol.139(6), 1010–1018 (2005).
  • Tóth M, Holló G. Enhanced corneal compensation for scanning laser polarimetry on eyes with atypical polarisation pattern. Br. J. Ophthalmol.89(9), 1139–1142 (2005).
  • Reus NJ, Zhou Q, Lemij HG. Enhanced imaging algorithm for scanning laser polarimetry with variable corneal compensation. Invest. Ophthalmol. Vis. Sci.47(9), 3870–3877 (2006).
  • Mai TA, Reus NJ, Lemij HG. Diagnostic accuracy of scanning laser polarimetry with enhanced versus variable corneal compensation. Ophthalmology144, 1988–1993 (2007).
  • Medeiros FA, Bowd C, Zangwill LM, Patel C, Weinreb RN. Detection of glaucoma using scanning laser polarimetry with enhanced corneal compensation. Invest. Ophthalmol. Vis. Sci.48, 3146–3153 (2007).
  • Sehi M, Guaqueta DC, Feuer WJ, Greenfield DS; Advanced Imaging Study Group. Scanning laser polarimetry with variable and enhanced corneal compensation in normal and glaucomatous eyes. Am. J. Ophthalmol.143, 272–279 (2007).
  • Zangwill LM, Bowd C. Retinal nerve fiber layer analysis in the diagnosis of glaucoma. Curr. Opin. Ophthalmol.17(2), 120–131 (2006).
  • Budenz DL, Michael A, Chang RT, McSoley J, Katz J. Sensitivity and specificity of the StratusOCT for perimetric glaucoma. Ophthalmology112(1), 3–9 (2005).
  • Essock EA, Zheng Y, Gunvant P. Analysis of GDx-VCC polarimetry data by Wavelet–Fourier analysis across glaucoma stages. Invest. Ophthalmol. Vis. Sci.46, 2838–2847 (2005).
  • Gunvant P, Zheng Y, Essock EA et al. Application of shape-based analysis methods to OCT retinal nerve fiber layer data in glaucoma. J. Glaucoma16, 543–548 (2007).
  • Gunvant P, Zheng Y, Essock EA et al. Comparison of shape-based analysis of retinal nerve fiber layer data obtained from OCT and GDx-VCC. J. Glaucoma18, 464–471 (2009).
  • Bourne RR, Medeiros FA, Bowd C, Jahanbakhsh K, Zangwill LM, Weinreb RN. Comparability of retinal nerve fiber layer thickness measurements of optical coherence tomography instruments. Invest. Ophthalmol. Vis. Sci.46(4), 1280–1285 (2005).
  • Kanamori A, Escano MF, Eno A et al. Evaluation of the effect of aging on retinal nerve fiber layer thickness measured by optical coherence tomography. Ophthalmologica217(4), 273–278 (2003).
  • Nouri-Mahdavi K, Hoffman D, Tannenbaum DP, Law SK, Caprioli J. Identifying early glaucoma with optical coherence tomography. Am. J. Ophthalmol.137(2), 228–235 (2004).
  • Budenz DL, Fredette MJ, Feuer WJ, Anderson DR. Reproducibility of peripapillary retinal nerve fiber thickness measurements with Stratus OCT in glaucomatous eyes. Ophthalmology115, 661–666 (2007).
  • Budenz DL, Chang RT, Huang X, Knighton RW, Tielsch JM. Reproducibility of nerve fiber thickness measurements using the Stratus OCT in normal and glaucomatous eyes. Invest. Ophthalmol. Vis. Sci.46, 2440–2443 (2005).
  • Schuman JS, Wollstein G, Farra T et al. Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography. Ophthalmology103, 1889–1898 (1996).
  • Paunescu LA, Schuman JS, Price LL et al. Reproducibility of nerve fiber thickness, macular thickness, and optic nerve head measurements using StratusOCT. Invest. Ophthalmol. Vis. Sci.45(6), 1716–1724 (2004).
  • Burgansky-Eliash Z, Wollstein G, Chu T et al. Optical coherence tomography machine learning classifiers for glaucoma detection: a preliminary study. Invest. Ophthalmol. Vis. Sci.46(11), 4147–4152 (2005).
