69
Views
19
CrossRef citations to date
0
Altmetric
Review

Targets for cystic fibrosis therapy: proteomic analysis and correction of mutant cystic fibrosis transmembrane conductance regulator

, &
Pages 495-506 | Published online: 09 Jan 2014

References

  • Riordan JR. CFTR function and prospects for therapy. Annu. Rev. Biochem.77, 701–726 (2008).
  • Quinton PM. Chloride impermeability in cystic fibrosis. Nature301(5899), 421–422 (1983).
  • Quinton PM, Bijman J. Higher bioelectric potentials due to decreased chloride absorption in the sweat glands of patients with cystic fibrosis. N. Engl. J. Med.308(20), 1185–1189 (1983).
  • Riordan JR, Rommens JM, Kerem B et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science245(4922), 1066–1073 (1989).
  • Griesenbach U, Alton EW. Cystic fibrosis gene therapy: successes, failures and hopes for the future. Expert Rev. Respir. Med.3(4), 363–371 (2009).
  • Amaral MD, Kunzelmann K. Molecular targeting of CFTR as a therapeutic approach to cystic fibrosis. Trends Pharmacol. Sci.28(7), 334–341 (2007).
  • Cheng SH, Gregory RJ, Marshall J et al. Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis. Cell63(4), 827–834 (1990).
  • Jensen TJ, Loo MA, Pind S, Williams DB, Goldberg AL, Riordan JR. Multiple proteolytic systems, including the proteasome, contribute to CFTR processing. Cell83(1), 129–135 (1995).
  • Ward CL, Omura S, Kopito RR. Degradation of CFTR by the ubiquitin–proteasome pathway. Cell83(1), 121–127 (1995).
  • Younger JM, Chen L, Ren HY et al. Sequential quality-control checkpoints triage misfolded cystic fibrosis transmembrane conductance regulator. Cell126(3), 571–582 (2006).
  • Denning GM, Anderson MP, Amara JF, Marshall J, Smith AE, Welsh MJ. Processing of mutant cystic fibrosis transmembrane conductance regulator is temperature-sensitive. Nature358(6389), 761–764 (1992).
  • Roy G, Chalfin EM, Saxena A, Wang X. Interplay between ER exit code and domain conformation in CFTR misprocessing and rescue. Mol. Biol. Cell21(4), 597–609 (2010).
  • Chang XB, Cui L, Hou YX et al. Removal of multiple arginine-framed trafficking signals overcomes misprocessing of Δ F508 CFTR present in most patients with cystic fibrosis. Mol. Cell4(1), 137–142 (1999).
  • Wang X, Matteson J, An Y et al. COPII-dependent export of cystic fibrosis transmembrane conductance regulator from the ER uses a di-acidic exit code. J. Cell Biol.167(1), 65–74 (2004).
  • Teem JL, Berger HA, Ostedgaard LS, Rich DP, Tsui LC, Welsh MJ. Identification of revertants for the cystic fibrosis Δ F508 mutation using STE6–CFTR chimeras in yeast. Cell73(2), 335–346 (1993).
  • Teem JL, Carson MR, Welsh MJ. Mutation of R555 in CFTR-D F508 enhances function and partially corrects defective processing. Receptors Channels4(1), 63–72 (1996).
  • Hegedus T, Aleksandrov A, Cui L, Gentzsch M, Chang XB, Riordan JR. F508del CFTR with two altered RXR motifs escapes from ER quality control but its channel activity is thermally sensitive. Biochim. Biophys. Acta1758(5), 565–572 (2006).
  • He L, Aleksandrov LA, Cui L, Jensen TJ, Nesbitt KL, Riordan JR. Restoration of domain folding and interdomain assembly by second-site suppressors of the ΔF508 mutation in CFTR. FASED J. DOI: 10.1096/fj.09-141788 (2010) (Epub ahead of print).
  • Lewis HA, Zhao X, Wang C et al. Impact of the ΔF508 mutation in first nucleotide-binding domain of human cystic fibrosis transmembrane conductance regulator on domain folding and structure. J. Biol. Chem.280(2), 1346–1353 (2005).
