21
Views
0
CrossRef citations to date
0
Altmetric
Review

Targeting corneal disorders using gene therapy

, , , , , & show all
Pages 351-362 | Published online: 09 Jan 2014

References

  • Krachmer J, Mannis M, Holland E. Cornea: fundamentals, diagnosis and management. Elsevier Mosby 1(2), 3–26 (2005).
  • Ponzin D, Ferrari S, Harmatz P, Scarpa M. Ocular manifestations in patients with mucopolysaccharidosis: what do we know and how can we treat? Clin. Experiment. Ophthalmol. 38(1), 1 (2010).
  • Mohan RR, Sharma A, Netto MV, Sinha S, Wilson SE. Gene therapy in the cornea. Prog. Retin. Eye. Res. 24(5), 537–559 (2005).
  • Foster CS, Streilein JW. Basic immunology. In: Smolin and Thoft’s the Cornea: Scientific Foundations and Clinical Practice (4th Edition). Foster CS, Azar DT, Dohlman CH (Eds). Lippincott Williams & Wilkins, PA, USA, 59–102 (2005).
  • Klausner EA, Peer D, Chapman RL, Multack RF, Andurkar SV. Corneal gene therapy. J. Control. Release 124(3), 107–133 (2007).
  • Bouchard CS. The ocular immune response. In: Cornea (2nd Edition). Krachmer JH, Mannis MJ, Holland EJ (Eds). Elsevier Mosby, PA, USA, 59–93 (2005).
  • Pascolini D, Mariotti SP. Global estimates of visual impairment: 2010. Br. J. Ophthalmol. 96(5), 614–618 (2012).
  • Tandon A, Tovey JCK, Mohan RR, Harry S. Truman: advances in eye research – gene therapy for corneal diseases. Nova Publishers 1, 47–63 (2011).
  • Giannoukakis N, Thomson A, Robbins P. Gene therapy in transplantation. Gene Ther. 6(9), 1499–1511 (1999).
  • Hart SL, Harbottle RP, Cooper R, Miller A, Williamson R, Coutelle C. Gene delivery and expression mediated by an integrin-binding peptide. Gene Ther. 2(8), 552–554 (1995).
  • Fwright A. Gene therapy for the eye. Br. J. Ophthalmol. 81(8), 620–622 (1997).
  • Hangai M, Kaneda Y, Tanihara H, Honda Y. In vivo gene transfer into the retina mediated by a novel liposome system. Invest. Ophthalmol. Vis. Sci. 37(13), 2678–2685 (1996).
  • Kachi S, Oshima Y, Esumi N et al. Nonviral ocular gene transfer. Gene Ther. 12(10), 843–851 (2005).
  • Dunaief JL, Ng EW, Goldberg MF. Corneal dystrophies of epithelial genesis: the possible therapeutic use of limbal stem cell transplantation. Arch. Ophthalmol. 119(1), 120–122 (2001).
  • Tanelian DL, Barry MA, Johnston SA, Le T, Smith G. Controlled gene gun delivery and expression of DNA within the cornea. Bio. Techniques 23(3), 484–488 (1997).
  • Pellegrini G, Rama P, Mavilio F, De Luca M. Epithelial stem cells in corneal regeneration and epidermal gene therapy. J. Pathol. 217(2), 217–228 (2009).
  • Di Iorio E, Ferrari S, Ponzin D et al. Gene therapy approach through siRNA against p63 to correct ocular surface disorders in ectrodactyly−ectodermal dysplasia−clefting (EEC) syndrome. Invest. Ophthalmol. Vis. Sci. 487, abstract D1134 (2011).
  • Stechschulte SU, Joussen AM, von Recum HA et al. Rapid ocular angiogenic control via naked DNA delivery to the cornea. Invest Ophthalmol. Vis. Sci. 42(9), 1975–1979 (2001).
  • Behrens A, Gordon EM, Li L et al. Retroviral gene therapy vectors for prevention of excimer laser-induced corneal haze. Invest. Ophthalmol. Vis. Sci. 43(4), 968–977 (2002).
  • Kamata Y, Okuyama T, Kosuga M et al. Adenovirus-mediated gene therapy for corneal clouding in mice with mucopolysaccharidosis type VII. Mol. Ther. 4(4), 307–312 (2001).
