262
Views
36
CrossRef citations to date
0
Altmetric
Review

Peek a peak: a glance at statistics for quantitative label-free proteomics

, , , , , & show all
Pages 249-261 | Published online: 09 Jan 2014

References

  • Conrad DH, Goyette J, Thomas PS. Proteomics as a method for early detection of cancer: a review of proteomics exhaled breath condensate, and lung cancer screening. J. Gen. Intern. Med.23 Suppl. 1, 78–84 (2008).
  • Cravatt BF, Simon GM, Yates JR 3rd. The biological impact of mass-spectrometry-based proteomics. Nature450(7172), 991–1000 (2007).
  • Rifai N, Gillette MA, Carr SA. Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nat. Biotechnol.24(8), 971–983 (2006).
  • Sawyers CL. The cancer biomarker problem. Nature452(7187), 548–552 (2008).
  • Monteoliva L, Albar JP. Differential proteomics: an overview of gel and non-gel based approaches. Brief. Funct. Genomic Proteomic3(3), 220–239 (2004).
  • Klose J, Kobalz U. Two-dimensional electrophoresis of proteins: an updated protocol and implications for a functional analysis of the genome. Electrophoresis16(6), 1034–1059 (1995).
  • Klose J. Large-gel 2-D electrophoresis. Methods Mol. Biol.112, 147–172 (1999).
  • Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature422(6928), 198–207 (2003).
  • Wang M, You J, Bemis KG, Tegeler TJ, Brown DP. Label-free mass spectrometry-based protein quantification technologies in proteomic analysis. Brief. Funct. Genomic Proteomic7(5), 329–339 (2008).
  • Ong SE, Mann M. Mass spectrometry-based proteomics turns quantitative. Nat. Chem. Biol.1(5), 252–262 (2005).
  • Moritz B, Meyer HE. Approaches for the quantification of protein concentration ratios. Proteomics3(11), 2208–2220 (2003).
  • Putz S, Reinders J, Reinders Y, Sickmann A. Mass spectrometry-based peptide quantification: applications and limitations. Expert Rev. Proteomics2(3), 381–392 (2005).
  • Hebeler R, Oeljeklaus S, Reidegeld KA et al. Study of early leaf senescence in Arabidopsis thaliana by quantitative proteomics using reciprocal 14N/15N labeling and difference gel electrophoresis. Mol. Cell Proteomics7(1), 108–120 (2008).
  • Wiese S, Reidegeld KA, Meyer HE, Warscheid B. Protein labeling by iTRAQ: a new tool for quantitative mass spectrometry in proteome research. Proteomics7(3), 340–350 (2007).
  • Chelius D, Bondarenko PV. Quantitative profiling of proteins in complex mixtures using liquid chromatography and mass spectrometry. J. Proteome Res.1(4), 317–323 (2002).
  • Wiener MC, Sachs JR, Deyanova EG, Yates NA. Differential mass spectrometry: a label-free LC-MS method for finding significant differences in complex peptide and protein mixtures. Anal. Chem.76(20), 6085–6096 (2004).
  • Listgarten J, Emili A. Statistical and computational methods for comparative proteomic profiling using liquid chromatography-tandem mass spectrometry. Mol. Cell Proteomics4(4), 419–434 (2005).
  • Silva JC, Denny R, Dorschel CA et al. Quantitative proteomic analysis by accurate mass retention time pairs. Anal. Chem.77(7), 2187–2200 (2005).
  • Rappsilber J, Ryder U, Lamond AI, Mann M. Large-scale proteomic analysis of the human spliceosome. Genome Res.12(8), 1231–1245 (2002).
  • Liu H, Sadygov RG, Yates JR 3rd. A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal. Chem.76(14), 4193–4201 (2004).
  • Old WM, Meyer-Arendt K, Aveline-Wolf L et al. Comparison of label-free methods for quantifying human proteins by shotgun proteomics. Mol. Cell. Proteomics4(10), 1487–1502 (2005).
  • Choi H, Fermin D, Nesvizhskii AI. Significance analysis of spectral count data in label-free shotgun proteomics. Mol. Cell. Proteomics7(12), 2373–2385 (2008).
  • Lu P, Vogel C, Wang R, Yao X, Marcotte EM. Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation. Nat. Biotechnol.25(1), 117–124 (2007).
  • Nesvizhskii AI, Aebersold R. Interpretation of shotgun proteomic data: the protein inference problem. Mol. Cell. Proteomics4(10), 1419–1440 (2005).
  • Kohl M, Redlich G, Eisenacher M et al. Automated calculation of unique peptide sequences for unambiguous identification of highly homolgous proteins by mass spectrometry. J. Proteomics Bioinform.1(1), 6–10 (2008).
