340
Views
45
CrossRef citations to date
0
Altmetric
Review

Recent advances in mass spectrometry-based peptidome analysis

, &
Pages 433-447 | Published online: 09 Jan 2014

References

  • Schrader M, Schulz-Knappe P. Peptidomics technologies for human body fluids. Trends Biotechnol.19(10), S55–S60 (2001).
  • Schulz-Knappe P, Zucht HD, Heine C, Jurgens M, Hess R, Schrader M. Peptidomics: the comprehensive analysis of peptides in complex biological mixtures. Comb. Chem. High Throughput Screen4(2), 207–217 (2001).
  • Liotta LA, Petricoin EF. Serum peptidome for cancer detection: spinning biologic trash into diagnostic gold. J. Clin. Invest.116(1), 26–30 (2006).
  • Novak K. Biomarkers: taking out the trash. Nat. Rev. Cancer6(2), 92–92 (2006).
  • Schulte L, Tammen H, Selle H, Schulz-Knappe P. Peptides in body fluids and tissues as markers of disease. Expert Rev. Mol. Diagn.5(2), 145–157 (2005).
  • Soloviev M, Finch P. Peptidomics: bridging the gap between proteome and metabolome. Proteomics6(3), 744–747 (2006).
  • Petricoin EF, Belluco C, Araujo RP, Liotta LA. The blood peptidome: a higher dimension of information content for cancer biomarker discovery. Nat. Rev. Cancer6(12), 961–967 (2006).
  • Falth M, Skold K, Norrman M, Svensson M, Fenyo D, Andren PE. SwePep, a database designed for endogenous peptides and mass spectrometry. Mol. Cell. Proteomics5(6), 998–1005 (2006).
  • Jiang XG, Ye ML, Zou HF. Technologies and methods for sample pretreatment in efficient proteome and peptidome analysis. Proteomics8(4), 686–705 (2008).
  • Chertov O, Simpson JT, Biragyn A, Conrads TP, Veenstra TD, Fisher RJ. Enrichment of low-molecular-weight proteins from biofluids for biomarker discovery. Expert Rev. Proteomics2(1), 139–145 (2005).
  • Tirumalai RS, Chan KC, Prieto DA, Issaq HJ, Conrads TP, Veenstra TD. Characterization of the low molecular weight human serum proteome. Mol. Cell. Proteomics2(10), 1096–1103 (2003).
  • Zheng XY, Baker H, Hancock WS. Analysis of the low molecular weight serum peptidome using ultrafiltration and a hybrid ion trap-Fourier transform mass spectrometer. J. Chromatogr. A1120(1–2), 173–184 (2006).
  • Polson C, Sarkar P, Incledon B, Raguvaran V, Grant R. Optimization of protein precipitation based upon effectiveness of protein removal and ionization effect in liquid chromatography-tandem mass spectrometry. J. Chromatogr. B785(2), 263–275 (2003).
  • Alpert AJ, Shukla AK. Precipitation of large, high-abundance proteins from serum with organic solvents. The 8th Annual Meeting of the Association for Biomolecular Resource Facilities (ABRF 2003). Denver, CO, USA (2003) (Poster P111-W).
  • Kay R, Barton C, Ratcliffe L et al. Enrichment of low molecular weight serum proteins using acetonitrile precipitation for mass spectrometry based proteomic analysis. Rapid Commun. Mass Spectrom.22(20), 3255–3260 (2008).
  • Chen JZ, Anderson M, Misek DE, Simeone DM, Lubman DM. Characterization of apolipoprotein and apolipoprotein precursors in pancreatic cancer serum samples via two-dimensional liquid chromatography and mass spectrometry. J. Chromatogr. A1162(2), 117–125 (2007).
  • Chertov O, Biragyn A, Kwak LW et al. Organic solvent extraction of proteins and peptides from serum as an effective sample preparation for detection and identification of biomarkers by mass spectrometry. Proteomics4(4), 1195–1203 (2004).
