192
Views
18
CrossRef citations to date
0
Altmetric
Review

Tissue proteomics in atherosclerosis: elucidating the molecular mechanisms of cardiovascular diseases

, , , , , , & show all
Pages 395-409 | Published online: 09 Jan 2014

References

  • Fuster V, Fayad ZA, Badimon JJ. Acute coronary syndromes: biology. Lancet353(Suppl. 2), SII5–SII9 (1999).
  • Sanz J, Fayad, ZA. Imaging of atherosclerotic cardiovascular disease. Nature451(7181), 953–957 (2008).
  • Nakagomi A, Celermajer DS, Lumley T, Freedman SB. Angiographic severity of coronary narrowing is a surrogate marker for the extent of coronary atherosclerosis. Am. J. Cardiol.78, 516–519 (1996).
  • Anderson NL, Anderson NG. The human plasma proteome: history, character, and diagnostic prospects. Mol. Cell. Proteomics1, 845–867 (2002).
  • Alvarez-Llamas G, de la Cuesta F, Barderas ME, Darde V, Padial LR, Vivanco F. Recent advances in atherosclerosis-based proteomics: new biomarkers and a future perspective. Expert Rev. Proteomics5(5), 679–691 (2008).
  • Barderas MG, Tuñón J, Dardé VM et al. Circulating human monocytes express a characteristic proteomic profile. J. Proteome Res.6(2), 876–886 (2007).
  • Barderas MG, Tuñón J, Dardé VM et al. Atorvastatin modifies the protein profile of circulating human monocytes after an acute coronary syndrome. Proteomics9(7), 1982–1993 (2009).
  • Halushka MK, Cornish TC, Lu J, Selvin S, Selvin E. Creation, validation, and quantitative analysis of protein expression in vascular tissue microarrays. Cardiovasc. Pathol. DOI:10.1016/j.carpath.2008.12.007 (2009) (Epub ahead of print).
  • Mayr M, Chung Y, Mayr U et al. Proteomic and metabolomic analyses of atherosclerotic vessels from apolipoprotein E-defficient mice reveal alterations in inflammatory, oxidative stress, and energy metabolism. Arterioscler. Thromb. Vasc. Biol.25, 2135–2142 (2005).
  • Madan M, Amar S. Toll-like receptor-2 mediates diet and/or pathogen associated atherosclerosis: proteomic findings. PLoS ONE3(9), e3204 (2008).
  • Almofti MR, Huang Z, Yang P, Rui Y, Yang P. Proteomic analysis of rat aorta during atherosclerosis induced by high cholesterol diet and injection of vitamin D3. Clin. Exp. Pharmacol. Physiol.33(4), 305–309 (2006).
  • Forte A, Finicelli M, De Luca P et al. Expression profiles in surgically-induce carotid stenosis: a combined transcriptomic and proteomic investigation. J. Cell. Mol. Med.12(5B), 1956–1973 (2008).
  • Donners M, Verluyten MJ, Bouwman FG et al. Proteomic analysis of differential protein expression in human atherosclerotic plaque progression. J. Pathol.206, 39–45 (2005).
  • Park HK, Park EC, Bae SW et al. Expression of heat shock protein 27 in human atherosclerotic plaques and increased plasma level of heat shock protein 27 in patients with acute coronary syndrome. Circulation114, 886–893 (2006).
  • Leppeda AJ, Cigliano A, Cherchi GM et al. A proteomic approach to differentiate histologically classified stable and unstable plaques from human carotid arteries. Atherosclerosis203(1), 112–118 (2009).
  • Martin-Ventura JL, Duran MC, Blanco-Colio LM et al. Identification by a differential proteomic approach of heat shock protein 27 as a potential marker of atherosclerosis. Circulation110(15), 2216–2219 (2004).
  • Miller H, Poon S, Hibbert b et al. Modulation of estrogen signaling by the novel interaction of heat shock protein 27, a biomarker for atherosclerosis, and estrogen receptor β: mechanistic insight into the vascular effects of estrogens. Arterioscler. Thromb. Vasc. Biol.25(3), e10–e14 (2005).
  • Rayner K, Chen YX, McNulty M et al. Extracellular release of the atheroprotective heat shock protein 27 is mediated by estrogen and competitively inhibits acLDL binding to scavenger receptor-A. Circ. Res.103(2), 133–141 (2008).
  • Sung HJ, Ryang YS, Jang SW et al. Proteomic analysis of differential protein expression in atherosclerosis. Biomarkers11(3), 279–290 (2008).
  • Slevin M, Elasbali AB, Turu MM et al. Identification of differential protein expression associated with development of unstable human carotid plaques. Am. J. Pathol.168(3), 1004–1021 (2006).
  • Martinet W, Schrijvers DM, De Meyer GRY et al. Western array analysis of human atherosclerotic plaques: downregulation of apoptosis-linked gene 2. Cardiovasc. Res.60, 259–267 (2003).
  • Mas S, Touboul D, Brunelle A et al. Lipid cartography of atherosclerotic plaque by cluster-TOF-SIMS. Analyst132, 24–26 (2007).
