25
Views
0
CrossRef citations to date
0
Altmetric
Review

Inflammation in dry eye diseases culminating in loss of ocular homeostasis

&
Pages 663-679 | Published online: 09 Jan 2014

References

  • Terry MA. Dry eye in the elderly. Drugs Aging18(2), 101–107 (2001).
  • Tumosa N. Eye disease and the older diabetic. Clin. Geriatr. Med.24(3), 515–527, vii (2008).
  • Foulks GN. Pharmacological management of dry eye in the elderly patient. Drugs Aging25(2), 105–118 (2008).
  • Schaumberg DA, Dana R, Buring JE, Sullivan DA. Prevalence of dry eye disease among US men: estimates from the Physicians’ Health Studies. Arch. Ophthalmol.127(6), 763–768 (2009).
  • Schaumberg DA, Sullivan DA, Buring JE, Dana MR. Prevalence of dry eye syndrome among US women. Am. J. Ophthalmol.136(2), 318–326 (2003).
  • Alves M, Dias AC, Rocha EM. Dry eye in childhood: epidemiological and clinical aspects. Ocul. Surf.6(1), 44–51 (2008).
  • Bron AJ, Yokoi N, Gafney E, Tiffany JM. Predicted phenotypes of dry eye: proposed consequences of its natural history. Ocul. Surf.7(2), 78–92 (2009).
  • Stern ME, Gao J, Siemasko KF, Beuerman RW, Pflugfelder SC. The role of the lacrimal functional unit in the pathophysiology of dry eye. Exp. Eye Res.78(3), 409–416 (2004).
  • McDermott AM, Perez V, Huang AJ et al. Pathways of corneal and ocular surface inflammation: a perspective from the cullen symposium. Ocul. Surf.3(4 Suppl.), S131–S138 (2005).
  • Simpson TL, Situ P, Jones LW, Fonn D. Dry eye symptoms assessed by four questionnaires. Optom. Vis. Sci.85(8), 692–699 (2008).
  • The definition and classification of dry eye disease: report of the Definition and Classification Subcommittee of the International Dry Eye WorkShop (2007). Ocul. Surf.5(2), 75–92 (2007).
  • Tsubota K. Tear dynamics and dry eye. Prog. Retin. Eye Res.17(4), 565–596 (1998).
  • Rocha EM, Alves M, Rios JD, Dartt DA. The aging lacrimal gland: changes in structure and function. Ocul. Surf.6(4), 162–174 (2008).
  • Pflugfelder SC, Jones D, Ji Z, Afonso A, Monroy D. Altered cytokine balance in the tear fluid and conjunctiva of patients with Sjögren’s syndrome keratoconjunctivitis sicca. Curr. Eye Res.19(3), 201–211 (1999).
  • Pflugfelder SC, Stern ME. Immunoregulation on the ocular surface: 2nd Cullen Symposium. Ocul. Surf.7(2), 67–77 (2009).
  • Pearlman E, Johnson A, Adhikary G et al. Toll-like receptors at the ocular surface. Ocul. Surf.6(3), 108–116 (2008).
  • McKown RL, Wang N, Raab RW et al. Lacritin and other new proteins of the lacrimal functional unit. Exp. Eye Res.88(5), 848–858 (2009).
  • Marsh P, Pflugfelder SC. Topical nonpreserved methylprednisolone therapy for keratoconjunctivitis sicca in Sjögren syndrome. Ophthalmology106(4), 811–816 (1999).
  • O’Brien PD, Collum LM. Dry eye: diagnosis and current treatment strategies. Curr. Allergy Asthma Rep.4(4), 314–319 (2004).
  • Hodges RR, Dartt DA. Regulatory pathways in lacrimal gland epithelium. Int. Rev. Cytol.231, 129–196 (2003).
  • Batbayar B, Nagy G, Kovesi G, Zelles T, Feher E. Morphological basis of sensory neuropathy and neuroimmunomodulation in minor salivary glands of patients with Sjögren’s syndrome. Arch. Oral Biol.49(7), 529–538 (2004).
  • Azzarolo AM, Bjerrum K, Maves CA et al. Hypophysectomy-induced regression of female rat lacrimal glands: partial restoration and maintenance by dihydrotestosterone and prolactin. Invest. Ophthalmol. Vis. Sci.36(1), 216–226 (1995).
  • Brooks BP, Kleta R, Caruso RC, Stuart C, Ludlow J, Stratakis CA. Triple-A syndrome with prominent ophthalmic features and a novel mutation in the AAAS gene: a case report. BMC Ophthalmol.4, 7 (2004).
  • Leiba H, Garty NB, Schmidt-Sole J, Piterman O, Azrad A, Salomon Y. The melanocortin receptor in the rat lacrimal gland: a model system for the study of MSH (melanocyte stimulating hormone) as a potential neurotransmitter. Eur. J. Pharmacol.181(1–2), 71–82 (1990).
  • Mircheff AK, Warren DW, Wood RL, Tortoriello PJ, Kaswan RL. Prolactin localization, binding, and effects on peroxidase release in rat exorbital lacrimal gland. Invest. Ophthalmol. Vis. Sci.33(3), 641–650 (1992).
  • Azzarolo AM, Wood RL, Mircheff AK et al. Androgen influence on lacrimal gland apoptosis, necrosis, and lymphocytic infiltration. Invest. Ophthalmol. Vis. Sci.40(3), 592–602 (1999).
