80
Views
9
CrossRef citations to date
0
Altmetric
Review

Thyroid tumors: novel insights from proteomic studies

, &
Pages 363-376 | Published online: 09 Jan 2014

References

  • Liu S, Semenciw R, Ugnat AM, Mao Y. Increasing thyroid cancer incidence in Canada, 1970–1996: time trends and age-period-cohort effects. Br. J. Cancer85(9), 1335–1339 (2001).
  • Farahati J, Geling M, Mäder U et al. Changing trends of incidence and prognosis of thyroid carcinoma in lower Franconia, Germany, from 1981–1995. Thyroid14(2), 141–147 (2004).
  • Eszlinger M, Krohn K, Hauptmann S, Dralle H, Giordano TJ, Paschke R. Perspectives for improved and more accurate classification of thyroid epithelial tumors. J. Clin. Endocrinol. Metab.93(9), 3286–3294 (2008).
  • Gimm O. Thyroid Cancer. Cancer Lett.163(2), 143–156 (2001).
  • Potenza M, Mechanick Ji. Low-risk thyroid carcinoma: when is the treatment worse than the disease? Expert Rev. Endocrinol. Metab.4(1), 5–7 (2009).
  • Melillo RM, Castellone MD, Guarino V et al. The RET/PTC-RAS-BRAF linear signaling cascade mediates the motile and mitogenic phenotype of thyroid cancer cells. J. Clin. Invest.115(4), 1068–1081 (2005).
  • Hunt J. Understanding the genotype of follicular thyroid tumors. Endocr. Pathol.16(4), 311–321 (2005).
  • Sugg SL, Ezzat S, Rosen IB, Freeman JL, Asa SL. Distinct multiple RET/PTC gene rearrangements in multifocal papillary thyroid neoplasia. J. Clin. Endocrinol. Metab.83(11), 4116–4122 (1998).
  • Basolo F, Giannini R, Monaco C et al. Potent mitogenicity of the RET/PTC3 oncogene correlates with its prevalence in tall-cell variant of papillary thyroid carcinoma. Am. J. Pathol.160(1), 247–754 (2002).
  • Vasko V, Ferrand M, Di Cristofaro J, Carayon P, Henry JF, de Micco C. Specific pattern of RAS oncogene mutations in follicular thyroid tumors. J. Clin. Endocrinol. Metab.88(6), 2745–2752 (2003).
  • Castro P, Rebocho AP, Soares RJ et al. PAX8-PPARγ rearrangement is frequently detected in the follicular variant of papillary thyroid carcinoma. J. Clin. Endocrinol. Metab.91(1), 213–220 (2006).
  • Nikiforova MN, Kimura ET, Gandhi M et al. BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. J. Clin. Endocrinol. Metab.88(11), 5399–5404 (2003).
  • Begum S, Rosenbaum E, Henrique R, Cohen Y, Sidransky D, Westra WH. BRAF mutations in anaplastic thyroid carcinoma: implications for tumor origin, diagnosis and treatment. Mod. Pathol.17(11), 1359–1363 (2004).
  • Quiros RM, Ding HG, Gattuso P, Prinz RA, Xu X. Evidence that one subset of anaplastic thyroid carcinomas are derived from papillary carcinomas due to BRAF and p53 mutations. Cancer103(11), 2261–2268 (2005).
  • Damante G, Tell G, Di Lauro R. A unique combination of transcription factors controls differentiation of thyroid cells. Prog. Nucleic Acid Res. Mol. Biol.66, 307–356 (2001).
  • Fabbro D, Di Loreto C, Beltrami CA, Belfiore A, Di Lauro R, Damante G. Expression of thyroid-specific transcription factors TTF-1 and PAX-8 in human thyroid neoplasms. Cancer Res.54(17), 4744–4749 (1994).
  • Ros P, Rossi DL, Acebrón A, Santisteban P. Thyroid-specific gene expression in the multi-step process of thyroid carcinogenesis. Biochimie81(4), 389–396 (1999).
  • Vasko V, Espinosa AV, Scouten W et al. Gene expression and functional evidence of epithelial-to-mesenchymal transition in papillary thyroid carcinoma invasion. Proc. Natl. Acad. Sci. USA104(8), 2803–2808 (2007).
  • Guarino V, Faviana P, Salvatore G et al. Osteopontin is overexpressed in human papillary thyroid carcinomas and enhances thyroid carcinoma cell invasiveness. J. Clin. Endocrinol. Metab.90(9), 5270–5278 (2005).