  • Villanueva J, Philip J, Entenberg D et al. Serum peptide profiling by magnetic particle-assisted, automated sample processing and MALDI-TOF mass spectrometry. Anal. Chem.76(6), 1560–1570 (2004).
  • Fiedler GM, Baumann S, Leichtle A et al. Standardized peptidome profiling of human urine by magnetic bead separation and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Clinical Chemistry53(3), 421–428 (2007).
  • Baumann S, Ceglarek U, Fiedler GM, Lembcke J, Leichtle A, Thiery J. Standardized approach to proteome profiling of human serum based on magnetic bead separation and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Clin. Chem.51(6), 973–980 (2005).
  • Aristoteli LP, Molloy MP, Baker MS. Evaluation of endogenous plasma peptide extraction methods for mass spectrometric biomarker discovery. J. Proteome Res.6(2), 571–581 (2007).
  • Koomen JM, Li DH, Xiao LC et al. Direct tandem mass spectrometry reveals limitations in protein profiling experiments for plasma biomarker discovery. J. Proteome Res.4(3), 972–981 (2005).
  • Li X, Xu SY, Pan CS et al. Enrichment peptides from plasma for peptidome analysis using multiwalled carbon nanotubes. J. Sep. Sci.30, 930–943 (2007).
  • Gaspari M, Cheng MMC, Terracciano R et al. Nanoporous surfaces as harvesting agents for mass spectrometric analysis of peptides in human plasma. J. Proteome Res.5(5), 1261–1266 (2006).
  • Terracciano R, Gaspari M, Testa F et al. Selective binding and enrichment for low-molecular weight biomarker molecules in human plasma after exposure to nanoporous silica particles. Proteomics6(11), 3243–3250 (2006).
  • Tian RJ, Zhang H, Ye ML et al. Selective extraction of peptides from human plasma by highly ordered mesoporous silica particles for peptidome analysis. Angew. Chem. Int. Ed.46, 962–965 (2007).
  • Tian RJ, Ye ML, Hu LH, Li X, Zou HF. Selective extraction of peptides in acidic human plasma by porous silica nanoparticles for peptidome analysis with 2-D LC-MS/MS. J. Sep. Sci.30(14), 2204–2209 (2007).
  • Tian RJ, Ren LB, Ma H et al. Selective enrichment of endogenous peptides by chemically modified porous nanoparticles for peptidome analysis. J. Chromatogr. A1216(8), 1270–1278 (2009).
  • Hu LH, Zhou HJ, Li YH et al. Profiling of endogenous serum phosphorylated peptides by titanium (IV) immobilized mesoporous silica particles enrichment and MALDI-TOFMS detection. Anal. Chem.81(1), 94–104 (2009).
  • Boos KS, Grimm CH. High-performance liquid chromatography integrated solid-phase extraction in bioanalysis using restricted access precolumn packings. Trends Analyt. Chem.18(3), 175–180 (1999).
  • Grimm CH, Boos KS, Apel C et al. Selective extraction of small proteins from biological samples using a novel restricted access column with cation exchange properties. Chromatographia52(11–12), 703–709 (2000).
  • Wagner K, Miliotis T, Marko-Varga G, Bischoff R, Unger KK. An automated online multidimensional HPLC system for protein and peptide mapping with integrated sample preparation. Anal. Chem.74(4), 809–820 (2002).
  • Hu LH, Boos KS, Ye ML, Wu RA, Zou HF. Selective online serum peptide extraction and multidimensional separation by coupling a restricted-access material-based capillary trap column with nanoliquid chromatography–tandem mass spectrometry. J. Chromatogr. A1216(28), 5377–5384 (2009).
  • Camerini S, Polci M, Liotta LA, Petricoin EF, Zhou WD. A method for the selective isolation and enrichment of carrier protein-bound low-molecular weight proteins and peptides in the blood. Proteom. Clin. Appl.1(2), 176–184 (2007).
  • Ly L, Wasinger VC. Peptide enrichment and protein fractionation using selective electrophoresis. Proteomics8(20), 4197–4208 (2008).