  • Du K, Sharma M, Lukacs GL. The ΔF508 cystic fibrosis mutation impairs domain–domain interactions and arrests post-translational folding of CFTR. Nat. Struct. Mol. Biol.12(1), 17–25 (2005).
  • Cui L, Aleksandrov L, Chang XB et al. Domain interdependence in the biosynthetic assembly of CFTR. J. Mol. Biol.365(4), 981–994 (2007).
  • Wang X, Koulov AV, Kellner WA, Riordan JR, Balch WE. Chemical and biological folding contribute to temperature-sensitive ΔF508 CFTR trafficking. Traffic9(11), 1878–1893 (2008).
  • Pedemonte N, Tomati V, Sondo E, Galietta LJ. Influence of cell background on pharmacological rescue of mutant CFTR. Am. J. Physiol. Cell Physiol.298(4), C866–874 (2010).
  • Rowe SM, Pyle LC, Jurkevante A et al. ΔF508 CFTR processing correction and activity in polarized airway and non-airway cell monolayers. Pulm. Pharmacol. Ther.23(4), 268–278 (2010).
  • Lukacs GL, Chang XB, Bear C et al. The Δ F508 mutation decreases the stability of cystic fibrosis transmembrane conductance regulator in the plasma membrane. Determination of functional half-lives on transfected cells. J. Biol. Chem.268(29), 21592–21598 (1993).
  • Heda GD, Tanwani M, Marino CR. The ΔF508 mutation shortens the biochemical half-life of plasma membrane CFTR in polarized epithelial cells. Am. J. Physiol. Cell Physiol.280(1), C166–C174 (2001).
  • Sharma M, Benharouga M, Hu W, Lukacs GL. Conformational and temperature-sensitive stability defects of the Δ F508 cystic fibrosis transmembrane conductance regulator in post-endoplasmic reticulum compartments. J. Biol. Chem.276(12), 8942–8950 (2001).
  • Gentzsch M, Chang XB, Cui L et al. Endocytic trafficking routes of wild type and ΔF508 cystic fibrosis transmembrane conductance regulator. Mol. Biol. Cell15(6), 2684–2696 (2004).
  • Swiatecka-Urban A, Brown A, Moreau-Marquis S et al. The short apical membrane half-life of rescued ΔF508-cystic fibrosis transmembrane conductance regulator (CFTR) results from accelerated endocytosis of ΔF508-CFTR in polarized human airway epithelial cells. J. Biol. Chem.280(44), 36762–36772 (2005).
  • Cholon DM, O’Neal WK, Randell SH, Riordan JR, Gentzsch M. Modulation of endocytic trafficking and apical stability of CFTR in primary human airway epithelial cultures. Am. J. Physiol. Lung Cell Mol. Physiol.298(3), L304–L314 (2010).
  • Sharma M, Pampinella F, Nemes C et al. Misfolding diverts CFTR from recycling to degradation: quality control at early endosomes. J. Cell Biol.164(6), 923–933 (2004).
  • Varga K, Goldstein RF, Jurkuvenaite A et al. Enhanced cell-surface stability of rescued ΔF508 cystic fibrosis transmembrane conductance regulator (CFTR) by pharmacological chaperones. Biochem. J.410(3), 555–564 (2008).
  • Jurkuvenaite A, Chen L, Bartoszewski R et al. Functional stability of rescued ΔF508 cystic fibrosis transmembrane conductance regulator (CFTR) in airway epithelial cells. Am. J. Respir. Cell Mol. Biol.42(3), 363–372 (2009).
  • Macia E, Ehrlich M, Massol R, Boucrot E, Brunner C, Kirchhausen T. Dynasore, a cell-permeable inhibitor of dynamin. Dev. Cell10(6), 839–850 (2006).
  • Wang X, Venable J, LaPointe P et al. Hsp90 cochaperone Aha1 downregulation rescues misfolding of CFTR in cystic fibrosis. Cell127(4), 803–815 (2006).
  • Washburn MP, Wolters D, Yates JR 3rd. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol.19(3), 242–247 (2001).
  • Gomes-Alves P, Couto F, Pesquita C, Coelho AV, Penque D. Rescue of F508del-CFTR by RXR motif inactivation triggers proteome modulation associated with the unfolded protein response. Biochim. Biophys. Acta1804(4), 856–865 (2010).