  • Fluge Ø, Bruland O, Akslen LA, Lillehaug JR, Varhaug JE. Gene expression in poorly differentiated papillary thyroid carcinomas. Thyroid16(2), 161–175 (2006).
  • Puppin C, Fabbro D, Dima M et al. High periostin expression correlates with aggressiveness in papillary thyroid carcinomas. J. Endocrinol.197(2), 401–408 (2008).
  • Barden CB, Shister KW, Zhu B et al. Classification of follicular thyroid tumors by molecular signature: results of gene profiling. Clin. Cancer Res.9(5), 1792–1800 (2003).
  • Finley DJ, Zhu B, Barden CB, Fahey TJ. Discrimination of benign and malignant thyroid nodules by molecular profiling. Ann. Surg.240(3), 425–436 (2004).
  • Mazzanti C, Zeiger MA, Costouros NG et al. Using gene expression profiling to differentiate benign versus malignant thyroid tumors. Cancer Res.64(8), 2898–2903 (2004).
  • Weber F, Shen L, Aldred MA et al. Genetic classification of benign and malignant thyroid follicular neoplasia based on a three-gene combination. J. Clin. Endocrinol. Metab.90(5), 2512–2521 (2005).
  • Fontaine JF, Mirebeau-Prunier D, Franc B et al. Microarray analysis refines classification of non-medullary thyroid tumours of uncertain malignancy. Oncogene27(15), 2228–2236 (2008).
  • Jarzab B, Wiench M, Fujarewicz K et al. Gene expression profile of papillary thyroid cancer: sources of variability and diagnostic implications. Cancer Res.65(4), 1587–1597 (2005).
  • Kebebew E, Peng M, Reiff E, McMillan A. Diagnostic and extent of disease multigene assay for malignant thyroid neoplasms. Cancer106(12), 2592–2597 (2006).
  • Tian Q, Stepaniants SB, Mao M et al. Integrated genomic and proteomic analyses of gene expression in mammalian cells. Mol. Cell. Proteomics3(10), 960–969 (2004).
  • Hanash S. Disease proteomics. Nature422(6928), 226–232 (2003).
  • Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature422(6928), 198–207 (2003).
  • Anderson L. Candidate-based proteomics in the search for biomarkers of cardiovascular disease. J. Physiol.563(1), 23–60 (2005).
  • Hanash SM, Pitteri SJ, Faca VM. Mining the plasma proteome for cancer biomarkers. Nature452(7187), 571–579 (2008).
  • O’Farrell PH. High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem.250(10), 4007–4021 (1975).
  • Bjellqvist B, Ek K, Righetti PG et al. Isoelectric focusing in immobilized pH gradients: principle, methodology and some applications. J. Biochem. Biophys. Methods6(4), 317–339 (1982).
  • Yates JR, Gilchrist A, Howell KE, Bergeron JJ. Proteomics of organelles and large cellular structures. Nat. Rev. Mol. Cell. Biol.6(9), 702–714 (2005).
  • Everley PA, Zetter BR. Proteomics in tumor progression and metastasis. Ann. NY Acad. Sci.1059, 1–10 (2005).
  • Cho WC. Contribution of oncoproteomics to cancer biomarker discovery. Mol. Cancer6, 25–38 (2007).
  • Verrills NM. Clinical proteomics: present and future prospects. Clin. Biochem. Rev.27(2), 99–116 (2006).
  • Gorg A, Weiss W, Dunn MJ. Current two-dimensional electrophoresis technology for proteomics. Proteomics4(12), 3665–3685(2004).
  • Timms JF, Cramer R. Difference gel electrophoresis. Proteomics8(23–24), 4886–4897 (2008).
  • Riederer BM. Non-covalent and covalent protein labeling in two-dimensional gel electrophoresis. J. Proteomics71(2), 231–244 (2008).
  • Seike M, Kondo T, Fujii K et al. Proteomic signatures for histological types of lung cancer. Proteomics5(11), 2939–2948 (2005).
  • Friedman DB, Hill S, Keller JW et al. Proteome analysis of human colon cancer by two-dimensional difference gel electrophoresis and mass spectrometry. Proteomics4(3), 793–811 (2004).