  • Sullivan DA, Wickham LA, Rocha EM, Kelleher RS, da Silveira LA, Toda I. Influence of gender, sex steroid hormones, and the hypothalamic–pituitary axis on the structure and function of the lacrimal gland. Adv. Exp. Med. Biol.438, 11–42 (1998).
  • Cha S, van Blockland SC, Versnel MA et al. Abnormal organogenesis in salivary gland development may initiate adult onset of autoimmune exocrinopathy. Exp. Clin. Immunogenet.18(3), 143–160 (2001).
  • Cha S, Brayer J, Gao J et al. A dual role for interferon-γ in the pathogenesis of Sjögren’s syndrome-like autoimmune exocrinopathy in the nonobese diabetic mouse. Scand. J. Immunol.60(6), 552–565 (2004).
  • Dogru M, Stern ME, Smith JA, Foulks GN, Lemp MA, Tsubota K. Changing trends in the definition and diagnosis of dry eyes. Am. J. Ophthalmol.140(3), 507–508 (2005).
  • Doyle ME, Boggs L, Attia R et al. Autoimmune dacryoadenitis of NOD/LtJ mice and its subsequent effects on tear protein composition. Am. J. Pathol.171(4), 1224–1236 (2007).
  • Cermak JM, Krenzer KL, Sullivan RM, Dana MR, Sullivan DA. Is complete androgen insensitivity syndrome associated with alterations in the meibomian gland and ocular surface? Cornea22(6), 516–521 (2003).
  • Dartt DA. Dysfunctional neural regulation of lacrimal gland secretion and its role in the pathogenesis of dry eye syndromes. Ocul. Surf.2(2), 76–91 (2004).
  • Dartt DA, Hodges RR, Zoukhri D. Signal transduction pathways activated by cholinergic and α 1-adrenergic agonists in the lacrimal gland. Adv. Exp. Med. Biol.438, 113–121 (1998).
  • Fox RI. Sjögren’s syndrome. Lancet366(9482), 321–331 (2005).
  • Malinow KL, Molina R, Gordon B, Selnes OA, Provost TT, Alexander EL. Neuropsychiatric dysfunction in primary Sjögren’s syndrome. Ann. Intern. Med.103(3), 344–350 (1985).
  • Belin C, Moroni C, Caillat-Vigneron N et al. Central nervous system involvement in Sjögren’s syndrome: evidence from neuropsychological testing and HMPAO-SPECT. Ann. Med. Interne. (Paris)150(8), 598–604 (1999).
  • Valtysdottir ST, Gudbjornsson B, Lindqvist U, Hallgren R, Hetta J. Anxiety and depression in patients with primary Sjögren’s syndrome. J. Rheumatol.27(1), 165–169 (2000).
  • Dawson LJ, Fox PC, Smith PM. Sjögrens syndrome – the non-apoptotic model of glandular hypofunction. Rheumatology (Oxford)45(7), 792–798 (2006).
  • Sullivan DA. Possible Mechanisms Involved in the Reduced Tear Secretion in Sjögren’s Syndrome. State of the Art. Homma M, Sugai S, Tojo T, Miyasaka N, Akizuki M (Eds). Kugler Press, Amsterdam, The Netherlands (1994).
  • Nguyen CQ, Cha SR, Peck AB. Sjögren’s syndrome (SjS)-like disease of mice: the importance of B lymphocytes and autoantibodies. Front. Biosci.12, 1767–1789 (2007).
  • Dawson LJ, Field EA, Harmer AR, Smith PM. Acetylcholine-evoked calcium mobilization and ion channel activation in human labial gland acinar cells from patients with primary Sjögren’s syndrome. Clin. Exp. Immunol.124(3), 480–485 (2001).
  • Nguyen KH, Brayer J, Cha S et al. Evidence for antimuscarinic acetylcholine receptor antibody-mediated secretory dysfunction in NOD mice. Arthritis Rheum.43(10), 2297–2306 (2000).
  • Cha S, Singson E, Cornelius J, Yagna JP, Knot HJ, Peck AB. Muscarinic acetylcholine type-3 receptor desensitization due to chronic exposure to Sjögren’s syndrome-associated autoantibodies. J. Rheumatol.33(2), 296–306 (2006).
  • Cavill D, Waterman SA, Gordon TP. Antibodies raised against the second extracellular loop of the human muscarinic M3 receptor mimic functional autoantibodies in Sjögren’s syndrome. Scand. J. Immunol.59(3), 261–266 (2004).
  • Waterman SA, Gordon TP, Rischmueller M. Inhibitory effects of muscarinic receptor autoantibodies on parasympathetic neurotransmission in Sjögren’s syndrome. Arthritis Rheum.43(7), 1647–1654 (2000).
  • Cavill D, Waterman SA, Gordon TP. Antiidiotypic antibodies neutralize autoantibodies that inhibit cholinergic neurotransmission. Arthritis Rheum.48(12), 3597–3602 (2003).
  • Li J, Ha YM, Ku NY et al. Inhibitory effects of autoantibodies on the muscarinic receptors in Sjögren’s syndrome. Lab. Invest.84(11), 1430–1438 (2004).
  • Papas AS, Sherrer YS, Charney M et al. Successful treatment of dry mouth and dry eye symptoms in Sjögren’s syndrome patients with oral pilocarpine: a randomized, placebo-controlled, dose-adjustment study. J. Clin. Rheumatol.10(4), 169–177 (2004).