  • Medeiros FA, Zangwill LM, Bowd C, Vessani RM, Susanna R Jr, Weinreb RN. Evaluation of retinal nerve fiber layer, optic nerve head, and macular thickness measurements for glaucoma detection using optical coherence tomography. Am. J. Ophthalmol.139(1), 44–55 (2005).
  • Wollstein G, Ishikawa H, Wang J, Beaton SA, Schuman JS. Comparison of three optical coherence tomography scanning areas for detection of glaucomatous damage. Am. J. Ophthalmol.139(1), 39–43 (2005).
  • Wollstein G, Schuman JS, Price LL et al. Optical coherence tomography (OCT) macular and peripapillary retinal nerve fiber layer measurements and automated visual fields. Am. J. Ophthalmol.138(2), 218–225 (2004).
  • Kiernan DF, Mieler WF, Hariprasad SM. Spectral-domain optical coherence tomography: a comparison of modern high-resolution retinal imaging systems. Am. J. Ophthalmol.149, 18–31 (2010)
  • Horn FK, Mardin CY, Laemmer R et al. Correlation between local glaucomatous visual field defects and loss of nerve fiber layer thickness measured with polarimetry and spectral domain OCT. Invest. Ophthalmol. Vis. Sci.50(5), 1971–1977 (2009).
  • Kerrigan-Baumrind LA, Quigley HA, Pease ME, Kerrigan DF, Mitchell RS. Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons. Invest. Ophthalmol. Vis. Sci.41(3), 741–748 (2000).
  • Bengtsson B, Heijl A. Evaluation of a new perimetric threshold strategy, SITA, in patients with manifest and suspect glaucoma Acta Ophthalmol. Scand.76(3), 268–272 (1998).
  • Sekhar GC, Naduvilath TJ, Lakkai M et al. Sensitivity of Swedish Interactive Threshold Algorithm compared with standard full threshold algorithm in Humphrey visual field testing. Ophthalmology107(7), 1303–1308 (2000).
  • Gonzalez de la Rosa M, Martinez A, Sanchez M, Mesa C, Cordoves L, Losada MJ. Accuracy of the tendency oriented perimetry (TOP) in the Octopus 1–2–3 perimeter. In: Perimetry Update 1996/1997. Wall M, Wild J (Eds). Kugler Publications, Amsterdam, The Netherlands, 119–123 (1997).
  • Morales J, Weitzman ML, González de la Rosa M. Comparison between tendency-oriented perimetry (TOP) and Octopus threshold perimetry. Ophthalmology107(1), 134–142 (2000).
  • Gonzalez de la Rosa M, Gonzalez-Hernandez M, Garcia Feijoo J, Morales J, Azuara-Blanco A. Diagnostic accuracy and reproducibility of tendency oriented perimetry in glaucoma. Eur. J. Ophthalmol.16(2), 259–267 (2006).
  • Sample PA, Chauhan BC, Araie M, Johnson CA. Comparison of functional methods. In: Glaucoma Diagnosis: Structure and Function: Consensus Series 1. Robert NW, Erik LG (Eds). Kugler Publications, The Hague, The Netherlands, 119–126 (2004).
  • Dacey DM, Packer OS. Colour coding in the primate retina: diverse cell types and cone-specific circuitry. Curr. Opin. Neurobiol.13(4), 421–427 (2003).
  • Martin PR, White AJ, Goodchild AK, Wilder HD, Sefton AE. Evidence that blue-on cells are part of the third geniculocortical pathway in primates. Eur. J. Neurosci.9(7), 1536–1541 (1997).
  • Johnson CA, Adams AJ, Casson EJ, Brandt JD. Blue-on-yellow perimetry can predict the development of glaucomatous visual field loss. Arch. Ophthalmol.111(5), 645–650 (1993).
  • Sample PA, Taylor JD, Martinez GA, Lusky M, Weinreb RN. Short-wavelength color visual fields in glaucoma suspects at risk. Am. J. Ophthalmol.115(2), 225–233 (1993).
  • Johnson CA, Adams AJ, Casson EJ, Brandt JD. Progression of early glaucomatous visual field loss as detected by blue-on-yellow and standard white-on-white automated perimetry. Arch. Ophthalmol.111(5), 651–656 (1993).
  • Blumenthal EZ, Sample PA, Berry CC et al. Evaluating several sources of variability for standard and SWAP visual fields in glaucoma patients, suspects, and normals. Ophthalmology110(10), 1895–1902 (2003).
