24
Views
1
CrossRef citations to date
0
Altmetric
Review

Role of nitric oxide in the regulation of intraocular pressure: a possibility for glaucoma treatment

, &
Pages 751-758 | Published online: 09 Jan 2014

References

  • Weinreb RN, Khaw PT. Primary open-angle glaucoma. Lancet22, 1711–1720 (2004).
  • Bathija R, Gupta N, Zangwill L, Weinreb RN. Changing definition of glaucoma. J. Glaucoma7, 165–169 (1998).
  • McKinnon SJ, Goldberg LD, Peeples P, Walt JG, Bramley TJ. Current management of glaucoma and the need for complete therapy. Am. J. Manag. Care14, 20–27 (2008).
  • Fechtner RD, Weinreb RN. Mechanisms of optic nerve damage in primary open angle glaucoma. Surv. Ophthalmol.39, 23–42 (1994).
  • Flammer J. The vascular concept of glaucoma. Surv. Ophthalmol.38, S3–S6 (1994).
  • Flammer J, Haefliger IO, Orgul S et al. Vascular dysregulation: a principal risk factor for glaucomatous damage?. J. Glaucoma8, 212–219 (1999).
  • Flammer J, Orgul S, Costa VP et al. The impact of ocular blood flow in glaucoma. Prog. Retin. Eye Res.21, 359–393 (2002).
  • Su WW, Cheng ST, Ho WJ, Tsay PK, Wu SC, Chang SHL. Glaucoma is associated with peripheral vascular endothelial dysfunction. Ophthalmology115, 1173–1178 (2008).
  • Resch H, Garhofer G, Fuchsjäger-Mayrl G, Hommer A, Schmetterer L. Endothelial dysfunction in glaucoma. Acta Ophthalmol.87, 4–12 (2009).
  • Jeganathan V, Wong T, Foster P et al. Peripheral artery disease and glaucoma. Arch. Ophthalmol.127, 888–893 (2009).
  • Hulsman CA, Vingerling JR, Hofman A, Witteman JC, de Jong PT. Blood pressure, arterial stiffness, and open-angle glaucoma: the Rotterdam study. Arch. Ophthalmol.125, 805–812 (2007).
  • Guthauser U, Flammer J, Mahler F. The relationship between digital and ocular vasospasm. Graefes Arch. Clin. Exp. Ophthalmol.226, 224–226 (1988).
  • Cursiefen C, Wisse M, Cursiefen S, Juneman A, Martus P, Korth M. Migraine and tension headache in high-pressure and normal-pressure glaucoma. Am. J. Ophthalmol.129, 102–104 (2000).
  • Logan JF, Chakravarthy U, Hughes AE, Patterson CC, Jackson JA, Rankin SJ. Evidence for association of endothelial nitric oxide synthase gene in subjects with glaucoma and history of migraine. Invest. Ophthalmol. Vis. Sci.46, 3221–3226 (2005).
  • Perlman JI, Delany CM, Sothern RB, Skolnick KA, Murray D, Jacobs RW. Relationships between 24h observations in intraocular pressure vs blood pressure, heart rate, nitric oxide and age in the medical chronobiology aging project. Clin.Ther.158, 31–47 (2007).
  • Costa VP, Arcieri ES, Harris A. Blood pressure and glaucoma. Br. J. Ophthalmol.93, 1276–1282 (2009).
  • Ren R, Jonas JB, Tian G et al. Cerebrospinal fluid pressure in glaucoma: a prospective study. Ophthalmology117, 259–266 (2010).
  • Sugiyama T, Moriya S, Oku H, Azuma I. Association of endothelin-1 with normal tension glaucoma: clinical and fundamental studies. Surv. Ophthalmol.39, S49–S56 (1995).
  • Noske W, Hensen J, Wiederholt M. Endothelin-like immunoreactivity in aqueous humor of patients with primary open angle glaucoma and cataract. Graefes Arch. Clin. Exp. Ophthalmol.235, 551–552 (1997).
  • Moncada S, Higgs A. The discovery of nitric oxide and its role in vascular biology. Br. J. Pharmacol.14(Suppl. 1), S193–S201 (2006).