  • Petrone D, Condemi JJ, Fife R, Gluck O, Cohen S, Dalgin P. A double-blind, randomized, placebo-controlled study of cevimeline in Sjögren’s syndrome patients with xerostomia and keratoconjunctivitis sicca. Arthritis Rheum.46(3), 748–754 (2002).
  • Tsifetaki N, Kitsos G, Paschides CA et al. Oral pilocarpine for the treatment of ocular symptoms in patients with Sjögren’s syndrome: a randomised 12 week controlled study. Ann. Rheum. Dis.62(12), 1204–1207 (2003).
  • Ono M, Takamura E, Shinozaki K et al. Therapeutic effect of cevimeline on dry eye in patients with Sjögren’s syndrome: a randomized, double-blind clinical study. Am. J. Ophthalmol.138(1), 6–17 (2004).
  • Aragona P, Di Pietro R, Spinella R, Mobrici M. Conjunctival epithelium improvement after systemic pilocarpine in patients with Sjögren’s syndrome. Br. J. Ophthalmol.90(2), 166–170 (2006).
  • Robinson CP, Brayer J, Yamachika S et al. Transfer of human serum IgG to nonobese diabetic Igµ null mice reveals a role for autoantibodies in the loss of secretory function of exocrine tissues in Sjögren’s syndrome. Proc. Natl Acad. Sci. USA95(13), 7538–7543 (1998).
  • Govindarajan B, Gipson IK. Membrane-tethered mucins have multiple functions on the ocular surface. Exp. Eye Res.90(6), 655–663 (2010).
  • Miller D, Iovieno A. The role of microbial flora on the ocular surface. Curr. Opin. Allergy Clin. Immunol.9(5), 466–470 (2009).
  • Bacman S, Berra A, Sterin-Borda L, Borda E. Muscarinic acetylcholine receptor antibodies as a new marker of dry eye Sjögren syndrome. Invest. Ophthalmol. Vis. Sci.42(2), 321–327 (2001).
  • Kong L, Robinson CP, Peck AB et al. Inappropriate apoptosis of salivary and lacrimal gland epithelium of immunodeficient NOD-SCID mice. Clin. Exp. Rheumatol.16(6), 675–681 (1998).
  • Tsubota K, Fujita H, Tsuzaka K, Takeuchi T. Quantitative analysis of lacrimal gland function, apoptotic figures, Fas and Fas ligand expression of lacrimal glands in dry eye patients. Exp. Eye Res.76(2), 233–240 (2003).
  • Witte T. Antifodrin antibodies in Sjögren’s syndrome: a review. Ann. N. Y. Acad. Sci.1051, 235–239 (2005).
  • Lemke G, Rothlin CV. Immunobiology of the TAM receptors. Nat. Rev. Immunol.8(5), 327–336 (2008).
  • Scott RS, McMahon EJ, Pop SM et al. Phagocytosis and clearance of apoptotic cells is mediated by MER. Nature411(6834), 207–211 (2001).
  • Matsumura R, Kagami M, Tomioka H et al. Expression of ductal Fas antigen in sialoadenitis of Sjögren’s syndrome. Clin. Exp. Rheumatol.14(3), 309–311 (1996).
  • Sumida T, Matsumoto I, Murata H et al. TCR in Fas-sensitive T cells from labial salivary glands of patients with Sjögren’s syndrome. J. Immunol.158(2), 1020–1025 (1997).
  • Brignole F, Pisella PJ, Goldschild M, De Saint Jean M, Goguel A, Baudouin C. Flow cytometric analysis of inflammatory markers in conjunctival epithelial cells of patients with dry eyes. Invest. Ophthalmol. Vis. Sci.41(6), 1356–1363 (2000).
  • Kong L, Ogawa N, Nakabayashi T et al. Fas and Fas ligand expression in the salivary glands of patients with primary Sjögren’s syndrome. Arthritis Rheum.40(1), 87–97 (1997).
  • Ishimaru N, Yoneda T, Saegusa K et al. Severe destructive autoimmune lesions with aging in murine Sjögren’s syndrome through Fas-mediated apoptosis. Am. J. Pathol.156(5), 1557–1564 (2000).
  • Jabs DA, Lee B, Whittum-Hudson J, Prendergast RA. The role of Fas–Fas ligand-mediated apoptosis in autoimmune lacrimal gland disease in MRL/MpJ mice. Invest. Ophthalmol. Vis. Sci.42(2), 399–401 (2001).
  • Ulbricht KU, Schmidt RE, Witte T. Antibodies against α-fodrin in Sjögren’s syndrome. Autoimmun. Rev.2(2), 109–113 (2003).
  • Haneji N, Nakamura T, Takio K et al. Identification of α-fodrin as a candidate autoantigen in primary Sjögren’s syndrome. Science276(5312), 604–607 (1997).
  • Yanagi K, Ishimaru N, Haneji N, Saegusa K, Saito I, Hayashi Y. Anti-120-kDa α-fodrin immune response with Th1–cytokine profile in the NOD mouse model of Sjögren’s syndrome. Eur. J. Immunol.28(10), 3336–3345 (1998).
  • Nguyen C, Singson E, Kim JY et al. Sjögren’s syndrome-like disease of C57BL/6.NOD-Aec1 Aec2 mice: gender differences in keratoconjunctivitis sicca defined by a cross-over in the chromosome 3 Aec1 locus. Scand. J. Immunol.64(3), 295–307 (2006).
  • Saegusa K, Ishimaru N, Haneji N et al. Mechanisms of neonatal tolerance induced in an animal model for primary Sjögren’s syndrome by intravenous administration of autoantigen. Scand. J. Immunol.52(3), 264–270 (2000).