  • Bartoszewski R, Rab A, Jurkuvenaite A et al. Activation of the unfolded protein response by ΔF508 CFTR. Am. J. Respir. Cell Mol. Biol.39(4), 448–457 (2008).
  • Roxo-Rosa M, Xu Z, Schmidt A et al. Revertant mutants G550E and 4RK rescue cystic fibrosis mutants in the first nucleotide-binding domain of CFTR by different mechanisms. Proc. Natl Acad. Sci. USA103(47), 17891–17896 (2006).
  • Singh OV, Pollard HB, Zeitlin PL. Chemical rescue of ΔF508-CFTR mimics genetic repair in cystic fibrosis bronchial epithelial cells. Mol. Cell Proteomics7(6), 1099–1110 (2008).
  • Trzcinska-Daneluti AM, Ly D, Huynh L, Jiang C, Fladd C, Rotin D. High-content functional screen to identify proteins that correct F508del-CFTR function. Mol. Cell Proteomics8(4), 780–790 (2009).
  • Sato S, Ward CL, Krouse ME, Wine JJ, Kopito RR. Glycerol reverses the misfolding phenotype of the most common cystic fibrosis mutation. J. Biol. Chem.271(2), 635–638 (1996).
  • Egan ME, Glockner-Pagel J, Ambrose C et al. Calcium-pump inhibitors induce functional surface expression of ΔF508-CFTR protein in cystic fibrosis epithelial cells. Nat. Med.8(5), 485–492 (2002).
  • Egan ME, Pearson M, Weiner SA et al. Curcumin, a major constituent of turmeric, corrects cystic fibrosis defects. Science304(5670), 600–602 (2004).
  • Cartiera MS, Ferreira EC, Caputo C, Egan ME, Caplan MJ, Saltzman WM. Partial correction of cystic fibrosis defects with PLGA nanoparticles encapsulating curcumin. Mol. Pharm.7(1), 86–93 (2010).
  • Zaman K, Carraro S, Doherty J et al. S-nitrosylating agents: a novel class of compounds that increase cystic fibrosis transmembrane conductance regulator expression and maturation in epithelial cells. Mol. Pharmacol.70(4), 1435–1442 (2006).
  • Zaman K, McPherson M, Vaughan J et al. S-nitrosoglutathione increases cystic fibrosis transmembrane regulator maturation. Biochem. Biophys. Res. Commun.284(1), 65–70 (2001).
  • Rubenstein RC, Egan ME, Zeitlin PL. In vitro pharmacologic restoration of CFTR-mediated chloride transport with sodium 4-phenylbutyrate in cystic fibrosis epithelial cells containing Δ F508-CFTR. J. Clin. Invest.100(10), 2457–2465 (1997).
  • Rubenstein RC, Zeitlin PL. Sodium 4-phenylbutyrate downregulates Hsc70: implications for intracellular trafficking of ΔF508-CFTR. Am. J. Physiol. Cell Physiol.278(2), C259–C267 (2000).
  • Lim M, McKenzie K, Floyd AD, Kwon E, Zeitlin PL. Modulation of ΔF508 cystic fibrosis transmembrane regulator trafficking and function with 4-phenylbutyrate and flavonoids. Am. J. Respir. Cell Mol. Biol.31(3), 351–357 (2004).
  • Pedemonte N, Lukacs GL, Du K et al. Small-molecule correctors of defective DeltaF508-CFTR cellular processing identified by high-throughput screening. J. Clin. Invest.115(9), 2564–2571 (2005).
  • Van Goor F, Straley KS, Cao D et al. Rescue of ΔF508-CFTR trafficking and gating in human cystic fibrosis airway primary cultures by small molecules. Am. J. Physiol. Lung Cell Mol. Physiol.290(6), L1117–L1130 (2006).
  • Carlile GW, Robert R, Zhang D et al. Correctors of protein trafficking defects identified by a novel high-throughput screening assay. Chembiochem.8(9), 1012–1020 (2007).
  • Robert R, Carlile GC, Liao J et al. Correction of ΔF508-CFTR trafficking defect by the bioavailable compound glafenine. Mol. Pharmacol. DOI: 10.1124/mol.109.062679 (2010) (Epub ahead of print).