  • Alexandridou A, Tsangaris GT, Vougas K, Nikita K, Spyrou G. UniMaP: finding unique mass and peptide signatures in the human proteome. Bioinformatics25(22), 3035–3037 (2009).
  • Li XJ, Zhang H, Ranish JA, Aebersold R. Automated statistical analysis of protein abundance ratios from data generated by stable-isotope dilution and tandem mass spectrometry. Anal. Chem.75(23), 6648–6657 (2003).
  • MacCoss MJ, Wu CC, Liu H, Sadygov R, Yates JR 3rd. A correlation algorithm for the automated quantitative analysis of shotgun proteomics data. Anal. Chem.75(24), 6912–6921 (2003).
  • Domon B, Aebersold R. Mass spectrometry and protein analysis. Science312(5771), 212–217 (2006).
  • Petricoin EF, Ardekani AM, Hitt BA et al. Use of proteomic patterns in serum to identify ovarian cancer. Lancet359(9306), 572–577 (2002).
  • Petricoin EF 3rd, Ornstein DK, Paweletz CP et al. Serum proteomic patterns for detection of prostate cancer. J. Natl Cancer Inst.94(20), 1576–1578 (2002).
  • Lilien RH, Farid H, Donald BR. Probabilistic disease classification of expression-dependent proteomic data from mass spectrometry of human serum. J. Comput. Biol.10(6), 925–946 (2003).
  • Listgarten J, Neal RM, Roweis ST, Wong P, Emili A. Difference detection in LC-MS data for protein biomarker discovery. Bioinformatics23(2), e198–e204 (2007).
  • Kohlbacher O, Reinert K, Gropl C et al. TOPP – the OpenMS proteomics pipeline. Bioinformatics23(2), e191–e197 (2007).
  • Wang W, Zhou H, Lin H et al. Quantification of proteins and metabolites by mass spectrometry without isotopic labeling or spiked standards. Anal. Chem.75(18), 4818–4826 (2003).
  • Barclay VJ, Bonner RF, Hamilton IP. Application of wavelet transforms to experimental spectra: smoothing, denoising, and data set compression. Anal. Chem.69(1), 78–90 (1997).
  • Li XJ, Yi EC, Kemp CJ, Zhang H, Aebersold R. A software suite for the generation and comparison of peptide arrays from sets of data collected by liquid chromatography–mass spectrometry. Mol. Cell. Proteomics4(9), 1328–1340 (2005).
  • Radulovic D, Jelveh S, Ryu S et al. Informatics platform for global proteomic profiling and biomarker discovery using liquid chromatography-tandem mass spectrometry. Mol. Cell. Proteomics3(10), 984–997 (2004).
  • Noy K, Fasulo D. Improved model-based, platform-independent feature extraction for mass spectrometry. Bioinformatics23(19), 2528–2535 (2007).
  • Smith CA, Want EJ, O’Maille G, Abagyan R, Siuzdak G. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem.78(3), 779–787 (2006).
  • Yasui Y, McLerran D, Adam BL et al. An automated peak identification/calibration procedure for high-dimensional protein measures from mass spectrometers. J. Biomed. Biotechnol.2003(4), 242–248 (2003).
  • Morris JS, Coombes KR, Koomen J, Baggerly KA, Kobayashi R. Feature extraction and quantification for mass spectrometry in biomedical applications using the mean spectrum. Bioinformatics21(9), 1764–1775 (2005).
  • Du P, Kibbe WA, Lin SM. Improved peak detection in mass spectrum by incorporating continuous wavelet transform-based pattern matching. Bioinformatics22(17), 2059–2065 (2006).
  • Bellew M, Coram M, Fitzgibbon M et al. A suite of algorithms for the comprehensive analysis of complex protein mixtures using high-resolution LC-MS. Bioinformatics22(15), 1902–1909 (2006).
  • Higgs RE, Knierman MD, Gelfanova V, Butler JP, Hale JE. Comprehensive label-free method for the relative quantification of proteins from biological samples. J. Proteome Res.4(4), 1442–1450 (2005).
  • Mueller LN, Rinner O, Schmidt A et al. SuperHirn – a novel tool for high resolution LC-MS-based peptide/protein profiling. Proteomics7(19), 3470–3480 (2007).
  • Lange E, Gropl C, Schulz-Trieglaff O et al. A geometric approach for the alignment of liquid chromatography-mass spectrometry data. Bioinformatics23(13), i273–i281 (2007).
  • Christin C, Smilde AK, Hoefsloot HC et al. Optimized time alignment algorithm for LC-MS data: correlation optimized warping using component detection algorithm-selected mass chromatograms. Anal. Chem.80(18), 7012–7021 (2008).
  • Wang P, Tang H, Fitzgibbon MP et al. A statistical method for chromatographic alignment of LC-MS data. Biostatistics8(2), 357–367 (2007).