  • AS Jun, DFP Larkin. Prospects for gene therapy in corneal disease. Eye 17(8), 906–911 (2003).
  • Inoue T, Inoue Y, Hayashi K et al. Topical administration of HSV gD-IL-2 DNA is highly protective against murine herpetic stromal keratitis. Cornea 21(1), 106–110 (2002).
  • Moore JE, McMullen TC, Campbell IL et al. The inflammatory milieu associated with conjunctivalized cornea and its alteration with IL-1 RA gene therapy. Invest. Ophthalmol. Vis. Sci. 43(9), 2905–2915 (2002).
  • Gardlík R, Pálffy R, Hodosy J, Lukács J, Turna J, Celec P. Vectors and delivery systems in gene therapy. Med. Sci. Monit. 11(4), RA110–RA121 (2005).
  • Davies JB, Ciavatta VT, Boatright JH, Nickerson JM. Delivery of several forms of DNA, DNA–RNA hybrids, and dyes across human sclera by electrical fields. Mol. Vis. 9, 569–578 (2003).
  • Sakamoto T, Oshima Y, Nakagawa K, Ishibashi T, Inomata H, Sueishi K. Target gene transfer of tissue plasminogen activator to cornea by electric pulse inhibits intracameral fibrin formation and corneal cloudiness. Hum. Gene Ther. 10(15), 2551–2557 (1999).
  • Comer RM, King WJ, Ardjomand N, Theoharis S, George AJ, Larkin DF. Effect of administration of CTLA4-Ig as protein or cDNA on corneal allograft survival. Invest. Ophthalmol. Vis. Sci. 43(4), 1095–1103 (2002).
  • Shiraishi A, Converse RL, Liu CY, Zhou F, Kao CW, Kao WW. Identification of the cornea-specific keratin 12 promoter by in vivo particle-mediated gene transfer. Invest. Ophthalmol. Vis. Sci. 39(13), 2554–2561 (1998).
  • Zhang EP, Muller A, Schulte F et al. Minimizing the side effects of ballistic gene transfer into the murine corneal epithelium. Graefes Arch. Clin. Exp. Ophthalmol. 240(2), 114–119 (2002).
  • Müller A, Zhang EP, Schroff M, Wittig B, Hoffmann F. Influence of ballistic gene transfer on antigen-presenting cells in murine corneas. Graefes Arch. Clin. Exp. Ophthalmol. 240(10), 851–859 (2002).
  • Klebe S, Stirling JW, Williams KA. Corneal endothelial cell nuclei are damaged after DNA transfer using a gene gun. Clin. Experiment. Ophthalmol. 28(1), 58–59 (2000).
  • Mehier-Humbert S, Guy RH. Physical methods for gene transfer: improving the kinetics of gene delivery into cells. Adv. Drug Deliv. Rev. 57(5), 733–753 (2005).
  • Shenk T. Fields Virology. Lippincott Raven Press 3, 2111–2148 (1996).
  • Williams KA, Jessup CF, Coster DJ. Gene therapy approaches to prolonging corneal allograft survival. Expert Opin. Biol. Ther. 4(7), 1059–1071 (2004).
  • Choi VW, Douglas M, Samulski MRJ. AAV hybrid serotypes: improved vectors for gene delivery. Curr. Gene Ther. 5(3), 299–310 (2005).
  • Rabinowitz JE, Rolling F, Li C et al. Crosspackaging of a single adeno-associated virus (AAV) type 2 vector genome into multiple AAV serotypes enables transduction withbroadspecificity. J. Virol. 76(2), 791–801 (2002).
  • Hudde T, Rayner SA, De Alwis M et al. Adeno-associated and herpes simplex viruses as vectors for gene transfer to the corneal endothelium. Cornea 19(3), 369–373 (2000).
  • Verma IM, Weitzman MD. Gene therapy: twenty-first century medicine. Annu. Rev. Biochem. 74, 711–738 (2005).
  • Young LS, Searle PF, Onion D, Mautner V. Viral gene therapy strategies: from basic science to clinical application. J. Pathol. 208(2), 299–318 (2006).