  • Robert R, Carlile GW, Pavel C et al. Structural analog of sildenafil identified as a novel corrector of the F508del-CFTR trafficking defect. Mol. Pharmacol.73(2), 478–489 (2008).
  • Ma T, Vetrivel L, Yang H et al. High-affinity activators of cystic fibrosis transmembrane conductance regulator (CFTR) chloride conductance identified by high-throughput screening. J. Biol. Chem.277(40), 37235–37241 (2002).
  • Yang H, Shelat AA, Guy RK et al. Nanomolar affinity small molecule correctors of defective ΔF508-CFTR chloride channel gating. J. Biol. Chem.278(37), 35079–35085 (2003).
  • Pedemonte N, Sonawane ND, Taddei A et al. Phenylglycine and sulfonamide correctors of defective Δ F508 and G551D cystic fibrosis transmembrane conductance regulator chloride-channel gating. Mol. Pharmacol.67(5), 1797–1807 (2005).
  • Cohen FE, Kelly JW. Therapeutic approaches to protein-misfolding diseases. Nature426(6968), 905–909 (2003).
  • Kerem E, Hirawat S, Armoni S et al. Effectiveness of PTC124 treatment of cystic fibrosis caused by nonsense mutations: a prospective Phase II trial. Lancet372(9640), 719–727 (2008).
  • Frischmeyer PA, Dietz HC. Nonsense-mediated mRNA decay in health and disease. Hum. Mol. Genet.8(10), 1893–1900 (1999).
  • Losson R, Lacroute F. Interference of nonsense mutations with eukaryotic messenger RNA stability. Proc. Natl Acad. Sci. USA76(10), 5134–5137 (1979).
  • Maquat LE. Nonsense-mediated mRNA decay: splicing, translation and mRNP dynamics. Nat. Rev. Mol. Cell Biol.5(2), 89–99 (2004).
  • Krawczak M, Ball EV, Fenton I et al. Human gene mutation database – a biomedical information and research resource. Hum. Mutat.15(1), 45–51 (2000).
  • Mendell JT, Dietz HC. When the message goes awry: disease-producing mutations that influence mRNA content and performance. Cell107(4), 411–414 (2001).
  • Fearon K, McClendon V, Bonetti B, Bedwell DM. Premature translation termination mutations are efficiently suppressed in a highly conserved region of yeast Ste6p, a member of the ATP-binding cassette (ABC) transporter family. J. Biol. Chem.269(27), 17802–17808 (1994).
  • Howard M, Frizzell RA, Bedwell DM. Aminoglycoside antibiotics restore CFTR function by overcoming premature stop mutations. Nat. Med.2(4), 467–469 (1996).
  • Bedwell DM, Kaenjak A, Benos DJ et al. Suppression of a CFTR premature stop mutation in a bronchial epithelial cell line. Nat. Med.3(11), 1280–1284 (1997).
  • Hamosh A, Trapnell BC, Zeitlin PL et al. Severe deficiency of cystic fibrosis transmembrane conductance regulator messenger RNA carrying nonsense mutations R553X and W1316X in respiratory epithelial cells of patients with cystic fibrosis. J. Clin. Invest.88(6), 1880–1885 (1991).
  • Bal J, Stuhrmann M, Schloesser M, Schmidtke J, Reiss J. A cystic fibrosis patient homozygous for the nonsense mutation R553X. J. Med. Genet.28(10), 715–717 (1991).
  • Davies J. Effects of streptomycin and related antibiotics on protein synthesis. Antimicrob. Agents Chemother. (Bethesda)5, 1001–1005 (1965).
  • Davies J, Gorini L, Davis BD. Misreading of RNA codewords induced by aminoglycoside antibiotics. Mol. Pharmacol.1(1), 93–106 (1965).
  • Singh A, Ursic D, Davies J. Phenotypic suppression and misreading Saccharomyces cerevisiae.Nature277(5692), 146–148 (1979).
  • Barton-Davis ER, Cordier L, Shoturma DI, Leland SE, Sweeney HL. Aminoglycoside antibiotics restore dystrophin function to skeletal muscles of mdx mice. J. Clin. Invest.104(4), 375–381 (1999).