  • Malmberg P, Börner K, Chen Y et al. Localization of lipids in the aortic wall with imaging TOF-SIMS. Biochim. Biophys. Acta1771, 185–195 (2007).
  • Mas S, Perez R, Martinez-Pinna R et al. Cluster TOF-SIMS imaging: a new light for in situ metabolomics. Proteomics8, 3735–3745 (2008).
  • Mas S, Martinez-Pina R, Martin-Ventura JL et al. Local non-esterified fatty acids in Type-2 diabetes atherosclerotic plaques correlate with plaque inflammation. Diabetes (2009) (In Press).
  • You SA, Archacki SR, Angheloiu G et al. Proteomic approach to coronary atherosclerosis shows ferritin light chain as a significant marker: evidence consistent with iron hypothesis in atherosclerosis. Physiol. Genomics13(1), 25–30 (2003).
  • Bagnato C, Thumar J, Mayya V et al. Proteomic analysis of human coronary atherosclerotic plaque. Mol. Cell. Proteomics6(6), 1088–1102 (2007).
  • Talusan P, Bedri S, Yang S et al. Analysis of intimal proteoglycans in atherosclerosis-prone and atherosclerosis-resistant human arteries by mass spectrometry. Mol. Cell. Proteomics4, 1350–1357 (2005).
  • Emmert-Buck MR, Bonner RF, Smith PD et al. Laser capture microdissection. Science.274(5289), 998–1001 (1996).
  • Martinet W, Knaapen MWM, De Meyer GRY et al. Overexpression of the anti-apoptotic caspase-2 short isoform in macrophage-derived foam cells of human atherosclerotic plaques. Am. J. Pathol.162(3), 731–736 (2003).
  • De Souza AI, McGregor E, Dunn MJ et al. Preparation of human heart laser microdissection and proteomics. Proteomics4, 578–586 (2004).
  • Kondo T, Hirohashi S. Application of highly sensitive fluorescent dyes (CyDye DIGE Fluor saturation dyes) to laser microdissection and two-dimensional difference gel electrophoresis (2D-DIGE) for cancer proteomics. Nat. Protoc.1(6), 2940–56 (2006).
  • De la Cuesta F, Alvarez-Llamas G, Maroto AS et al. An optimum method designed for 2D-DIGE analysis of human arterial intima and media layers isolated by laser microdissection. Proteomics Clin. Appl. (2009) (In Press).
  • Dupont A, Tokarski C, Dekeyzer O et al. Two-dimensional maps and databases of the human macrophage proteome and secretome. Proteomics4(6), 1761–1778 (2004).
  • Dupont A, Corseaux D, Dekeyzer O et al. The proteome and secretome of human arterial smooth muscle cells. Proteomics5(2), 585–596 (2005).
  • Mayr M, Zampetaki A, Sidibe A et al. Proteomic and metabolomic analysis of smooth muscle cells derived from the arterial media and adventitial progenitors of apolipoprotein E-deficient mice. Circ. Res.102(9), 1046–56 (2008).
  • Padro T, Peña E, Garcia-Arguinzonis M et al. Low-density lipoproteins impair migration of human coronary vascular smooth muscle cells and induce changes in the proteomic profile of myosin light chain. Cardiovasc. Res.77(1), 211–220 (2008).
  • Trogan E, Choudhury RP, Dansky HM, Rong JX, Breslow JL, Fisher EA. Laser capture microdissection analysis of gene expression in macrophages from atherosclerotic lesions of apolipoprotein E-deficient mice. Proc. Natl Acad. Sci. USA99(4), 2234–2239 (2002).
  • Trogan E, Feig JE, Dogan S et al. Gene expression changes in foam cells and the role of chemokine receptor CCR7 during atherosclerosis regression in ApoE-deficient mice. Proc. Natl Acad. Sci. USA103(10), 3781–3786 (2006).
  • Wu J, Liu W, Sousa E et al. Proteomic identification of endothelial proteins isolated in situ from atherosclerotic aorta via systemic perfusion. J. Proteome Res.6(12), 4728–4736 (2007).
  • Nicoloau P, Rodríguez P, Ren X et al. Inducible expression of active protein phosphatase-1 inhibitor-1 enhances basal cardiac function and protects against ischemia/reperfusion injury. Cir. Res.104, 1012–1020 (2009).
  • Fert-Bober J, Basran RS, Sawicka J, Sawicki G. Effect of duration of ischemia on myocardial proteome in ischemia/reperfusion injury. Proteomics8, 2543–2555 (2008).
  • Liu B, Tewari AK, Zhang L et al. Proteomic analysis of protein tyrosine nitration after ischemia reperfusion injury: mitochondria as the major target. BBA1794(2), 476–485 (2009).
  • Feng J, Zhu M, Schaub MC et al. Phosphoproteome analysis of isoflurane-protected heart mitochondria: phosphorylation of adenine nucleotide translocator-1 on Tyr194 regulates mitochondrial function. Cardiovasc. Res.80, 20–29 (2008).
  • Chen CH, Budas GR, Churchill EN, Disatnik MH, Hurley TD, Mochly-Rosen D. Activation of aldehyde dehydrogenase-2 reduces ischemic damage to the heart. Science.321(5895), 1493–5 (2008).