  • Tomanin R, Scarpa M. Why do we need new gene therapy viral vectors? Characteristics, limitations and future perspectives of viral vector transduction. Curr. Gene Ther. 4(4), 357–372 (2004).
  • Tsai ML, Chen SL, Chou PI, Wen LY, Tsai RJ, Tsao YP. Inducible adeno-associated virus vector-delivered transgene expression in corneal endothelium. Invest. Ophthalmol. Vis. Sci. 43(3), 751–757 (2002).
  • Seitz B, Baktanian E, Gordon EM, Anderson WF, LaBree L, McDonnell PJ. Retroviral vector-mediated gene transfer into keratocytes: in vitro effects of polybrene and protamine sulfate. Graefes Arch. Clin. Exp. Ophthalmol. 236(8), 602–612 (1998).
  • Lundstrom K. Gene therapy applications of viral vectors. Technol. Cancer Res. Treat. 3(5), 467–477 (2004).
  • Wang X, Appukuttan B, Ott S et al. Efficient and sustained transgene expression in human corneal cells mediated by a lentiviralvector. GeneTher 7(3), 196–200 (2000).
  • Takahashi K, Luo T, Saishin Y et al. Sustained transduction of ocular cells with a bovine immunodeficiency viral vector. Hum. Gene Ther. 13(11), 1305–1316 (2002).
  • De Oliveira LA, Kim C, De Sousa LB, Schwab IR, Rosenblatt MI. Gene transfer to primary corneal epithelial cells with an integrating lentiviral vector. Arq. Bras. Oftalmol. 73(5), 447–453 (2010).
  • König Merediz SA, Zhang EP, Wittig B, Hoffmann F. Ballistic transfer of minimalistic immunologically defined expression constructs for IL4 and CTLA4 into the corneal epithelium in mice after orthotopic corneal allograft transplantation. Graefes Arch. Clin. Exp. Ophthalmol. 238(8), 701–707 (2000).
  • Spencer B, Agarwala S, Miskulin M, Smith M, Brandt CR. Herpes simplex virus-mediated gene delivery to the rodent visual system. Invest. Ophthalmol. Vis. Sci. 41(6), 1392–1401 (2000).
  • Klebe S, Sykes PJ, Coster DJ, Bloom DC, Williams KA. Gene transfer to ovine corneal endothelium. Clin. Experiment. Ophthalmol. 29(5), 316–322 (2001).
  • Hudde T, Rayner SA, Comer RM et al. Activated polyamidoaminedendrimers, a non-viral vector for gene transfer to the corneal endothelium. Gene. Ther 6(5), 939–943 (1999).
  • Shewring L, Collins L, Lightman SL, Hart S, Gustafsson K, Fabre JW. A nonviral vector system for efficient gene transfer to corneal endothelial cells via membrane integrins. Transplantation 64(5), 763–769 (1997).
  • Hart SL, Arancibia-Cárcamo CV, Wolfert MA et al. Lipid-mediated enhancement of transfection by a nonviral integrin-targeting vector. Hum. Gene Ther. 9(4), 575–585 (1998).
  • Collins L, Fabre JW. A synthetic peptide vector system for optimal gene delivery to corneal endothelium. J. Gene Med. 6(2), 185–194 (2004).
  • Arancibia-Cárcamo CV, Oral HB, Haskard DO, Larkin DF, George AJ. Lipoadenofection-mediated gene delivery to the corneal endothelium: prospects for modulating graft rejection. Transplantation 65(1), 62–67 (1998).
  • Tan PH, King WJ, Chen D et al. Transferrin receptor-mediated gene transfer to the corneal endothelium. Transplantation 71(4), 552–560 (2001).
  • Tan PH, Manunta M, Ardjomand N et al. Antibody targeted gene transfer to endothelium. J. Gene Med. 5(4), 311–323 (2003).
  • Liaw J, Chang SF, Hsiao FC. In vivo gene delivery into ocular tissues by eye drops of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO–PPO–PEO) polymeric micelles. Gene Ther. 8(13), 999–1004 (2001).
  • Haensler J, Szoka FC Jr. Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconjug. Chem. 4(5), 372–379 (1993).