  • Sun W, Xing B, Sun Y et al. Proteome analysis of hepatocellular carcinoma by two-dimensional difference gel electrophoresis: novel protein markers in hepatocellular carcinoma tissues. Mol. Cell. Proteomics6(10), 1798–1808 (2007).
  • Somiari RI, Sullivan A, Russell S et al. High-throughput proteomic analysis of human infiltrating ductal carcinoma of the breast. Proteomics3(10), 1863–1873 (2003).
  • Zhou G, Li H, DeCamp D et al. 2D differential in-gel electrophoresis for the identification of esophageal scans cell cancer-specific protein markers. Mol. Cell. Proteomics1(2), 117–124 (2002).
  • Morita A, Miyagi E, Yasumitsu H, Kawasaki H, Hirano H, Hirahara F. Proteomic search for potential diagnostic markers and therapeutic targets for ovarian clear cell adenocarcinoma. Proteomics6(21), 5880–5890 (2006).
  • Gharbi S, Gaffney P, Yang A et al. Evaluation of two-dimensional differential gel electrophoresis for proteomic expression analysis of a model breast cancer cell system. Mol. Cell. Proteomics1(2), 91–98 (2002).
  • Han X, Aslanian A, Yates JR. Mass spectrometry for proteomics. Curr. Opin. Chem. Biol.12(5), 483–490 (2008).
  • Lim MS, Elenitoba-Johnson KS. Proteomics in pathology research. Lab. Invest.84(10), 1227–1244 (2004).
  • Palagi PM, Hernandez P, Walther D, Appel RD. Proteome informatics I: bioinformatics tools for processing experimental data. Proteomics6(20), 5435–5444 (2006).
  • Mann M, Jensen ON. Proteomic analysis of post-translational modifications. Nat. Biotechnol.21(3), 255–261 (2003).
  • Ong SE, Mann M. Mass spectrometry-based proteomics turns quantitative. Nat. Chem. Biol.1(5), 252–262 (2005).
  • Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol.17(10), 994–999 (1999).
  • Ross PL, Huang YN, Marchese JN et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell. Proteomics3(12), 1154–1169 (2004).
  • Ong SE, Blagoev B, Kratchmarova I et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics1(5), 376–386 (2002).
  • Washburn MP, Wolters D, Yates JR. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol.19(3), 242–247 (2001).
  • Swanson SK, Florens L, Washburn MP. Generation and analysis of multidimensional protein identification technology datasets. Methods Mol. Biol.492, 1–20 (2009).
  • Hall DA, Ptacek J, Snyder M. Protein microarray technology. Mech. Ageing Dev.128(1), 161–167 (2007).
  • Tang N, Tornatore P, Weinberger SR. Current developments in SELDI affinity technology. Mass Spectrom. Rev.23(1), 34–44 (2004).
  • Xiao Z, Adam BL, Cazares LH et al. Quantitation of serum prostate-specific membrane antigen by a novel protein biochip immunoassay discriminates benign from malignant prostate disease. Cancer Res.61(16), 6029–6033 (2001).
  • Petricoin EF, Ardekani AM, Hitt BA et al. Use of proteomic patterns in serum to identify ovarian cancer. Lancet359(9306), 572–577 (2002).
  • Villanueva J, Shaffer DR, Philip J et al. Differential exoprotease activities confer tumor-specific serum peptidome patterns. J. Clin. Invest.116(1), 271–284 (2006).
  • Weinberger SR, Dalmasso EA, Fung ET. Current achievements using ProteinChip Array technology. Curr. Opin. Chem. Biol.6(1), 86–91 (2002).
  • Caiazzo RJ, Maher AJ, Drummond MP et al. Protein microarrays as an application for disease biomarkers. Proteomics Clin. Appl.2, 138–147 (2009).
  • Phizicky E, Bastiaens PI, Zhu H, Snyder M, Fields S. Protein analysis on a proteomic scale. Nature422(6928), 208–215 (2003).
  • Liotta LA, Espina V, Mehta AI et al. Protein microarrays: meeting analytical challenges for clinical applications. Cancer Cell3(4), 317–325 (2003).
  • Kodadek T. Protein microarrays: prospects and problems. Chem. Biol.8(2), 105–115 (2001).
  • Greenbaum D, Baruch A, Hayrapetian L et al. Chemical approaches for functionally probing the proteome. Mol. Cell. Proteomics1(1), 60–68 (2002).