  • Alderton WK, Cooper CE, Knowles RG. Nitric oxide synthases: structure, function and inhibition. Biochem. J.357, 593–615 (2001).
  • Kotikoski H. Effects of nitric oxide donors and cyclic GMP on intraocular pressure and aqueous humor dynamics. PhD Thesis. University of Helsinki, Finland, 1–85 (2003).
  • Haefliger IO, Dettmann E, Liu R et al. Potential role of nitric oxide and endothelin in the pathogenesis of glaucoma. Surv. Ophthalmol.43(Suppl. 1), S51–S58 (1999).
  • Chiou GCY. Review: effects of nitric oxide on eye diseases and their treatment. J. Ocul. Pharmacol. Ther.17, 189–198 (2001).
  • Meyer P, Champion C, Schlötzer-Schrehardt U, Flammer J, Haefliger IO. Localization of nitric oxide synthase isoforms in porcine ocular tissues. Curr. Eye Res.18, 375–380 (1999).
  • Becquet F, Courtois Y, Goureau O. Nitric oxide in the eye: multifaceted roles and diverse outcomes. Surv. Ophthalmol.42, 71–82 (1997).
  • Ellis D, Nathanson J. Nitric oxide in the human eye: sites of synthesis and physiologic actions on intraocular pressure, blood flow, sodium transport and neuronal viability. In: Nitric Oxide and Endothelin in Pathogenesis of Glaucoma. Haefliger IO, Flammer J (Eds). Lippincott-Raven Publishers, Philadelphia, PA, USA, Chapter 16, 178–204 (1998).
  • Toda N, Nakanishi-Toda M. Nitric oxide: ocular blood flow, glaucoma and diabetic retinopathy. Prog. Retin. Eye Res.26, 205–238 (2007).
  • Neufeld AH, Kawai S-I, Das S et al. Loss of retinal ganglion cells following retinal ischemia: the role of inducible nitric oxide synthase. Exp. Eye Res.75, 521–528 (2002).
  • Tamm ER, Lütjen-Drecoll E. Nitric oxide in the outflow pathways of the aqueous humor. In: Nitric Oxide and Endothelin in Pathogenesis of Glaucoma. Haefliger IO, Flammer J (Eds). Lippincott-Raven Publishers, Philadelphia, PA, USA, Chapter 14, 158–167 (1998).
  • Webb J, Yang X, Crosson C. Expression of the kallikrein/kinin system in human anterior segment. Exp. Eye Res.89, 126–132 (2009).
  • Schneemann A, Leusink-Muis A, van den Berg T, Hoyng PF, Kamphuis W. Elevation of nitric oxide production in human trabecular meshwork by increased pressure. Graefes Arch. Clin. Exp. Ophthalmol.241, 321–326 (2003).
  • Soltau JB, Zimmermann TJ. Changing paradigms in the medical treatment of glaucoma. Surv. Ophthalmol.47(Suppl. 1), S2–S5 (2002).
  • Grieshaber MC, Mozaffarieh M, Flammer J. What is the link between vascular dysregulation and glaucoma?. Surv. Ophthalmol.52, S144–S154 (2007).
  • Millar JC, Shahidullah M, Wilson WS. Atriopeptin lowers aqueous humor formation and intraocular pressure and elevates ciliary cyclic GMP but lacks uveal vascular effects in the bovine perfused eye: J. Ocul. Pharmacol. Ther.13, 1–11 (1997).
  • Shahidullah M, Yap M, To CH. Cyclic GMP, sodium nitroprusside and sodium azide reduce aqueous humour formation in the isolated arterially perfused pig eye. Br. J. Pharmacol.145, 84–92 (2005).
  • Shahidullah M, Mandal A, Delamere N. Responses of sodium–hydrogen exchange to nitric oxide in porcine cultured nonpigmented ciliary epithelium. Invest. Ophthalmol. Vis. Sci.50, 5851–5858 (2009).
  • Motallebipour M, Rada-Iglesias A, Jansson M, Wadelius C. The promoter of inducible nitric oxide synthase implicated in glaucoma based genetic analysis and nuclear factor binding. Mol. Vis.11, 950–957 (2005).
  • Lee HK, Wang SC. Mechanism of morphine-induced miosis in the dog. J. Pharmacol. Exp. Ther.192, 415–431 (1975).