  • Gundry RL, Fu Q, Jelinek CA, Van Eyk JE, Cotter RJ. Investigation of an albumin-enriched fraction of human serum and its albuminome. Proteom. Clin. Appl.1(1), 73–88 (2007).
  • Zhou M, Lucas DA, Chan KC et al. An investigation into the human serum ‘interactome’. Electrophoresis25, 1289–1298 (2003).
  • Mehta AI, Ross S, Lowenthal MS et al. Biomarker amplification by serum carrier protein binding. Dis. Markers19(1), 1–10 (2003).
  • Lowenthal MS, Mehta AI, Frogale K et al. Analysis of albumin-associated peptides and proteins from ovarian cancer patients. Clin. Chem.51(10), 1933–1945 (2005).
  • Scrivener E, Barry R, Platt A et al. Peptidomics: a new approach to affinity protein microarrays. Proteomics3(2), 122–128 (2003).
  • Soloviev M, Barry R, Scrivener E, Terrett J. Combinatorial peptidomics: a generic approach for protein expression profiling. J. Nanobiotechnol.1(4) (2003).
  • Hu LH, Ye ML, Jiang XG, Feng S, Zou HF. Advances in hyphenated analytical techniques for shotgun proteome and peptidome analysis – a review. Anal. Chim. Acta598(2), 193–204 (2007).
  • Washburn MP, Wolters D, Yates JR. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol.19(3), 242–247 (2001).
  • Link AJ, Eng J, Schieltz DM et al. Direct analysis of protein complexes using mass spectrometry. Nat. Biotechnol.17(7), 676–682 (1999).
  • Husson SJ, Clynen E, Baggerman G, De Loof A, Schoofs L. Discovering neuropeptides in Caenorhabditis elegans by two dimensional liquid chromatography and mass spectrometry. Biochem. Biophys. Res. Commun.335(1), 76–86 (2005).
  • Baggerman G, Boonen K, Verleyen P, De Loof A, Schoofs L. Peptidomic analysis of the larval Drosophila melanogaster central nervous system by two-dimensional capillary liquid chromatography quadrupole time-of-flight mass spectrometry. J. Mass Spectrom.40(2), 250–260 (2005).
  • Gilar M, Olivova P, Daly AE, Gebler JC. Orthogonality of separation in two-dimensional liquid chromatography. Anal. Chem.77(19), 6426–6434 (2005).
  • Gilar M, Olivova P, Daly AE, Gebler JC. Two-dimensional separation of peptides using RP-RP-HPLC system with different pH in first and second separation dimensions. J. Sep. Sci.28(14), 1694–1703 (2005).
  • Dowell JA, Vander Heyden W, Li L. Rat neuropeptidomics by LC-MS/MS and MALDI-FT-MS: enhanced dissection and extraction techniques coupled with 2D RP-RP HPLC. J. Proteome Res.5(12), 3368–3375 (2006).
  • Hu LH, Li X, Jiang XN et al. Comprehensive peptidome analysis of mouse livers by size exclusion chromatography prefractionation and NanoLC-MS/MS identification. J. Proteome Res.6(2), 801–808 (2007).
  • Mohring T, Kellmann M, Jurgens M, Schrader M. Top-down identification of endogenous peptides up to 9 kDa in cerebrospinal fluid and brain tissue by nanoelectrospray quadrupole time-of-flight tandem mass spectrometry. J. Mass Spectrom.40(2), 214–226 (2005).
  • Gevaert K, Impens F, Ghesquiere B, Van Damme P, Lambrechts A, Vandekerckhove J. Stable isotopic labeling in proteomics. Proteomics8(23–24), 4873–4885 (2008).
  • Iliuk A, Galan J, Tao WA. Playing tag with quantitative proteomics. Anal. Bioanal. Chem.393(2), 503–513 (2009).
  • Julka S, Regnier F. Quantification in proteomics through stable isotope coding: a review. J. Proteome Res.3(3), 350–363 (2004).