  • Mayr M, Liem D, Zhang J et al. Proteomic and metabolomic analysis of cardioprotection: interplay between protein kinase C epsilon and delta in regulating glucose metabolism of murine hearts. J. Cell. Mol. Med.46(2), 268–277 (2009).
  • Sung JH, Cho EH, Kim MO, Koh PO. Identification of proteins differentially expressed by melatonin treatment in cerebral ischemic injury: a proteomics approach. J. Pineal. Res.46(3), 300–306 (2009).
  • Xiong X, Liang Q, Chen J, Fan R, Cheng T. Proteomics profiling of pituitary, adrenal gland, and splenic lymphocytes in rats with middle cerebral artery occlusion. Biosci. Biotechnol. Biochem.73(3), 657–664 (2009).
  • Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation74, 1124–1136 (1986).
  • Zhao ZQ, Corvera JS, Halkos ME et al. Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am. J. Physiol. Heart Circ. Physiol.285, H579–H588 (2003).
  • Kline KG, Frewen B, Bristow MR, Maccoss MJ, Wu CC. High quality catalog of proteotypic peptides from human heart. J. Proteom. Res.7, 5055–5061 (2008).
  • Bousette N, Kislinger T, Fong V et al. Large-scale characterization and analysis of the murine cardiac proteome. J. Proteom. Res.8, 1887–1901 (2009).
  • O’Brien KD, Reichenbach DD, Marcovina SM, Kuusisto J, Alpers CE, Otto CM. Apolipoproteins B, (a), and E accumulate in the morphologically early lesion of ‘degenerative’ valvular aortic stenosis. Arterioscler. Thromb. Vasc. Biol.16(4), 523–32 (1996).
  • Olsson M, Thyberg J, Nilsson J. Presence of oxidized low density lipoprotein in nonrheumatic stenotic aortic valves. Arterioscler. Thromb. Vasc. Biol.19, 1218–1222 (1999).
  • Otto CM, Kuusisto J, Reichenbach DD, Gown AM, O’Brien KD. Characterization of the early lesion of ‘degenerative’ valvular aortic stenosis. Histological and immunohistochemical studies. Circulation90, 844–853 (1994).
  • O’Brien KD Pathogenesis of calcific aortic valve disease: a disease process comes of age (and a good deal more). Arterioscler. Thromb. Vasc. Biol.26, 1721–1728 (2006).
  • Goldbarg SH, Elmariah S, Miller MA, Fuster V. Insights into degenerative aortic valve disease. J. Am. Coll. Cardiol.50, 1205–1213 (2007).
  • Stewart BF, Siscovick D, Lind BK et al. Clinical factors associated with calcific aortic valve disease. Cardiovascular health study. J. Am. Coll. Cardiol.29, 630–634 (1997).
  • Mohler ER III. Mechanisms of aortic valve calcification. Am. J. Cardiol.94, 1396–1402 (2004).
  • Nalini M, Rajamannan MD, Catherine M, Otto, MD. Targeted therapy to prevent progression of calcific aortic stenosis. Circulation110, 1180–1182 (2004).
  • Mohler ER III, Gannon F, Reynolds C et al. Bone formation and inflammation in cardiac valves. Circulation103, 1522–1528 (2001).
  • Rajamannan NM, Subramaniam M, Rickard D et al. Human aortic valve calcification is associated with an osteoblast phenotype. Circulation107, 2181–2184 (2003).
  • O’Brien KD, Shavelle DM, Caulfield MT et al. Association of angiotensin- converting enzyme with low-density lipoprotein in aortic valvular lesions and in human plasma. Circulation106, 2224–2230 (2002).
  • Gil-Dones F, Martin-Rojas T, Lopez-Almodovar LF et al. An optimal protocol for the proteomic analysis of stenotic aortic valves. Electrophoresis (2009) (In Press).
  • Faé KC, Diefenbach da Silva D, Bilate AMB et al. PDIA3, HSPA5 and vimentin, proteins identified by 2-DE in the valvular tissue, are the target antigens of peripheral and heart infiltrating T cells from chronic rheumatic heart disease patients. J. Autoimmunity31, 136–141(2008).
  • Yetkin E, Walteriberger J. Molecular and cellular mechanism of aortic stenosis. Int. J. Cardiology DOI:10.1016/j.ijcard.2009.03.108 (2009) (Epub ahead of print).
  • Baykut D, Grapow M, Bergquist M et al. Molecular differentiation of ischemic and valvular heart disease by liquid chromatography/fourier transform ion cyclotron resonance mass spectrometry. Eur. J. Med. Res.11, 221–226 (2006).
  • Lange V, Picotti P, Domon B, Aebersold R. Selected reaction monitoring for quantitative proteomics: a tutorial. Mol. Syst. Biol.4, 222 (2008).
  • Kitteringham NR, Jenkins R, Lane C, Elliot V, Park BK. Multiple reaction monitoring for quantitative biomarker analysis in proteomics and metabolomics. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.877(13), 1229–1239 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.