  • Bonfiglio V, Bucolo C, Drago F. Possible involvement of nitric oxide in morphine-induced miosis and reduction of intraocular pressure in rabbits. Eur. J. Pharmacol.534, 227–232 (2006).
  • Dortch-Carnes J, Russel K. Morphine-induced nitric oxide production in isolated, iris–ciliary bodies. Exp. Eye Res.89, 660–664 (2009).
  • Stephano GB. The µ3 receptor subtype. Pain Forum8, 206–209 (1999).
  • Korenfeld MS, Becker B. Atrial natriuretic peptides. Effects on intraocular pressure, cGMP, and aqueous flow. Invest. Ophthalmol. Vis. Sci.30, 2385–2392 (1989).
  • Wiederholt M, Sturm A, Lepple-Wienues A. Relaxation of trabecular meshwork and ciliary muscle by release of nitric oxide. Invest. Ophthalmol. Vis. Sci.35, 2515–2529 (1994).
  • Nathanson JA. Atriopeptin activated guanylate cyclase in the anterior segment – identification, localization, and effects of atriopeptins on IOP. Invest. Ophthalmol. Vis. Sci.28, 1357–1364 (1987).
  • Kerr NM, Danesh-Meyer HV. Phosphodiesterase inhibitors and the eye. Clin. Experiment. Ophthalmol.37, 514–523 (2009).
  • Kotikoski H, Alajuuma P, Moilanen E et al. Comparison of nitric oxide donors in lowering intraocular pressure in rabbits: role of cyclic GMP. J. Ocul. Pharmacol. Ther.18, 11–23 (2002).
  • Behar-Cohen F, Goureau O, D’Hermies F, Courtois Y. Decreased intraocular pressure induced by nitric oxide donors is correlated to nitrite production in the rabbit eye. Invest. Ophthalmol. Vis. Sci.37, 1711–1715 (1996).
  • Wolfensberger T, Singer D, Freegard T, Markandu N, Buckley M, MacGregor G. Evidence for new role of natriuretic peptide: control of intraocular pressure. Br. J. Ophthalmol.78, 446–448 (1994).
  • Kiel JW, Reitsamer HA, Walker JS, Kiel FW. Effects of nitric oxide synthase inhibition on ciliary blood flow, aqueous production and intraocular pressure. Exp. Eye Res.73, 355–364 (2001).
  • Fleischhauer JC, Liu R, Elena PP, Flammer J, Haefliger IO. Topical ocular instillation of nitric oxide synthase inhibitors and intraocular pressure in rabbits. Klin. Monbl. Augenheilkd.218, 351–353 (2001).
  • Giuffrida S, Bucolo C, Drago F. Topical application of a nitric oxide synthase inhibitor reduces intraocular pressure in rabbits with experimental glaucoma. J. Ocul. Pharmacol. Ther.19, 527–534 (2003).
  • Vaajanen A. Expression and function of angiotensins in the regulation of intraocular pressure – an experimental study. PhD Thesis. University of Helsinki, Finland, 1–90 (2009).
  • Vaajanen A, Luhtala S, Oksala O, Vapaatalo H. Does the renin–angiotensin system also regulate intraocular pressure?. Ann. Med.40, 418–427 (2008).
  • Brosnihan KB, Li P, Ferrario CM. Angiotensin (1–7) dilates canine coronary arteries through kinins and nitric oxide. Hypertension27, 523–528 (1996).
  • Santos RAS, Campagnole-Santos MJ, Andrade SP. Angiotensin (1–7): an update. Regul. Peptides91, 787–790 (2000).
  • Shah G, Sharma S, Mehta A, Goyal R. Oculohypotensive effect of angiotensin-converting enzyme inhibitors in acute and chronic models of glaucoma. J. Cardiovasc. Pharmacol.36, 169–175 (2000).
  • Wizemann AJ, Witzemann V. Organic nitrate therapy in glaucoma. Am. J. Ophthalmol.90, 106–109 (1980).
  • Iannaccone AE, DuPont J, Grunwald JE. Human retinal hemodynamics following administration of 5-isosorbide mononitrate. Curr. Eye Res.20, 205–210 (2000).