  • Regnier FE, Julka S. Primary amine coding as a path to comparative proteomics. Proteomics6(14), 3968–3979 (2006).
  • Tammen H, Kreipe H, Hess R et al. Expression profiling of breast cancer cells by differential peptide display. Breast Cancer Res. Treat.79(1), 83–93 (2003).
  • Tammen H, Mohring T, Kellmann M, Pich A, Kreipe HH, Hess R. Mass spectrometric phenotyping of Val34Leu polymorphism of blood coagulation factor XIII by differential peptide display. Clin. Chem.50(3), 545–551 (2004).
  • Hutchens TW, Yip TT. New desorption strategies for the mass-spectrometeric analysis of macromolecules. Rapid Commun. Mass Spectrom.7(7), 576–580 (1993).
  • Issaq HJ, Conrads TP, Prieto DA, Tirumalai R, Veenstra TD. SELDI-TOF MS for diagnostic proteomics. Anal. Chem.75(7), 148A–155A (2003).
  • Issaq HJ, Veenstra TD, Conrads TP, Felschow D. The SELDI-TOF MS approach to proteomics: protein profiling and biomarker identification. Biochem. Biophys. Res. Commun.292(3), 587–592 (2002).
  • Petricoin EF, Ardekani AM, Hitt BA et al. Use of proteomic patterns in serum to identify ovarian cancer. Lancet359(9306), 572–577 (2002).
  • Petricoin EF, Liotta LA. SELDI-TOF-based serum proteomic pattern diagnostics for early detection of cancer. Curr. Opin. Biotechnol.15(1), 24–30 (2004).
  • Villanueva J, Shaffer DR, Philip J et al. Differential exoprotease activities confer tumor-specific serum peptidome patterns. J. Clin. Invest.116(1), 271–284 (2006).
  • Fricker LD, Lim JY, Pan H, Che FY. Peptidomics: identification and quantification of endogenous peptides in neuroendocrine tissues. Mass Spectrom. Rev.25(2), 327–344 (2006).
  • Hood BL, Lucas DA, Kim G et al. Quantitative analysis of the low molecular weight serum proteome using O-18 stable isotope labeling in a lung tumor xenograft mouse model. J. Am. Soc. Mass Spectrom.16(8), 1221–1230 (2005).
  • Ross PL, Huang YN, Marchese JN et al. Multiplexed protein quantitation in saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell. Proteomics3(12), 1154–1169 (2004).
  • Hardt M, Witkowska HE, Webb S et al. Assessing the effects of diurnal variation on the composition of human parotid saliva: quantitative analysis of native peptides using iTRAQ reagents. Anal. Chem.77(15), 4947–4954 (2005).
  • Robinson S, Niles RK, Witkowska HE et al. A mass spectrometry-based strategy for detecting and characterizing endogenous proteinase activities in complex biological samples. Proteomics8(3), 435–445 (2008).
  • Enoksson M, Li JW, Ivancic MM et al. Identification of proteolytic cleavage sites by quantitative proteomics. J. Proteome Res.6(7), 2850–2858 (2007).
  • Timmer JC, Enoksson M, Wildfang E et al. Profiling constitutive proteolytic events in vivo. Biochem. J.407, 41–48 (2007).
  • Doucet A, Butler GS, Rodriguez D, Prudova A, Overall CM. Metadegradomics towards in vivo quantitative degradomics of proteolytic post-translational modifications of the cancer proteome. Mol. Cell. Proteomics7(10), 1925–1951 (2008).
  • Kidd D, Liu YS, Cravatt BF. Profiling serine hydrolase activities in complex proteomes. Biochemistry40(13), 4005–4015 (2001).
  • Greenbaum D, Medzihradszky KF, Burlingame A, Bogyo M. Epoxide electrophiles as activity-dependent cysteine protease profiling and discovery tools. Chem. Biol.7(8), 569–581 (2000).
  • Greenbaum D, Baruch A, Hayrapetian L et al. Chemical approaches for functionally probing the proteome. Mol. Cell. Proteomics1(1), 60–68 (2002).