  • Witte T, Matthias T, Arnett FC et al. IgA and IgG autoantibodies against α-fodrin as markers for Sjögren’s syndrome. Systemic lupus erythematosus. J. Rheumatol.27(11), 2617–2620 (2000).
  • Cohen PL, Caricchio R, Abraham V et al. Delayed apoptotic cell clearance and lupus-like autoimmunity in mice lacking the c-mer membrane tyrosine kinase. J. Exp. Med.196(1), 135–140 (2002).
  • Rosen A, Casciola-Rosen L. Altered autoantigen structure in Sjögren’s syndrome: implications for the pathogenesis of autoimmune tissue damage. Crit. Rev. Oral Biol. Med.15(3), 156–164 (2004).
  • Hall JC, Casciola-Rosen L, Rosen A. Altered structure of autoantigens during apoptosis. Rheum. Dis. Clin. North Am.30(3), 455–471, vii (2004).
  • Casciola-Rosen LA, Anhalt G, Rosen A. Autoantigens targeted in systemic lupus erythematosus are clustered in two populations of surface structures on apoptotic keratinocytes. J. Exp. Med.179(4), 1317–1330 (1994).
  • Casciola-Rosen L, Andrade F, Ulanet D, Wong WB, Rosen A. Cleavage by granzyme B is strongly predictive of autoantigen status: implications for initiation of autoimmunity. J. Exp. Med.190(6), 815–826 (1999).
  • Ohlsson M, Szodoray P, Loro LL, Johannessen AC, Jonsson R. CD40, CD154, Bax and Bcl-2 expression in Sjögren’s syndrome salivary glands: a putative anti-apoptotic role during its effector phases. Scand. J. Immunol.56(6), 561–571 (2002).
  • Jonsson R, Haga HJ, Gordon TP. Current concepts on diagnosis, autoantibodies and therapy in Sjögren’s syndrome. Scand. J. Rheumatol.29(6), 341–348 (2000).
  • Hansen A, Lipsky PE, Dorner T. New concepts in the pathogenesis of Sjögren syndrome: many questions, fewer answers. Curr. Opin. Rheumatol.15(5), 563–570 (2003).
  • Jonsson R, Dowman SJ, Gordon T. Sjögren’s syndrome. In: Arthritis and Allied Conditions – a Textbook in Rheumatology. Koopman WJ, Moreland LW (Eds). Lippincott Williams & Wilkins, PA, USA, 1681–1705 (2004).
  • Hansen A, Lipsky PE, Dorner T. Immunopathogenesis of primary Sjögren’s syndrome: implications for disease management and therapy. Curr. Opin. Rheumatol.17(5), 558–565 (2005).
  • Manthorpe R, Bredberg A, Henriksson G, Larsson A. Progress and regression within primary Sjögren’s syndrome. Scand. J. Rheumatol.35(1), 1–6 (2006).
  • Fox PC, Speight PM. Current concepts of autoimmune exocrinopathy: immunologic mechanisms in the salivary pathology of Sjögren’s syndrome. Crit. Rev. Oral Biol. Med.7(2), 144–158 (1996).
  • Fox RI, Michelson P. Approaches to the treatment of Sjögren’s syndrome. J. Rheumatol. Suppl.61, 15–21 (2000).
  • Sullivan DA. Sex hormones and Sjögren’s syndrome. J. Rheumatol. Suppl.50, 17–32 (1997).
  • Sullivan DA, Sullivan BD, Evans JE et al. Androgen deficiency, Meibomian gland dysfunction, and evaporative dry eye. Ann. N. Y. Acad. Sci.966, 211–222 (2002).
  • Toda I, Wickham LA, Sullivan DA. Gender and androgen treatment influence the expression of proto-oncogenes and apoptotic factors in lacrimal and salivary tissues of MRL/lpr mice. Clin. Immunol. Immunopathol.86(1), 59–71 (1998).
  • Warren DW, Azzarolo AM, Huang ZM et al. Androgen support of lacrimal gland function in the female rabbit. Adv. Exp. Med. Biol.438, 89–93 (1998).
  • Wickham LA, Rocha EM, Gao J et al. Identification and hormonal control of sex steroid receptors in the eye. Adv. Exp. Med. Biol.438, 95–100 (1998).
  • Vitali C, Bombardieri S, Jonsson R et al. Classification criteria for Sjögren’s syndrome: a revised version of the European criteria proposed by the American–European Consensus Group. Ann. Rheum. Dis.61(6), 554–558 (2002).
  • Gordon SC, Quattrociocchi-Longe TM, Khan BA et al. Antibodies to carbonic anhydrase in patients with immune cholangiopathies. Gastroenterology108(6), 1802–1809 (1995).
  • Beer RG, Rischmueller M, Coates T et al. Nonprecipitating anti-La(SS-B) autoantibodies in primary Sjögren’s syndrome. Clin. Immunol. Immunopathol.79(3), 314–318 (1996).
  • Caramaschi P, Biasi D, Manzo T, Carletto A, Poli F, Bambara LM. Anticentromere antibody – clinical associations. A study of 44 patients. Rheumatol. Int.14(6), 253–255 (1995).
  • Feist E, Kuckelkorn U, Dorner T et al. Autoantibodies in primary Sjögren’s syndrome are directed against proteasomal subunits of the α and β type. Arthritis Rheum.42(4), 697–702 (1999).