  • Kukowska Latallo JF et al. Efficient transfer of genetic material into mammalian cells using Starburst polyamidoamine dendrimers. Proc. Natl Acad. Sci. USA 93(10), 4897–4902 (1996).
  • Delong R, Stephenson K, Loftus T et al. Characterization of complexes of oligonucleotides with polyamidoamine starburst dendrimers and effects on intracellular delivery. J. Pharm. Sci. 86(6), 762–764 (1997).
  • Tang MX, Szoka FC. The influence of polymer structure on the interactions of cationic polymers with DNA and morphology of the resulting complexes. Gene Ther. 4(8), 823–832 (1997).
  • Tang MX, Redemann CT, Szoka FC Jr. In vitro gene delivery by degraded polyamidoamine dendrimers. Bioconjug. Chem. 7(6), 703–714 (1996).
  • Roberts JC, Bhalgat MK, Zera RT. Preliminary biological evaluation of polyamidoamine (PAMAM) Starburst dendrimers. J. Biomed. Mater. Res. 30(1), 53–65 (1996).
  • Qin L, Pahud Dominique R, Yaozhong D et al. Efficient transfer of genes into murine cardiac grafts by Starburst polyamidoamine dendrimers. Hum. Gene Ther. 9(4), 553–560 (1998).
  • Tullo A. Pathogenesis and management of herpes simplex virus keratitis. Eye (Lond.) 17(8), 919–922 (2003).
  • Liu J, Schultz GM, Tuli SS, Bloom DC, Lewin AS. Gene therapy of herpes simplex keratitis using hammerhead ribozymes. Invest. Ophthalmol. Vis. Sci. 45, Abstract 1636 (2004).
  • Saghizadeh M, Kramerov AA, Yu FS, Castro MG, Ljubimov AV. Normalization of wound healing and diabetic markers in organ cultured human diabetic corneas by adenoviral delivery of c-Met gene. Invest. Ophthalmol. Vis. Sci. 51(4), 1970–1980 (2010).
  • Kabosova A, Kramerov AA, Aoki AM, Murphy G, Zieske JD, Ljubimov AV. Human diabetic corneas preserve wound healing, basement membrane, integrin and MMP-10 differences from normal corneas in organ culture. Exp. Eye Res. 77(2), 211–217 (2003).
  • Saghizadeh M, Brown DJ, Castellon R et al. Overexpression of matrix metalloproteinase-10 and matrix metalloproteinase-3 in human diabetic corneas: a possible mechanism of basement membrane and integrin alterations. Am. J. Pathol. 158(2), 723–734 (2001).
  • Kenney MC, Chwa M, Lin B, Huang GH, Ljubimov AV, Brown DJ. Identification of cell types in human diseased corneas. Cornea 20(3), 309–316 (2001).
  • Saghizadeh M, Kramerov AA, Tajbakhsh J et al. Proteinase and growth factor alterations revealed by gene microarray analysis of human diabetic corneas. Invest. Ophthalmol. Vis. Sci. 46(10), 3604–3615 (2005).
  • Saghizadeh M, Soleymani S, Harounian A et al. Alterations of epithelial stem cell marker patterns in human diabetic corneas and effects of c-met gene therapy. Mol. Vis. 17, 2177–2190 (2011).
  • Bolstad AI, Jonsson R. Gene therapeutics in Sjögren’s syndrome. Expert Opin. Biol. Ther. 5(6), 763–772 (2005).
  • Jonsson R, Bowman S, Gordon TP. Sjogren’s syndrome. In: Arthritis and Allied Conditions: A Textbook of Rheumatology. Koopman WJ, Moreland LW (Eds). Lippincott Williams & Wilkins, PA, USA, 1681–1705 (2005).
  • Rhodes G, Carson DA, Valbracht J, Houghten R, Vaughan JH. Human immune responses to synthetic peptides from the Epstein–Barr nuclear antigen. J. Immunol. 134(1), 211–216 (1985).
  • Pflugfelder SC, Tseng SC, Pepose JS, Fletcher MA, Klimas N, Feuer W. Epstein–Barr virus infection and immunologic dysfunction in patients with aqueous tear deficiency. Ophthalmology 97(3), 313–323 (1990).