  • Kessler BM, Tortorella D, Altun M et al. Extended peptide-based inhibitors efficiently target the proteasome and reveal overlapping specificities of the catalytic β-subunits. Chem. Biol.8(9), 913–929 (2001).
  • Chun J, Yin YI, Yang GL, Tarassishin L, Li YM. Stereoselective synthesis of photoreactive peptidomimetic γ-secretase inhibitors. J. Org. Chem.69(21), 7344–7347 (2004).
  • Saghatelian A, Jessani N, Joseph A, Humphrey M, Cravatt BF. Activity-based probes for the proteomic profiling of metalloproteases. Proc. Natl. Acad. Sci.101(27), 10000–10005 (2004).
  • Tian RJ, Jiang XN, Li X et al. Biological fingerprinting analysis of the interactome of a kinase inhibitor in human plasma by a chemiproteomic approach. J. Chromatogr. A1134(1–2), 134–142 (2006).
  • Tammen H, Zucht HD, Budde P. Oncopeptidomics - a commentary on opportunities and limitations. Cancer Lett.249(1), 80–86 (2007).
  • West-Norager M, Kelstrup CD, Schou C, Hogdall EV, Hogdall CK, Heegaard NHH. Unravelling in vitro variables of major importance for the outcome of mass spectrometry-based serum proteomics. J. Chromatogr. A847(1), 30–37 (2007).
  • Banks RE, Stanley AJ, Cairns DA et al. Influences of blood sample processing on low-molecular-weight proteome identified by surface-enhanced laser desorption/ionization mass spectrometry. Clin. Chem.51(9), 1637–1649 (2005).
  • Yi JZ, Kim C, Gelfand CA. Inhibition of intrinsic proteolytic activities moderates preanalytical variability and instability of human plasma. J. Proteome Res.6(5), 1768–1781 (2007).
  • Hsieh SY, Chen RK, Pan YH, Lee HL. Systematical evaluation of the effects of sample collection procedures on low-molecular-weight serum/plasma proteome profiling. Proteomics6(10), 3189–3198 (2006).
  • Villanueva J, Philip J, Chaparro CA et al. Correcting common errors in identifying cancer-specific serum peptide signatures. J. Proteome Res.4(4), 1060–1072 (2005).
  • West-Hielsen M, Hogdall EV, Marchiori E, Hogdall CK, Schou C, Heegaard NHH. Sample handling for mass spectrometric proteomic investigations of human sera. Anal. Chem.77(16), 5114–5123 (2005).
  • Diamandis EP. Mass Spectrometry as a diagnostic and a cancer biomarker discovery tool – opportunities and potential limitations. Mol. Cell. Proteomics3(4), 367–378 (2004).
  • Baggerly KA, Morris JS, Coombes KR. Reproducibility of SELDI-TOF protein patterns in serum: comparing datasets from different experiments. Bioinformatics20(5), U777–U710 (2004).
  • Clynen E, Huybrechts J, Verleyen P, De Loof A, Schoofs L. Annotation of novel neuropeptide precursors in the migratory locust based on transcript screening of a public EST database and mass spectrometry. BMC Genomics7, 15 (2006).
  • Liu F, Baggerman G, D’Hertog W, Verleyen P, Schoofs L, Wets G. In silico identification of new secretory peptide genes in Drosophila melanogaster. Mol. Cell. Proteomics5(3), 510–522 (2006).
  • Lease KA, Walker JC. The Arabidopsis unannotated secreted peptide database, a resource for plant peptidomics. Plant Physiol.142(3), 831–838 (2006).
  • Lopez-Otin C, Overall CM. Protease degradomics: a new challenge for proteomics. Nat. Rev. Mol. Cell Biol.3(7), 509–519 (2002).
  • Lange V, Picotti P, Domon B, Aebersold R. Selected reaction monitoring for quantitative proteomics: a tutorial. Mol. Syst. Biol.4, 14 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.