  • Nielsen N-PV, Carstensen JM, Smedsgaard J. Aligning of single and multiple wavelength chromatographic profiles for chemometric data analysis using correlation optimised warping. J. Chromatogr. A805, 17–35 (1998).
  • van Nederkassel AM, Daszykowski M, Eilers PH, Heyden YV. A comparison of three algorithms for chromatograms alignment. J. Chromatogr. A1118(2), 199–210 (2006).
  • Bylund D, Danielsson R, Malmquist G, Markides KE. Chromatographic alignment by warping and dynamic programming as a pre-processing tool for PARAFAC modelling of liquid chromatography–mass spectrometry data. J. Chromatogr. A961(2), 237–244 (2002).
  • Suits F, Lepre J, Du P, Bischoff R, Horvatovich P. Two-dimensional method for time aligning liquid chromatography–mass spectrometry data. Anal. Chem.80(9), 3095–3104 (2008).
  • Sadygov RG, Maroto FM, Huhmer AF. ChromAlign: a two-step algorithmic procedure for time alignment of three-dimensional LC-MS chromatographic surfaces. Anal. Chem.78(24), 8207–8217 (2006).
  • Zhang X, Asara JM, Adamec J, Ouzzani M, Elmagarmid AK. Data pre-processing in liquid chromatography–mass spectrometry-based proteomics. Bioinformatics21(21), 4054–4059 (2005).
  • Podwojski K, Fritsch A, Chamrad DC et al. Retention time alignment algorithms for LC/MS data must consider non-linear shifts. Bioinformatics25(6), 758–764 (2009).
  • Fischer B, Grossmann J, Roth V et al. Semi-supervised LC/MS alignment for differential proteomics. Bioinformatics22(14), e132–e140 (2006).
  • Vandenbogaert M, Li-Thiao-Te S, Kaltenbach HM et al. Alignment of LC-MS images, with applications to biomarker discovery and protein identification. Proteomics8(4), 650–672 (2008).
  • Bolstad BM, Irizarry RA, Astrand M, Speed TP. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics19(2), 185–193 (2003).
  • Callister SJ, Barry RC, Adkins JN et al. Normalization approaches for removing systematic biases associated with mass spectrometry and label-free proteomics. J. Proteome Res.5(2), 277–286 (2006).
  • Kultima K, Nilsson A, Scholz B et al. Development and evaluation of normalization methods for label-free relative quantification of endogenous peptides. Mol. Cell. Proteomics8(10), 2285–2295 (2009).
  • Troyanskaya O, Cantor M, Sherlock G et al. Missing value estimation methods for DNA microarrays. Bioinformatics17(6), 520–525 (2001).
  • Jung K, Gannoun A, Sitek B et al. Statistical evaluation of methods for the analysis of dynamic protein expression data from a tumor study. REVSTAT Stat. J.4(1), 67–80 (2006).
  • Jung K, Gannoun A, Sitek B et al. Analysis of dynamic protein expression data. REVSTAT Stat. J.3(2), 99–111 (2005).
  • Brusniak MY, Bodenmiller B, Campbell D et al. Corra: computational framework and tools for LC-MS discovery and targeted mass spectrometry-based proteomics. BMC Bioinformatics9, 542 (2008).
  • Gentleman RC, Carey VJ, Bates DM et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol.5(10), R80 (2004).
  • Mueller LN, Brusniak MY, Mani DR, Aebersold R. An assessment of software solutions for the analysis of mass spectrometry based quantitative proteomics data. J. Proteome Res.7(1), 51–61 (2008).
  • Hunt DF, Buko AM, Ballard JM, Shabanowitz J, Giordani AB. Sequence analysis of polypeptides by collision activated dissociation on a triple quadrupole mass spectrometer. Biomed. Mass Spectrom.8(9), 397–408 (1981).
  • Hunt DF, Yates JR 3rd, Shabanowitz J, Winston S, Hauer CR. Protein sequencing by tandem mass spectrometry. Proc. Natl Acad. Sci. USA83(17), 6233–6237 (1986).
  • Eng JK, McCormack AL, Yates JR 3rd. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spetrom.5, 976–989 (1994).
  • Perkins DN, Pappin DJ, Creasy DM, Cottrell JS. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis20(18), 3551–3567 (1999).
  • Fenyo D, Beavis RC. A method for assessing the statistical significance of mass spectrometry-based protein identifications using general scoring schemes. Anal. Chem.75(4), 768–774 (2003).
  • Geer LY, Markey SP, Kowalak JA et al. Open mass spectrometry search algorithm. J. Proteome Res.3(5), 958–964 (2004).
  • Boguski MS, McIntosh MW. Biomedical informatics for proteomics. Nature422(6928), 233–237 (2003).