  • Sample PA, Weinreb RN. Progressive color visual field loss in glaucoma. Invest. Ophthalmol. Vis. Sci.33(6), 2068–2071 (1992).
  • Johnson CA. Recent developments in automated perimetry in glaucoma diagnosis and management. Curr. Opin. Ophthalmol.13(2), 77–84 (2002).
  • Turpin A, McKendrick AM, Johnson CA, Vingrys AJ. Development of efficient threshold strategies for frequency doubling technology perimetry using computer simulation. Invest. Ophthalmol. Vis. Sci.43(2), 322–331 (2002).
  • Sakata LM, DeLeón-Ortega J, Girkin CA. Selective perimetry in glaucoma diagnosis. Curr. Opin. Ophthalmol.18(2), 115–121 (2007).
  • Racette L, Medeiros FA, Zangwill LM, Ng D, Weinreb RN, Sample PA. Diagnostic accuracy of the Matrix 24–22 and original N-30 frequency-doubling technology tests compared with standard automated perimetry. Invest. Ophthalmol. Vis. Sci.49(3), 954–960 (2008).
  • Alward WLM. Frequency doubling technology perimetry for the detection of glaucomatous visual field loss. Am. J. Ophthalmol.129(3), 376–378 (2000).
  • Patel SC, Friedman DS, Varadkar P, Robin AL. Algorithm for interpreting the results of frequency doubling perimetry. Am. J. Ophthalmol.129(3), 323–327 (2000).
  • Cello KE, Nelson-Quigg JM, Johnson CA. Frequency doubling technology perimetry for detection of glaucomatous visual field loss. Am. J. Ophthalmol.129, 314–322 (2000).
  • McKendrick AM. Recent developments in perimetry: test stimuli and procedures. Clin. Exp. Optom.88(2), 73–80 (2005).
  • Turpin A, McKendrick AM, Johnson CA, Vingrys AJ. Performance of efficient test procedures for frequency-doubling technology perimetry in normal and glaucomatous eyes. Invest. Ophthalmol. Vis. Sci.43(3), 709–715 (2002).
  • Wu LL, Suzuki Y, Kunimatsu S, Araie M, Iwase A, Tomita G. Frequency doubling technology and confocal scanning ophthalmoscopic optic disc analysis in open-angle glaucoma with hemifield defects. J. Glaucoma10(4), 256–260 (2001).
  • McKendrick AM, Turpin A. Advantages of terminating Zippy Estimation by Sequential Testing (ZEST) with dynamic criteria for white-on-white perimetry. Optom. Vis. Sci.82, 981–987 (2005).
  • Turpin A, McKendrick AM, Johnson CA, Vingrys AJ. Properties of perimetric threshold estimates from full threshold, ZEST, and SITA-like strategies, as determined by computer simulation. Invest. Ophthalmol. Vis. Sci.44, 4787–4795 (2003).
  • Silverman SE, Trick GL, Hart WM Jr. Motion perception is abnormal in primary open-angle glaucoma and ocular hypertension. Invest. Ophthalmol. Vis. Sci.31(4), 722–729 (1990).
  • Livingstone MS, Hubel DH. Psychophysical evidence for separate channels for the perception of form, color, movement, and depth. J. Neurosci.7(11), 3416–3468 (1987).
  • Livingstone M, Hubel D. Segregation of form, color, movement, and depth: anatomy, physiology, and perception. Science240(4853), 740–749 (1988).
  • Maunsell JHR, Newsome WT. Visual processing in monkey extrastriate cortex. Ann. Rev. Neurosci.10, 363–401 (1987).
  • Shapley R, Perry VH. Cat and monkey retinal ganglion cells and their visual functional roles. Trends Neurosci.9, 229–235 (1986).
  • Chaturvedi N, Hedley-Whyte ET, Dreyer EB. Lateral geniculate nucleus in glaucoma. Am. J. Ophthalmol.116(2), 182–188 (1993).
  • Mardin CY, Peters A, Horn F, Jünemann AG, Lausen B. Improving glaucoma diagnosis by the combination of perimetry and HRT measurements. J. Glaucoma15(4), 299–305 (2006).
  • Shah NN, Bowd C, Medeiros FA et al. Combining structural and functional testing for detection of glaucoma. Ophthalmology113(9), 1593–1602 (2006).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.