  • Saito I, Servenius B, Compton T, Fox RI. Detection of Epstein–Barr virus DNA by polymerase chain reaction in blood and tissue biopsies from patients with Sjogren’s syndrome. J. Exp. Med. 169(6), 2191–2198 (1989).
  • Venables PJ. Sjogren’s syndrome. Best Pract. Res. Clin. Rheumatol. 18(3), 313–329 (2004).
  • Zhu Z, Stevenson D, Schechter JE et al. Prophylactic effect of IL-10 gene transfer on induced autoimmune dacryoadenitis. Invest. Ophthalmol. Vis. Sci. 45(5), 1375–1381 (2004).
  • Banin E, Obolensky A, Piontek E et al. Gene delivery by viral vectors in primary cultures of lacrimal gland tissue. Invest. Ophthalmol. Vis. Sci. 44(4), 1529–1533 (2003).
  • Wilson SE, Netto M, Ambrosio R Jr. The biology of corneal refractive surgery. In: Smolin and Thoft’s the Cornea: Scientific Foundations and Clinical Practice (4th Edition). Foster CS, Azar DT, Dohlman CH (Eds). Lippincott Williams & Wilkins, PA, USA, 1099–1116 (2005).
  • Jackson WB, Al-Muammar A. Photorefractive keratectomy. In: Cornea (2nd Edition). Krachmer JH, Mannis MJ, Holland EJ (Eds). Elsevier Mosby, PA, USA, 1923–1938 (2005).
  • Behrens A, Gordon EM, Li L et al. Retroviral gene therapy vectors for prevention of excimer laser: induced corneal haze. Invest. Ophthal. Vis. Sci. 43(4), 968–977 (2002).
  • Sakamoto T, Ueno H, Sonoda K et al. Blockade of TGF-β by in vivo gene transfer of a soluble TGF-β type II receptor in the muscle inhibits corneal opacification, edema and angiogenesis. Gene Ther. 7(22), 1915–1924 (2000).
  • Mohan RR, Gupta R, Mehan MK, Cowden JW, Sinha S. Decorin transfection suppresses profibrogenic genes and myofibroblast formation in human corneal fibroblasts. Exp. Eye Res. 91(2), 238–245 (2010).
  • Ashworth JL, Biswas S, Wraith E, Lloyd IC. Mucopolysaccharidoses and the eye. Surv. Ophthalmol. 51(1), 1–17 (2006).
  • Ponder KP, Haskins ME. Gene therapy for mucopolysaccharidosis. Expert Opin. Biol. Ther. 7(9), 1333–1345 (2007).
  • Kenyon KR, Navon SE, Heritoglou C. Corneal manifestations of metabolic diseases. In: Cornea (2nd Edition). Krachmer JH, Mannis MJ, Holland EJ (Eds). Elsevier Mosby, PA, USA, 749–776 (2005).
  • Ponder KP, Melniczek JR, Xu L et al. Therapeutic neonatal hepatic gene therapy in mucopolysaccharidosis VII dogs. Proc. Natl Acad. Sci. USA 99(20), 13102–13107 (2002).
  • Ponder KP, Auricchio A. Gene therapy for ocular problems in mucopolysaccharidosis: an experimental and promising approach with benefits in animal models – a review. Clin. Experiment. Ophthalmol. 38(1), 43–51 (2010).
  • Irvine AD, Corden LD, Swensson O et al. Mutations in cornea-specific keratin K3 or K12 genes cause Meesmann’s corneal dystrophy. Nat. Genet. 16(2), 184–187 (1997).
  • Nishida K, Honma Y, Dota A et al. Isolation and chromosomal localization of a cornea-specific human keratin 12 gene and detection of four mutations in Meesmann corneal epithelial dystrophy. Am. J. Hum. Genet. 61(6), 1268–1275 (1997).
  • Kao WWY, Liu CY, Converse RL et al. Keratin 12 deficient mice have fragile corneal epithelia. Invest. Ophthalmol. Vis. Sci. 37(13), 2572–2584 (1996).