  • Wilschanski M, Famini C, Blau H et al. A pilot study of the effect of gentamicin on nasal potential difference measurements in cystic fibrosis patients carrying stop mutations. Am. J. Respir. Crit. Care Med.161(3 Pt 1), 860–865 (2000).
  • Wilschanski M, Yahav Y, Yaacov Y et al. Gentamicin-induced correction of CFTR function in patients with cystic fibrosis and CFTR stop mutations. N. Engl. J. Med.349(15), 1433–1441 (2003).
  • Clancy JP, Bebok Z, Ruiz F et al. Evidence that systemic gentamicin suppresses premature stop mutations in patients with cystic fibrosis. Am. J. Respir. Crit. Care Med.163(7), 1683–1692 (2001).
  • Du M, Jones JR, Lanier J et al. Aminoglycoside suppression of a premature stop mutation in a Cftr-/- mouse carrying a human CFTR–G542X transgene. J. Mol. Med.80(9), 595–604 (2002).
  • Du M, Keeling KM, Fan L et al. Clinical doses of amikacin provide more effective suppression of the human CFTR–G542X stop mutation than gentamicin in a transgenic CF mouse model. J. Mol. Med.84(7), 573–582 (2006).
  • Hamed SA. Drug evaluation: PTC-124 – a potential treatment of cystic fibrosis and Duchenne muscular dystrophy. IDrugs9(11), 783–789 (2006).
  • Du M, Liu X, Welch EM, Hirawat S, Peltz SW, Bedwell DM. PTC124 is an orally bioavailable compound that promotes suppression of the human CFTR–G542X nonsense allele in a CF mouse model. Proc. Natl Acad. Sci. USA105(6), 2064–2069 (2008).
  • Wilton S. PTC124, nonsense mutations and Duchenne muscular dystrophy. Neuromuscul. Disord.17(9–10), 719–720 (2007).
  • Hirawat S, Welch EM, Elfring GL et al. Safety, tolerability, and pharmacokinetics of PTC124, a nonaminoglycoside nonsense mutation suppressor, following single- and multiple-dose administration to healthy male and female adult volunteers. J. Clin. Pharmacol.47(4), 430–444 (2007).
  • Dunant P, Walter MC, Karpati G, Lochmuller H. Gentamicin fails to increase dystrophin expression in dystrophin-deficient muscle. Muscle Nerve27(5), 624–627 (2003).
  • Clancy JP, Rowe SM, Bebok Z et al. No detectable improvements in cystic fibrosis transmembrane conductance regulator by nasal aminoglycosides in patients with cystic fibrosis with stop mutations. Am. J. Respir. Cell Mol. Biol.37(1), 57–66 (2007).
  • Manuvakhova M, Keeling K, Bedwell DM. Aminoglycoside antibiotics mediate context-dependent suppression of termination codons in a mammalian translation system. RNA6(7), 1044–1055 (2000).
  • Diop D, Chauvin C, Jean-Jean O. Aminoglycosides and other factors promoting stop codon readthrough in human cells. C. R. Biol.330(1), 71–79 (2007).
  • Linde L, Kerem B. Introducing sense into nonsense in treatments of human genetic diseases. Trends Genet.24(11), 552–563 (2008).
  • Kultz D. Molecular and evolutionary basis of the cellular stress response. Annu. Rev. Physiol.67, 225–257 (2005).
  • Rutkowski DT, Kaufman RJ. A trip to the ER: coping with stress. Trends Cell Biol.14(1), 20–28 (2004).
  • Schroder M, Kaufman RJ. ER stress and the unfolded protein response. Mutat. Res.569(1–2), 29–63 (2005).
  • Martino ME, Olsen JC, Fulcher NB, Wolfgang MC, O’Neal WK, Ribeiro CM. Airway epithelial inflammation-induced endoplasmic reticulum Ca2+ store expansion is mediated by X-box binding protein-1. J. Biol. Chem.284(22), 14904–14913 (2009).
  • Bi M, Naczki C, Koritzinsky M et al. ER stress-regulated translation increases tolerance to extreme hypoxia and promotes tumor growth. EMBO J.24(19), 3470–3481 (2005).
  • Bartoszewski R, Rab A, Twitty G et al. The mechanism of cystic fibrosis transmembrane conductance regulator transcriptional repression during the unfolded protein response. J. Biol. Chem.283(18), 12154–12165 (2008).