  • Folli F, Perego L, Ponzoni M et al. Autoantibodies against a 72-kDa ductal cell membrane glycoprotein in a patient affected by Sjögren’s syndrome and gastric MALT lymphoma. Ann. Hematol.81(10), 597–602 (2002).
  • Fujii K, Fujimoto W, Ueda M, Makino E, Arata J. Detection of anti-type VII collagen antibody in Sjögren’s syndrome/lupus erythematosus overlap syndrome with transient bullous systemic lupus erythematosus. Br. J. Dermatol.139(2), 302–306 (1998).
  • Hardin JA, Mimori T. Autoantibodies to ribonucleoproteins. Clin. Rheum. Dis.11(3), 485–505 (1985).
  • Kino-Ohsaki J, Nishimori I, Morita M et al. Serum antibodies to carbonic anhydrase I and II in patients with idiopathic chronic pancreatitis and Sjögren’s syndrome. Gastroenterology110(5), 1579–1586 (1996).
  • Muller S, Briand JP, Barakat S et al. Autoantibodies reacting with poly(ADP-ribose) and with a zinc-finger functional domain of poly(ADP-ribose) polymerase involved in the recognition of damaged DNA. Clin. Immunol. Immunopathol.73(2), 187–196 (1994).
  • Tan EM. Antinuclear antibodies: diagnostic markers for autoimmune diseases and probes for cell biology. Adv. Immunol.44, 93–151 (1989).
  • Dawson L, Tobin A, Smith P, Gordon T. Antimuscarinic antibodies in Sjögren’s syndrome: where are we, and where are we going? Arthritis Rheum.52(10), 2984–2995 (2005).
  • Dawson LJ, Allison HE, Stanbury J, Fitzgerald D, Smith PM. Putative anti-muscarinic antibodies cannot be detected in patients with primary Sjögren’s syndrome using conventional immunological approaches. Rheumatology (Oxford)43(12), 1488–1495 (2004).
  • Smith AJ, Jackson MW, Wang F, Cavill D, Rischmueller M, Gordon TP. Neutralization of muscarinic receptor autoantibodies by intravenous immunoglobulin in Sjögren syndrome. Hum. Immunol.66(4), 411–416 (2005).
  • Wang F, Jackson MW, Maughan V et al. Passive transfer of Sjögren’s syndrome IgG produces the pathophysiology of overactive bladder. Arthritis Rheum.50(11), 3637–3645 (2004).
  • Gao J, Cha S, Jonsson R, Opalko J, Peck AB. Detection of anti-type 3 muscarinic acetylcholine receptor autoantibodies in the sera of Sjögren’s syndrome patients by use of a transfected cell line assay. Arthritis Rheum.50(8), 2615–2621 (2004).
  • Schrader S, Mircheff AK, Geerling G. Animal models of dry eye. Dev. Ophthalmol.41, 298–312 (2008).
  • Niederkorn JY, Stern ME, Pflugfelder SC et al. Desiccating stress induces T cell-mediated Sjögren’s Syndrome-like lacrimal keratoconjunctivitis. J. Immunol.176(7), 3950–3957 (2006).
  • Zheng X, de Paiva CS, Li DQ, Farley WJ, Pflugfelder SC. Desiccating stress promotes Th17 differentiation by ocular surface tissues through a dendritic cell-mediated pathway. Invest. Ophthalmol. Vis. Sci.51(6), 3083–3091 (2010).
  • Guo Z, Song D, Azzarolo AM et al. Autologous lacrimal-lymphoid mixed-cell reactions induce dacryoadenitis in rabbits. Exp. Eye Res.71(1), 23–31 (2000).
  • Thomas PB, Zhu Z, Selvam S et al. Autoimmune dacryoadenitis and keratoconjunctivitis induced in rabbits by subcutaneous injection of autologous lymphocytes activated ex vivo against lacrimal antigens. J. Autoimmun.31(2), 116–122 (2008).
  • Chiorini JA, Cihakova D, Ouellette CE, Caturegli P. Sjögren syndrome: advances in the pathogenesis from animal models. J. Autoimmun.33(3–4), 190–196 (2009).
  • Lee BH, Tudares MA, Nguyen CQ. Sjögren’s syndrome: an old tale with a new twist. Arch. Immunol. Ther. Exp. (Warsz.)57(1), 57–66 (2009).
  • Keyes GG, Vickers RA, Kersey JH. Immunopathology of Sjögren-like disease in NZB/HZW mice. J. Oral Pathol.6(5), 288–295 (1977).
  • Hang L, Theofilopoulos AN, Dixon FJ. A spontaneous rheumatoid arthritis-like disease in MRL/l mice. J. Exp. Med.155(6), 1690–1701 (1982).
  • Brayer JB, Humphreys-Beher MG, Peck AB. Sjögren’s syndrome: immunological response underlying the disease. Arch. Immunol. Ther. Exp. (Warsz.)49(5), 353–360 (2001).
  • Haneji N, Hamano H, Yanagi K, Hayashi Y. A new animal model for primary Sjögren’s syndrome in NFS/sld mutant mice. J. Immunol.153(6), 2769–2777 (1994).
  • Saegusa J, Kubota H. Sialadenitis in IQI/Jic mice: a new animal model of Sjögren’s syndrome. J. Vet. Med. Sci.59(10), 897–903 (1997).
  • Cha S, Nagashima H, Brown VB, Peck AB, Humphreys-Beher MG. Two NOD Idd-associated intervals contribute synergistically to the development of autoimmune exocrinopathy (Sjögren’s syndrome) on a healthy murine background. Arthritis Rheum.46(5), 1390–1398 (2002).