  • Wu RL, Zhu G, Galvin S et al. Lineage-specific and differentiation-dependent expression of K12 keratin in rabbit corneal/limbal epithelial cells: cDNA cloning and northern blot analysis. Differentiation. 55(2), 137–144 (1994).
  • Liao H, Irvine AD, MacEwen CJ et al. Development of allele-specific therapeutic siRNA in Meesmann epithelial corneal dystrophy. PLoS ONE 6(12), e28582 (2011).
  • Fuchsluger TA, Jurkunas U, Kazlauskas A, Dana R. Anti-apoptotic gene therapy prolongs survival of corneal endothelial cells during storage. Gene Ther. 18(8), 778–787 (2011).
  • Williams KA, Jessup CF, Coster DJ. Gene therapy approaches to prolonging corneal allograft survival. Expert. Opin. Biol. Ther. 4(7), 1059–1071 (2004).
  • Larkin DF, Alexander RA, Cree IA. Infiltrating inflammatory cell phenotypes and apoptosis in rejected human corneal allografts. Eye (Lond.) 11(Pt. 1), 68–74 (1997).
  • Gately MK, Renzetti LM, Magram J et al. The interleukin-12/ interleuking-12-receptor system: role in normal and pathologic immune responses. Ann. Rev. Immunol. 16, 496–521 (1998).
  • Linsley PS, Wallace PM, Johnson J et al. Immunosuppression in vivo by a soluble form of the CTLA-4 T cell activation molecule. Science 257(5071), 792–795 (1992).
  • Chen W, Cao L, Hara K, Yoshitomi T. Effect of immunosuppression on survival of allograft limbal stem cells. Jpn. J. Ophthalmol. 48(5), 440–447 (2004).
  • Shi W, Chen M, Xie L. Prolongation of corneal allograft survival by CTLA4-FasL in a murine model. Graefes Arch. Clin. Exp. Ophthalmol. 245(11), 1691–1697 (2007).
  • Gebhardt BM, Varnell ED, Kaufman HE. Prolonged survival of corneal allografts incubated in alloantibody fragments. Transplantation 67(4), 594–599 (1999).
  • George AJ, Arancibia-Cárcamo CV, Awad HM et al. Gene delivery to the corneal endothelium. Am. J. Respir. Crit. Care Med. 162(4 Pt 2), S194–S200 (2000).
  • Borrás T. Recent developments in ocular gene therapy. Exp. Eye Res. 76(6), 643–652 (2003).
  • Thiel MA, Coster DJ, Williams KA. The potential of antibody-based immunosuppressive agents for corneal transplantation. Immunol. Cell Biol. 81(2), 93–105 (2003).
  • Huang H, Vasilakis P, Zhong X et al. Parstatin suppresses ocular neovascularization and inflammation. Invest. Ophthal. Vis. Sci. 51(11), 5825–5832 (2010).
  • Chen P, Yin H, Wang Y et al. Multigene targeted antiangiogenic therapies for experimental corneal neos. Mol. Vis. 16, 310–319 (2010).
  • Campochiaro PA. Potential applications for RNAi to probe pathogenesis and develop new treatments for ocular disorders. Gene Ther. 13(6), 559–562 (2006).
  • Wang C-H, Lu D-W, Chiang C-H. Gene therapy using SiRNA for treatment of ocular neovascularization. J. Med. Sci. 30(3), 79–84 (2010).
  • Aya I, Tomohiko U, Yasuo Y et al. Gene transfer using micellarnanovectors inhibits corneal neovascularization in vivo. Cornea 30(12), 1423–1427 (2011).
  • Mohan RR, Tovey JCK, Sharma A, Schultz GS, Cowden JW, Tandon A. Targeted decorin gene therapy delivered with adeno-associated virus effectively retards corneal neovascularization in vivo. PLoS ONE 6(10), e26432 (2011).
  • Nosov M, Wilk M, Morcos M et al. Role of lentivirus-mediated overexpression of programmed death-ligand 1 on corneal allograft survival. Am. J. Transplant. 12(5), 1313–1322 (2012).
  • Fuchsluger TA, Jurkunas U, Kazlauskas A, Dana R. Corneal endothelial cells are protected from apoptosis by gene therapy. Hum. Gene Ther. 22(5), 549–558 (2011).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.