  • Wilson DS, Nock S. Recent developments in protein microarray technology. Angew. Chem. Int. Ed. Engl.42(5), 494–500 (2003).
  • Seeley EH, Caprioli RM. Molecular imaging of proteins in tissues by mass spectrometry. Proc. Natl. Acad. Sci. USA105(47), 18126–18131 (2008).
  • Yanagisawa K, Shyr Y, Xu BJ et al. Proteomic patterns of tumour subsets in non-small-cell lung cancer. Lancet362(9382), 433–439 (2003).
  • Schwartz SA, Weil RJ, Thompson RC et al. Proteomic-based prognosis of brain tumor patients using direct-tissue matrix-assisted laser desorption ionization mass spectrometry. Cancer Res.65(17), 7674–7681 (2005).
  • Xu BJ, Li J, Beauchamp RD et al. Identification of early intestinal neoplasia protein biomarkers using laser capture microdissection and MALDI MS. Mol. Cell. Proteomics8(5), 936-45 (2009).
  • Albrethsen J. Reproducibility in protein profiling by MALDI-TOF mass spectrometry. Clin. Chem.53(5), 852–858 (2007).
  • Salzano AM, Paron I, Pines A et al. Differential proteomic analysis of nuclear extracts from thyroid cell lines. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.833(1), 41–50 (2006).
  • Paron I, Scaloni A, Pines A et al. Nuclear localization of Galectin-3 in transformed thyroid cells: a role in transcriptional regulation. Biochem. Biophys. Res. Commun.302(3), 545–553 (2003).
  • Paron I, D’Ambrosio C, Scaloni A et al. A differential proteomic approach to identify proteins associated with thyroid cell transformation. J. Mol. Endocrinol.34(1), 199–207 (2005).
  • Marsee DK, Venkateswaran A, Tao H et al. Inhibition of heat shock protein 90, a novel RET/PTC1-associated protein, increases radioiodide accumulation in thyroid cells. J. Biol. Chem.279(42), 43990–43997 (2004).
  • Gorla L, Cantù M, Miccichè F et al. RET oncoproteins induce tyrosine phosphorylation changes of proteins involved in RNA metabolism. Cell Signal.18(12), 2272–2282 (2006).
  • Gorla L, Mondellini P, Cuccuru G et al. Proteomics study of medullary thyroid carcinomas expressing RET germ-line mutations: identification of new signaling elements. Mol. Carcinog.48(3), 220–231 (2009).
  • Iannetti A, Pacifico F, Acquaviva R et al. The neutrophil gelatinase-associated lipocalin (NGAL), a NF-κB-regulated gene, is a survival factor for thyroid neoplastic cells. Proc. Natl. Acad. Sci. USA105(37), 14058–14063 (2008).
  • Pacifico F, Paolillo M, Chiappetta G et al. RbAp48 is a target of nuclear factor-κB activity in thyroid cancer. J. Clin. Endocrinol. Metab.92(4), 1458–1466 (2007).
  • Ito T, Seyama T, Mizuno T et al. Unique association of p53 mutations with undifferentiated but not differentiated carcinomas of the thyroid gland. Cancer Res.52(5), 1369–1371 (1992).
  • Donghi R, Longoni A, Pilotti S, Michieli P, Della Porta G, Pienotti MA. Gene p53 mutations are restricted to poorly differentiated and undifferentiated carcinomas of the thyroid gland. J. Clin. Invest.91(4), 1753–1760 (1993).
  • Fagin JA, Matsuo K, Karmakar A, Chen DL, Tang SH, Koeffler HP. High prevalence of mutations of p53 gene in poorly differentiated human thyroid carcinomas. J. Clin. Invest.91(1), 179–184 (1993).
  • Fusco A, Berlingieri MT, Di Fiore PP, Portella G, Grieco M, Vecchio G. One- and two-step transformations of rat thyroid epithelial cells by retroviral oncogenes. Mol. Cell. Biol.7(9), 3365–3370 (1987).
  • Friedlander P, Legros Y, Soussi T, Prives C. Regulation of mutant p53 temperature-sensitive DNA binding. J. Biol. Chem.271(41), 25468–25478 (1996).
  • Casamassimi A, Miano MG, Porcellini A et al. p53 genes mutated in the DNA binding site or at a specific COOH-terminal site exert divergent effects on thyroid cell growth and differentiation. Cancer Res.58(13), 2888–2894(1998).