  • Li H, Dai M, Zhuang Y. A T-cell intrinsic role of Id3 in a mouse model for primary Sjögren’s syndrome. Immunity21(4), 551–560 (2004).
  • Shim GJ, Warner M, Kim HJ et al. Aromatase-deficient mice spontaneously develop a lymphoproliferative autoimmune disease resembling Sjögren’s syndrome. Proc. Natl Acad. Sci. USA101(34), 12628–12633 (2004).
  • Oak JS, Deane JA, Kharas MG et al. Sjögren’s syndrome-like disease in mice with T cells lacking class 1A phosphoinositide-3-kinase. Proc. Natl Acad. Sci. USA103(45), 16882–16887 (2006).
  • Ishimaru N, Arakaki R, Watanabe M, Kobayashi M, Miyazaki K, Hayashi Y. Development of autoimmune exocrinopathy resembling Sjögren’s syndrome in estrogen-deficient mice of healthy background. Am. J. Pathol.163(4), 1481–1490 (2003).
  • Turpie B, Yoshimura T, Gulati A, Rios JD, Dartt DA, Masli S. Sjögren’s syndrome-like ocular surface disease in thrombospondin-1 deficient mice. Am. J. Pathol.175(3), 1136–1147 (2009).
  • Groom J, Kalled SL, Cutler AH et al. Association of BAFF/BLyS overexpression and altered B cell differentiation with Sjögren’s syndrome. J. Clin. Invest.109(1), 59–68 (2002).
  • Nguyen CQ, Peck AB. Unraveling the pathophysiology of Sjögren syndrome-associated dry eye disease. Ocul. Surf.7(1), 11–27 (2009).
  • Brayer JB, Cha S, Nagashima H et al. IL-4-dependent effector phase in autoimmune exocrinopathy as defined by the NOD.IL-4-gene knockout mouse model of Sjögren’s syndrome. Scand. J. Immunol.54(1–2), 133–140 (2001).
  • Gao J, Killedar S, Cornelius JG, Nguyen C, Cha S, Peck AB. Sjögren’s syndrome in the NOD mouse model is an interleukin-4 time-dependent, antibody isotype-specific autoimmune disease. J. Autoimmun.26(2), 90–103 (2006).
  • Robinson CP, Cornelius J, Bounous DE, Yamamoto H, Humphreys-Beher MG, Peck AB. Characterization of the changing lymphocyte populations and cytokine expression in the exocrine tissues of autoimmune NOD mice. Autoimmunity27(1), 29–44 (1998).
  • Robinson CP, Cornelius J, Bounous DI, Yamamoto H, Humphreys-Beher MG, Peck AB. Infiltrating lymphocyte populations and cytokine production in the salivary and lacrimal glands of autoimmune NOD mice. Adv. Exp. Med. Biol.438, 493–497 (1998).
  • Scofield RH, Asfa S, Obeso D, Jonsson R, Kurien BT. Immunization with short peptides from the 60-kDa Ro antigen recapitulates the serological and pathological findings as well as the salivary gland dysfunction of Sjögren’s syndrome. J. Immunol.175(12), 8409–8414 (2005).
  • Ambrosetti A, Zanotti R, Pattaro C et al. Most cases of primary salivary mucosa-associated lymphoid tissue lymphoma are associated either with Sjögren’s syndrome or hepatitis C virus infection. Br. J. Haematol.126(1), 43–49 (2004).
  • Ramos-Casals M, Trejo O, Garcia-Carrasco M et al. Triple association between hepatitis C virus infection, systemic autoimmune diseases, and B cell lymphoma. J. Rheumatol.31(3), 495–499 (2004).
  • Nguyen CQ, Sharma A, Lee BH, She JX, McIndoe RA, Peck AB. Differential gene expression in the salivary gland during development and onset of xerostomia in Sjögren’s syndrome-like disease of the C57BL/6.NOD-Aec1Aec2 mouse. Arthritis Res. Ther.11(2), R56 (2009).
  • Nguyen CQ, Sharma A, She JX, McIndoe RA, Peck AB. Differential gene expressions in the lacrimal gland during development and onset of keratoconjunctivitis sicca in Sjögren’s syndrome (SJS)-like disease of the C57BL/6.NOD-Aec1Aec2 mouse. Exp. Eye Res.88(3), 398–409 (2009).
  • Botto M, Walport MJ. C1q, autoimmunity and apoptosis. Immunobiology205(4–5), 395–406 (2002).
  • Moodley Y, Rigby P, Bundell C et al. Macrophage recognition and phagocytosis of apoptotic fibroblasts is critically dependent on fibroblast-derived thrombospondin 1 and CD36. Am. J. Pathol.162(3), 771–779 (2003).
  • Tarr J, Eggleton P. Immune function of C1q and its modulators CD91 and CD93. Crit. Rev. Immunol.25(4), 305–330 (2005).
  • Fadeel B, Xue D, Kagan V. Programmed cell clearance: molecular regulation of the elimination of apoptotic cell corpses and its role in the resolution of inflammation. Biochem. Biophys. Res. Commun.396(1), 7–10 (2010).
  • Wu Y, Tibrewal N, Birge RB. Phosphatidylserine recognition by phagocytes: a view to a kill. Trends Cell Biol.16(4), 189–197 (2006).
  • Burkhardt JK, Carrizosa E, Shaffer MH. The actin cytoskeleton in T-cell activation. Annu. Rev. Immunol.26, 233–259 (2008).