  • Diestelhorst M, Hinzpeter B, Kriegelstein GK. The effect of isosorbide-mononitrate eye drops on the human intraocular pressure and aqueous humor dynamics. Int. Ophthalmol.15, 259–262 (1991).
  • Diestelhorst M, Kriegelstein GK. The intraocular response of human atrial natriuretic factor in glaucoma. Int. Ophthalmol.13, 99–101 (1989).
  • Garhöfer G, Resch H, Lung S, Weigert G, Schmetterer L. Intravenous administration of L-arginine increases retinal and choroidal blood flow. Am. J. Ophthalmol.140, 69–76 (2005).
  • Schmidl D, Polska E, Kiss B, Sacu S, Garhofer G, Schmetterer L. Ocular hemodynamic effects of nitrovasodilators in healthy subjects. Clin. Pharmacol. Ther.87, 87–92 (2010).
  • Kotikoski H, Moilanen E, Vapaatalo H, Aine E. Biochemical markers of the L-arginine–nitric oxide pathway in the aqueous humor in glaucoma patients. Acta Ophthalmol. Scand.80, 191–195 (2002).
  • Gulaia NM, Zhaboedov GD, Petrenko OV, Kurilina EI, Kosiakova GV, Berdyshev AG. Changes of nitric oxide level at different stages of primary open-angle glaucoma. Ukr. Biokhim. Zh.75, 85–89 (2003).
  • Galassi F, Renieri G, Sodi A, Ucci F, Vannozzi L, Masini E. Nitric oxide proxies and ocular perfusion pressure in primary open angle glaucoma. Br. J. Ophthalmol.88, 757–760 (2004).
  • Simader C, Lung S, Weigert G et al. Role of NO in the control of choroidal blood flow during a decrease in ocular perfusion pressure. Invest. Ophthalmol. Vis. Sci.50, 372–377 (2009).
  • Fernández-Durango R, Fernández-Martinez A, Garcia-Feijoo J et al. Expression of nitrotyrosine and oxidative consequences in the trabecular meshwork of patients with primary open-angle glaucoma. Invest. Ophthalmol. Vis. Sci.49, 2506–2511 (2008).
  • Aslan M, Cort A, Yucel I. Oxidative and nitrative stress markers in glaucoma. Free Radic. Biol. Med.45, 367–376 (2008).
  • Henry E, Newby DE, Webb DJ, O´Brien C. Peripheral endothelial dysfunction in normal pressure glaucoma. Invest. Ophthalmol. Vis. Sci40, 1710–1714 (1999).
  • Buckley C, Hadoke PW, Henry E, O´Brien C. Systemic vascular endothelial cell dysfunction in normal pressure glaucoma. Br. J. Ophthalmol.86, 227–232 (2002).
  • Parantainen, J, Vapaatalo H, Hokkanen E. Relevance of prostaglandins in migraine. Cephalalgia5(Suppl. 2), 93–97 (1985).
  • Kang JH, Wiggs JL, Rosner BA et al. Endothelial nitric oxide synthase gene variants and primary open-angle glaucoma: interactions with sex and postmenopausal hormone use. Invest. Ophthalmol. Vis. Sci51, 971–979 (2010).
  • Cleary C, Buckley C, Henry E, McLoughlin P, O’Brien C, Hadoke P. Enhanced endothelium derived hyperpolarizing factor activity in resistance arteries from normal pressure glaucoma patients: implications for vascular function in the eye. Br. J. Ophthalmol.89, 223–228 (2005).
  • Dismuke WM, Mbadugha CC, Ellis DZ. NO-induced regulation of human trabecular meshwork cell volume and aqueous humor outflow facility involve the BKCa ion channel. Am. J. Physiol. Cell Physiol.294, 1378–1386 (2008).
  • Werne A, Harris A, Moore D, BenZion I, Siesky B. The circadian variations in systemic blood pressure, ocular perfusion pressure, and ocular blood flow: risk factors for glaucoma. Surv. Ophthalmol.53, 559–567 (2008).
  • Polak K, Luksch A, Berisha F, Fuchsjaeger-Mayrl G, Dallinger S, Schmetterer L. Altered nitric oxide system in patients with open-angle glaucoma. Arch. Ophthalmol.125, 494–498 (2007).