  • Fiscella M, Zambrano N, Ullrich SJ et al. The carboxy-terminal serine 392 phosphorylation site of human p53 is not required for wild-type activities. Oncogene9(11), 3249–3257 (1994).
  • Keller DM, Lu H. p53 serine 392 phosphorylation increases after UV through induction of the assembly of the CK2.hSPT16.SSRP1 complex. J. Biol. Chem.277(51), 50206–50213 (2002).
  • Pines A, Bivi N, Vascotto C et al. Nucleotide receptors stimulation by extracellular ATP controls Hsp90 expression through APE1/Ref-1 in thyroid cancer cells: a novel tumorigenic pathway. J. Cell. Physiol.209(1), 44–55 (2006).
  • Pacifico F, Mauro C, Barone C et al. Oncogenic and anti-apoptotic activity of NF-κB in human thyroid carcinomas. J. Biol. Chem.279(52), 54610–54619 (2004).
  • Qian YW, Wang YC, Hollingsworth Jr RE, Jones D, Ling N, Lee EY. A retinoblastoma-binding protein related to a negative regulator of Ras in yeast. Nature364(6438), 648–652 (1993).
  • Zhang Y, Ng HH, Erdjument-Bromage H, Tempst P, Bird A, Reinberg D. Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes Dev.13(15), 1924–1935 (1999).
  • Loyola A, Almouzni G. Histone chaperones, a supporting role in the limelight. Biochim. Biophys. Acta.1677(1–3), 3–11 (2004).
  • Russo D, Bisca A, Celano M et al. Proteomic analysis of human thyroid cell lines reveals reduced nuclear localization of Mn-SOD in poorly differentiated thyroid cancer cells. J. Endocrinol. Invest.28(2), 137–144 (2005).
  • Obermaier C, Jankowski V, Schmutzler C et al. Free-flow isoelectric focusing of proteins remaining in cell fragments following sonication of thyroid carcinoma cells. Electrophoresis26(11), 2109–2116 (2005).
  • Schweppe RE, Klopper JP, Korch C et al. Deoxyribonucleic acid profiling analysis of 40 human thyroid cancer cell lines reveals cross-contamination resulting in cell line redundancy and misidentification. J. Clin. Endocrinol. Metab.93(11), 4331–4341 (2008).
  • Berger K, Wissmann D, Ihling C et al. Quantitative proteome analysis in benign thyroid nodular disease using the fluorescent ruthenium II tris(bathophenanthroline disulfonate) stain. Mol. Cell. Endocrinol.227(1–2), 21–30 (2004).
  • Krause K, Schierhorn A, Sinz A et al. Toward the application of proteomics to human thyroid tissue. Thyroid16(11), 1131–1143 (2006).
  • Lin JD, Huang CC, Weng HF, Chen SC, Jeng LB. Comparison of membrane proteins from benign and malignant human thyroid tissues by two-dimensional polyacrylamide gel electrophoresis. J. Chromatogr. B. Biomed. Appl.667(1), 153–160 (1995).
  • Lin JD, Chan EC, Weng HF, Sheu CA. Two-dimensional electrophoretic analysis of membranous protein from human thyroid tissues and cancer cell lines. Electrophoresis19(18), 3213–3216 (1998).
  • Krause K, Karger S, Schierhorn A, Poncin S, Many MC, Fuhrer D. Proteomic profiling of cold thyroid nodules. Endocrinology148(4), 1754–1763 (2007).
  • Brown LM, Helmke SM, Hunsucker SW et al. Quantitative and qualitative differences in protein expression between papillary thyroid carcinoma and normal thyroid tissue. Mol. Carcinog.45(8), 613–626 (2006).
  • Giusti L, Iacconi P, Ciregia F et al. Fine-needle aspiration of thyroid nodules: proteomic analysis to identify cancer biomarkers. J. Proteome Res.7(9), 4079–4088 (2008).
  • Cortese F, Boffo V, Gargiani M, Servetti S, Argirò G, Casciani CU. Tall cell variant of papillary thyroid cancer. J. Exp. Clin. Cancer Res.17(4), 3–52 (1998).
  • Samuni Y, Gamson J, Samuni A et al. Factors influencing nitroxide reduction and cytotoxicity in vitro. Antioxid. Redox Signal6(3), 587–595 (2004).
  • Fujii J, Ikeda Y. Advances in our understanding of peroxiredoxin, a multifunctional, mammalian redox protein. Redox Rep.7(3), 3–10 (2002).