  • Nguyen CQ, Cornelius JG, Cooper L et al. Identification of possible candidate genes regulating Sjögren’s syndrome-associated autoimmunity: a potential role for TNFSF4 in autoimmune exocrinopathy. Arthritis Res. Ther.10(6), R137 (2008).
  • Boumba D, Skopouli FN, Moutsopoulos HM. Cytokine mRNA expression in the labial salivary gland tissues from patients with primary Sjögren’s syndrome. Br J. Rheumatol.34(4), 326–333 (1995).
  • Fox RI, Kang HI, Ando D, Abrams J, Pisa E. Cytokine mRNA expression in salivary gland biopsies of Sjögren’s syndrome. J. Immunol.152(11), 5532–5539 (1994).
  • Ohyama Y, Nakamura S, Matsuzaki G et al. Cytokine messenger RNA expression in the labial salivary glands of patients with Sjögren’s syndrome. Arthritis Rheum.39(8), 1376–1384 (1996).
  • Yamano S, Atkinson JC, Baum BJ, Fox PC. Salivary gland cytokine expression in NOD and normal BALB/c mice. Clin. Immunol.92(3), 265–275 (1999).
  • Kastelein RA, Hunter CA, Cua DJ. Discovery and biology of IL-23 and IL-27: related but functionally distinct regulators of inflammation. Annu. Rev. Immunol.25, 221–242 (2007).
  • Nguyen CQ, Hu MH, Li Y, Stewart C, Peck AB. Salivary gland tissue expression of interleukin-23 and interleukin-17 in Sjögren’s syndrome: findings in humans and mice. Arthritis Rheum.58(3), 734–743 (2008).
  • Sakai A, Sugawara Y, Kuroishi T, Sasano T, Sugawara S. Identification of IL-18 and Th17 cells in salivary glands of patients with Sjögren’s syndrome, and amplification of IL-17-mediated secretion of inflammatory cytokines from salivary gland cells by IL-18. J. Immunol.181(4), 2898–2906 (2008).
  • Steinman L. A brief history of T(H)17, the first major revision in the T(H)1/T(H)2 hypothesis of T cell-mediated tissue damage. Nat. Med.13(2), 139–145 (2007).
  • Harrington LE, Hatton RD, Mangan PR et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat. Immunol.6(11), 1123–1132 (2005).
  • Park H, Li Z, Yang XO et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat. Immunol.6(11), 1133–1141 (2005).
  • Bettelli E, Korn T, Oukka M, Kuchroo VK. Induction and effector functions of T(H)17 cells. Nature453(7198), 1051–1057 (2008).
  • O’Shea JJ, Paul WE. Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells. Science327(5969), 1098–1102 (2010).
  • Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B. TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity24(2), 179–189 (2006).
  • Mangan PR, Harrington LE, O’Quinn DB et al. Transforming growth factor-β induces development of the T(H)17 lineage. Nature441(7090), 231–234 (2006).
  • Ivanov, II, McKenzie BS, Zhou L et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell126(6), 1121–1133 (2006).
  • Duerr RH, Taylor KD, Brant SR et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science314(5804), 1461–1463 (2006).
  • Hue S, Ahern P, Buonocore S et al. Interleukin-23 drives innate and T cell-mediated intestinal inflammation. J. Exp. Med.203(11), 2473–2483 (2006).
  • Cua DJ, Sherlock J, Chen Y et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature421(6924), 744–748 (2003).
  • Murphy CA, Langrish CL, Chen Y et al. Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J. Exp. Med.198(12), 1951–1957 (2003).
  • Whitcher JP, Shiboski CH, Shiboski SC et al. A simplified quantitative method for assessing keratoconjunctivitis sicca from the Sjögren’s Syndrome International Registry. Am. J. Ophthalmol.149(3), 405–415 (2009).
  • Sharma R, Zheng L, Guo X, Fu SM, Ju ST, Jarjour WN. Novel animal models for Sjögren’s syndrome: expression and transfer of salivary gland dysfunction from regulatory T cell-deficient mice. J. Autoimmun.27(4), 289–296 (2006).
  • De Paiva CS, Hwang CS, Pitcher JD 3rd et al. Age-related T-cell cytokine profile parallels corneal disease severity in Sjögren’s syndrome-like keratoconjunctivitis sicca in CD25KO mice. Rheumatology (Oxford)49(2), 246–258 (2010).
  • Manoussakis MN, Boiu S, Korkolopoulou P et al. Rates of infiltration by macrophages and dendritic cells and expression of interleukin-18 and interleukin-12 in the chronic inflammatory lesions of Sjögren’s syndrome: correlation with certain features of immune hyperactivity and factors associated with high risk of lymphoma development. Arthritis Rheum.56(12), 3977–3988 (2007).
  • Bombardieri M, Barone F, Pittoni V et al. Increased circulating levels and salivary gland expression of interleukin-18 in patients with Sjögren’s syndrome: relationship with autoantibody production and lymphoid organization of the periductal inflammatory infiltrate. Arthritis Res. Ther.6(5), R447–R456 (2004).
  • Delaleu N, Immervoll H, Cornelius J, Jonsson R. Biomarker profiles in serum and saliva of experimental Sjögren’s syndrome: associations with specific autoimmune manifestations. Arthritis Res. Ther.10(1), R22 (2008).
  • Sugai M, Gonda H, Nambu Y, Yokota Y, Shimizu A. Role of Id proteins in B lymphocyte activation: new insights from knockout mouse studies. J. Mol. Med.82(9), 592–599 (2004).