  • Patterson SD. Data analysis – the Achilles heel of proteomics. Nat. Biotechnol.21(3), 221–222 (2003).
  • Nesvizhskii AI, Vitek O, Aebersold R. Analysis and validation of proteomic data generated by tandem mass spectrometry. Nat. Methods4(10), 787–797 (2007).
  • Reidegeld KA, Eisenacher M, Kohl M et al. An easy-to-use Decoy Database Builder software tool, implementing different decoy strategies for false discovery rate calculation in automated MS/MS protein identifications. Proteomics8(6), 1129–1137 (2008).
  • Elias JE, Gygi SP. Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat. Methods4(3), 207–214 (2007).
  • Keller A, Nesvizhskii AI, Kolker E, Aebersold R. Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal. Chem.74(20), 5383–5392 (2002).
  • Käll L, Storey JD, MacCoss MJ, Noble WS. Posterior error probabilities and false discovery rates: two sides of the same coin. J. Proteome Res.7(1), 40–44 (2008).
  • Kersey PJ, Duarte J, Williams A et al. The International Protein Index: an integrated database for proteomics experiments. Proteomics4(7), 1985–1988 (2004).
  • Black DL. Protein diversity from alternative splicing: a challenge for bioinformatics and post-genome biology. Cell103(3), 367–370 (2000).
  • Kohl M, Schönebeck B, May C et al. Protein List Comparator (ProLiC): a framework for comparison of protein lists. Clin. Proteomics5(Suppl. 1, PosterC545), 104 (2009).
  • Nesvizhskii AI, Keller A, Kolker E, Aebersold R. A statistical model for identifying proteins by tandem mass spectrometry. Anal. Chem.75(17), 4646–4658 (2003).
  • Washburn MP, Wolters D, Yates JR 3rd. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol.19(3), 242–247 (2001).
  • Pang JX, Ginanni N, Dongre AR, Hefta SA, Opitek GJ. Biomarker discovery in urine by proteomics. J. Proteome Res.1(2), 161–169 (2002).
  • Gao J, Opiteck GJ, Friedrichs MS, Dongre AR, Hefta SA. Changes in the protein expression of yeast as a function of carbon source. J. Proteome Res.2(6), 643–649 (2003).
  • Zhang B, VerBerkmoes NC, Langston MA et al. Detecting differential and correlated protein expression in label-free shotgun proteomics. J. Proteome Res.5(11), 2909–2918 (2006).
  • Allet N, Barrillat N, Baussant T et al.In vitro and in silico processes to identify differentially expressed proteins. Proteomics4(8), 2333–2351 (2004).
  • Colinge J, Chiappe D, Lagache S, Moniatte M, Bougueleret L. Differential proteomics via probabilistic peptide identification scores. Anal. Chem.77(2), 596–606 (2005).
  • Ishihama Y, Oda Y, Tabata T et al. Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol. Cell Proteomics4(9), 1265–1272 (2005).
  • Dudoit S, Yang YH, Callow MJ, Speed TP. Statistical methods for identifying differentialy espressed genes in replicated cDNA microarray experiments. Stat. Sin.12, 111–139 (2002).
  • Storey JD, Tibshirani R. Statistical significance for genomewide studies. Proc. Natl Acad. Sci. USA100(16), 9440–9445 (2003).
  • Dudoit S, Shaffer JP, Boldrick JC. Multiple hypothesis testing in microarray experiments. Stat. Sci.18(1), 71–103 (2003).
  • Jung K, Poschmann G, Podwojski K et al. Adjusted confidence intervals for the expression change of proteins observed in 2-dimensional difference gel electrophoresis. J. Proteomics Bioinform.2(2), 78–87 (2009).
  • Xia Q, Wang T, Park Y, Lamont RJ, Hackett M. Differential quantitative proteomics of Porphyromonas gingivalis by linear ion trap mass spectrometry: non-label methods comparison, q-values and LOWESS curve fitting. Int. J. Mass Spectrom.259(1–3), 105–116 (2007).
  • Jin S, Daly DS, Springer DL, Miller JH. The effects of shared peptides on protein quantitation in label-free proteomics by LC/MS/MS. J. Proteome Res.7(1), 164–169 (2008).
  • Kuster B, Schirle M, Mallick P, Aebersold R. Scoring proteomes with proteotypic peptide probes. Nat. Rev. Mol. Cell. Biol.6(7), 577–583 (2005).
  • Mallick P, Schirle M, Chen SS et al. Computational prediction of proteotypic peptides for quantitative proteomics. Nat. Biotechnol.25(1), 125–131 (2007).

Website

  • R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 3–900051–07–00 www.R-project.org

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.