  • Pham CG, Bubici C, Zazzeroni F et al. Ferritin heavy chain upregulation by NF-κB inhibits TNFα-induced apoptosis by suppressing reactive oxygen species. Cell119(4), 29–42 (2004).
  • Torres-Cabala C, Panizo-Santos A, Krutzsch HC et al. Differential expression of S100C in thyroid lesions. Int. J. Surg. Pathol.12(2), 107–115 (2004).
  • Torres-Cabala C, Bibbo M, Panizo-Santos A et al. Proteomic identification of new biomarkers and application in thyroid cytology. Acta Cytol.50(5), 518–528 (2006).
  • Srisomsap C, Subhasitanont P, Otto A et al. Detection of cathepsin B up-regulation in neoplastic thyroid tissues by proteomic analysis. Proteomics2(6), 706–712 (2002).
  • Shuja S, Cai J, Iacobuzio-Donahue C et al. Cathepsin B activity and protein levels in thyroid carcinoma, Graves’ disease, and multinodular goiters. Thyroid9(6), 569–577 (1999).
  • Kusunoki T, Nishida S, Nakano T et al. Study on cathepsin B activity in human thyroid tumors. Auris Nasus Larynx22(1), 43–48 (1995).
  • Franzoni A, Dima M, D’Agostino M et al. Prohibitin is overexpressed in papillary thyroid carcinomas bearing the BRAF(V600E) mutation. Thyroid19(3), 247–255 (2009).
  • Netea-Maier RT, Hunsucker SW, Hoevenaars BM et al. Discovery and validation of protein abundance differences between follicular thyroid neoplasms. Cancer Res.68(5), 1572–1580 (2008).
  • Suriano R, Lin Y, Ashok BT et al. Pilot study using SELDI-TOF-MS based proteomic profile for the identification of diagnostic biomarkers of thyroid proliferative diseases. J. Proteome Res.5(4), 856–861 (2006).
  • Whelan LC, Power KA, McDowell DT, Kennedy J, Gallagher WM. Applications of SELDI-MS technology in oncology. J. Cell. Mol. Med.12(5A), 1535–1547 (2008).
  • Wang JX, Yu JK, Wang L, Liu QL, Zhang J, Zheng S. Application of serum protein fingerprint in diagnosis of papillary thyroid carcinoma. Proteomics6(19), 5344–5349 (2006).
  • Moretz WH, Gourin CG, Terris DJ et al. Detection of papillary thyroid carcinoma with serum protein profile analysis. Arch. Otolaryngol. Head Neck Surg.134(2), 198–202 (2008).
  • Diamandis EP. Peptidomics for cancer diagnosis: present and future. J. Proteome Res.5(9), 2079–2082 (2006).
  • Villanueva J, Martorella AJ, Lawlor K et al. Serum peptidome patterns that distinguish metastatic thyroid carcinoma from cancer-free controls are unbiased by gender and age. Mol. Cell. Proteomics5(10), 1840–1852 (2006).
  • Villanueva J, Nazarian A, Lawlor K, Yi SS, Robbins RJ, Tempst P. A sequence-specific exopeptidase activity test (SSEAT) for ‘functional’ biomarker discovery. Mol. Cell. Proteomics7(3), 509–518 (2008).
  • Linkov F, Ferris RL, Yurkovetsky Z et al. Multiplex analysis of cytokines as biomarkers that differentiate benign and malignant thyroid diseases. Proteomics Clin. Appl.2(12), 1575–1585 (2008).
  • Pang S, Smith J, Onley D et al. A comparability study of the emerging protein array platforms with established ELISA procedures. J. Immunol. Methods302(1–2), 1–12 (2005).
  • Apel RL, Ezzat S, Bapat BV, Pan N, LiVolsi VA, Asa SL. Clonality of thyroid nodules in sporadic goiter. Diagn. Mol. Pathol.4(2), 113–121 (1995).
  • Fusco A, Chiappetta G, Hui P et al. Assessment of RET/PTC oncogene activation and clonality in thyroid nodules with incomplete morphological evidence of papillary carcinoma: a search for the early precursors of papillary cancer. Am. J. Pathol.160(6), 2157–2167 (2002).
  • Mustafa D, Kros JM, Luider T. Combining laser capture microdissection and proteomics techniques. Methods Mol. Biol.428, 159–178 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.