  • Nguyen TT, Kreis AJ, Kawasaki R et al. Reproducibility of the retinal vascular response to flicker light in Asians. Curr. Eye Res.34, 1028–1088 (2009).
  • Mandecka A, Dawczynski J, Vilser W et al. Abnormal retinal autoregulation is detected by provoked stimulation with flicker light in well-controlled patients with Type 1 diabetes without retinopathy. Diabetes Res. Pract.86, 51–55 (2009).
  • Pemp B, Garhofer G, Weigert G et al. Reduced retinal vessel response to flicker light stimulation but not to exogenous nitric oxide in Type 1 diabetes. Invest. Ophthalmol. Vis. Sci.50, 4029–4032 (2009).
  • Kanno M, Araie M, Koibuchi H, Masuda K. Effect of topical nipradilol, a b blocking agent with a blocking and nitroglecerin-like activities, on intraocular pressure and aqueous dynamics in humans. Br. J. Ophthalmol.84, 293–299 (2000).
  • Kanno M, Araie M, Masuda K et al. Phase III long-term study and comparative clinical study of nipradilol ophthalmic solution in patients with primary open-angle glaucoma and ocular hypertension. Arzneimittelforschung56, 729–734 (2006).
  • Karim MZ, Sawada A, Mizuno K, Kawakami H Ishida K, Yamamoto T. Neuroprotective effect of nipradilol [3,4-dihydro-8(2-hydroxy-3-isopropylamino)-propoxy-3-nitroxy-2H-1-benzopyran] in a rat model of optic nerve degeneration. J. Glaucoma18, 26–31 (2009).
  • Steele RM, Benedini F, Biondi S et al. Nitric oxide-donating carbonic anhydrase inhibitors for the treatment of open angle glaucoma. Bioorg. Med. Chem. Lett.19, 6565–6570 (2009).
  • Carreiro S, Anderson S, Gukasyan H, Krauss A, Prasanna G. Correlation of in vitro and in vivo kinetics of nitric oxide donors in ocular tissues. J. Pharmacol. Ther.25, 105–112 (2009).
  • Galassi F, Masini E, Giambene B et al. A topical nitric oxide-releasing dexamethasone derivative: effects on intraocular pressure and ocular haemodynamics in a rabbit glaucoma model. Br. J. Ophthalmol.90, 1414–1419 (2006).
  • Wallace JL, Viappiani S, Bolla M. Cyclooxygenase-inhibiting nitric oxide donators for osteoarthritis. Trends Pharmacol. Sci.30, 112–117 (2009).
  • Oresmaa L, Kotikoski H, Haukka M et al. Synthesis and ocular effects of imidazole nitrolic acid and amidoxime esters. Bioorg. Med. Chem. Lett.16, 2144–2147 (2006).
  • Perrino E, Uliva C, Lanzi C, Del Soldato P, Masini E, Sparatore A. New prostaglandin derivative for glaucoma treatment. Bioorg. Med. Chem. Lett.19, 1639–1642 (2009).
  • Borghi V, Bastia E, Guzzetta M et al. A novel nitric oxide releasing prostaglandin analog, NCX 125, reduces intraocular pressure in rabbit, dog and primate models of glaucoma. J. Ocul. Pharmacol. Ther.26, 125–132 (2010).
  • Vannacci A, Marzocca C, Giannini L et al. Evaluation of the effects of a novel carbon monoxide releasing molecule (CORM-3) in an in vitro model of cardiovascular inflammation. 1. Histamine in allergy, inflammation, tissue growth and repair. Inflamm. Res.55, S05–S06 (2006).
  • Feelisch M. The use of nitric oxide donors in pharmacological studies. Naunyn. Schmiedebergs Arch. Pharmacol.358, 113–122 (1998).
  • Glasser SP. Prospects for therapy of nitrate tolerance. Lancet353, 1545–1546 (1999).
  • Münzel T, Harrison DG. Evidence for a role of oxygen-derived free radicals and protein kinase C in nitrate tolerance. J. Mol. Med.75, 891–900 (1997).
  • Schwemmer M, Bassenge E. New approaches to overcome tolerance to nitrates. Cardiovasc. Drugs Ther.17, 159–173 (2003).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.