  • Kowanetz M, Valcourt U, Bergstrom R, Heldin CH, Moustakas A. Id2 and Id3 define the potency of cell proliferation and differentiation responses to transforming growth factor β and bone morphogenetic protein. Mol. Cell. Biol.24(10), 4241–4254 (2004).
  • Hamaguchi Y, Xiu Y, Komura K, Nimmerjahn F, Tedder TF. Antibody isotype-specific engagement of Fcγ receptors regulates B lymphocyte depletion during CD20 immunotherapy. J. Exp. Med.203(3), 743–753 (2006).
  • Thal MA, Carvalho TL, He T et al. Ebf1-mediated down-regulation of Id2 and Id3 is essential for specification of the B cell lineage. Proc. Natl Acad. Sci. USA106(2), 552–557 (2009).
  • Humphreys-Beher MG, Peck AB. New concepts for the development of autoimmune exocrinopathy derived from studies with the NOD mouse model. Arch. Oral Biol.44(Suppl. 1), S21–S25 (1999).
  • Routsias JG, Tzioufas AG. Sjögren’s syndrome – study of autoantigens and autoantibodies. Clin. Rev. Allergy Immunol.32(3), 238–251 (2007).
  • Harley JB, Alexander EL, Bias WB et al. Anti-Ro (SS-A) and anti-La (SS-B) in patients with Sjögren’s syndrome. Arthritis Rheum.29(2), 196–206 (1986).
  • Hayashi Y, Arakaki R, Ishimaru N. Apoptosis and estrogen deficiency in primary Sjögren syndrome. Curr. Opin. Rheumatol.16(5), 522–526 (2004).
  • Kobayashi M, Yasui N, Ishimaru N, Arakaki R, Hayashi Y. Development of autoimmune arthritis with aging via bystander T-cell activation in the mouse model of Sjögren’s syndrome. Arthritis Rheum.50(12), 3974–3984 (2004).
  • Takada K, Takiguchi M, Konno A, Inaba M. Autoimmunity against a tissue kallikrein in IQI/Jic Mice: a model for Sjögren’s syndrome. J. Biol. Chem.280(5), 3982–3988 (2005).
  • Takada K, Takiguchi M, Konno A, Inaba M. Spontaneous development of multiple glandular and extraglandular lesions in aged IQI/Jic mice: a model for primary Sjögren’s syndrome. Rheumatology (Oxford)43(7), 858–862 (2004).
  • Robinson CP, Bounous DI, Alford CE, Peck AB, Humphreys-Beher MG. Aberrant expression and potential function for parotid secretory protein (PSP) in the NOD (non-obese diabetic) mouse. Adv. Exp. Med. Biol.438, 925–930 (1998).
  • Hansen A, Gosemann M, Pruss A et al. Abnormalities in peripheral B cell memory of patients with primary Sjögren’s syndrome. Arthritis Rheum.50(6), 1897–1908 (2004).
  • Salomonsson S, Jonsson MV, Skarstein K et al. Cellular basis of ectopic germinal center formation and autoantibody production in the target organ of patients with Sjögren’s syndrome. Arthritis Rheum.48(11), 3187–3201 (2003).
  • Lavie F, Miceli-Richard C, Quillard J, Roux S, Leclerc P, Mariette X. Expression of BAFF (BLyS) in T cells infiltrating labial salivary glands from patients with Sjögren’s syndrome. J. Pathol.202(4), 496–502 (2004).
  • Mariette X, Roux S, Zhang J et al. The level of BLyS (BAFF) correlates with the titre of autoantibodies in human Sjögren’s syndrome. Ann. Rheum. Dis.62(2), 168–171 (2003).
  • Szodoray P, Jellestad S, Alex P et al. Programmed cell death of peripheral blood B cells determined by laser scanning cytometry in Sjögren’s syndrome with a special emphasis on BAFF. J. Clin. Immunol.24(6), 600–611 (2004).
  • Szodoray P, Jellestad S, Teague MO, Jonsson R. Attenuated apoptosis of B cell activating factor-expressing cells in primary Sjögren’s syndrome. Lab. Invest.83(3), 357–365 (2003).
  • Sugita S. Role of ocular pigment epithelial cells in immune privilege. Arch. Immunol. Ther. Exp. (Warsz.)57(4), 263–268 (2009).
  • Chauhan SK, El Annan J, Ecoiffier T et al. Autoimmunity in dry eye is due to resistance of Th17 to Treg suppression. J. Immunol.182(3), 1247–1252 (2009).
  • Weaver CT, Hatton RD. Interplay between the Th17 and Treg cell lineages: a (co-)evolutionary perspective. Nat. Rev. Immunol.9(12), 883–889 (2009).
  • Siemasko KF, Gao J, Calder VL et al.In vitro expanded CD4+CD25+Foxp3+ regulatory T cells maintain a normal phenotype and suppress immune-mediated ocular surface inflammation. Invest. Ophthalmol. Vis. Sci.49(12), 5434–5440 (2008).
  • Myers L, Croft M, Kwon BS, Mittler RS, Vella AT. Peptide-specific CD8 T regulatory cells use IFN-γ to elaborate TGF-β-based suppression. J. Immunol.174(12), 7625–7632 (2005).
  • Hunter CA. New IL-12-family members: IL-23 and IL-27, cytokines with divergent functions. Nat. Rev. Immunol.5(7), 521–531 (2005).
  • Collison LW, Workman CJ, Kuo TT et al. The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature450(7169), 566–569 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.