  • Rab A, Bartoszewski R, Jurkuvenaite A, Wakefield J, Collawn JF, Bebok Z. Endoplasmic reticulum stress and the unfolded protein response regulate genomic cystic fibrosis transmembrane conductance regulator expression. Am. J. Physiol. Cell Physiol.292(2), C756–C766 (2007).
  • Jorgensen E, Stinson A, Shan L, Yang J, Gietl D, Albino AP. Cigarette smoke induces endoplasmic reticulum stress and the unfolded protein response in normal and malignant human lung cells. BMC Cancer8, 229 (2008).
  • Cantin AM, Bilodeau G, Ouellet C, Liao J, Hanrahan JW. Oxidant stress suppresses CFTR expression. Am. J. Physiol. Cell Physiol.290(1), C262–C270 (2006).
  • Cantin AM, Hanrahan JW, Bilodeau G et al. Cystic fibrosis transmembrane conductance regulator function is suppressed in cigarette smokers. Am. J. Respir. Crit. Care Med.173(10), 1139–1144 (2006).
  • Conti E, Izaurralde E. Nonsense-mediated mRNA decay: molecular insights and mechanistic variations across species. Curr. Opin. Cell Biol.17(3), 316–325 (2005).
  • Keeling KM, Lanier J, Du M et al. Leaky termination at premature stop codons antagonizes nonsense-mediated mRNA decay in S. cerevisiae.RNA10(4), 691–703 (2004).
  • Linde L, Boelz S, Neu-Yilik G, Kulozik AE, Kerem B. The efficiency of nonsense-mediated mRNA decay is an inherent character and varies among different cells. Eur. J. Hum. Genet.15(11), 1156–1162 (2007).
  • Linde L, Boelz S, Nissim-Rafinia M et al. Nonsense-mediated mRNA decay affects nonsense transcript levels and governs response of cystic fibrosis patients to gentamicin. J. Clin. Invest.117(3), 683–692 (2007).
  • Guimbellot JS, Fortenberry JA, Siegal GP et al. Role of oxygen availability in CFTR expression and function. Am. J. Respir. Cell Mol. Biol.39(5), 514–521 (2008).
  • Gardner LB. Hypoxic inhibition of nonsense-mediated RNA decay regulates gene expression and the integrated stress response. Mol. Cell Biol.28(11), 3729–3741 (2008).
  • Zhang K, Kaufman RJ. From endoplasmic-reticulum stress to the inflammatory response. Nature454(7203), 455–462 (2008).
  • Jones AM, Helm JM. Emerging treatments in cystic fibrosis. Drugs69(14), 1903–1910 (2009).
  • Van Goor F, Hadida S, Grootenhuis PD et al. Rescue of CF airway epithelial cell function in vitro by a CFTR potentiator, VX-770. Proc. Natl Acad. Sci. USA106(44), 18825–18830 (2009).
  • Caohuy H, Jozwik C, Pollard HB. Rescue of ΔF508-CFTR by the SGK1/Nedd4-2 signaling pathway. J. Biol. Chem.284(37), 25241–25253 (2009).
  • Hassink GC, Zhao B, Sompallae R et al. The ER-resident ubiquitin-specific protease 19 participates in the UPR and rescues ERAD substrates. EMBO Rep.10(7), 755–761 (2009).
  • Grove DE, Rosser MF, Ren HY, Naren AP, Cyr DM. Mechanisms for rescue of correctable folding defects in CFTRΔF508. Mol. Biol. Cell20(18), 4059–4069 (2009).
  • Zhu H, Zhu JX, Lo PS et al. Rescue of defective pancreatic secretion in cystic-fibrosis cells by suppression of a novel isoform of phospholipase C. Lancet362(9401), 2059–2065 (2003).
  • Henderson MJ, Vij N, Zeitlin PL. Ubiquitin C-terminal hydrolase-L1 protects cystic fibrosis transmembrane conductance regulator from early stages of proteasomal degradation. J. Biol. Chem.285(15), 11314–11325 (2010).
  • Hutt DM, Herman D, Rodrigues AP et al. Reduced histone deacetylase 7 activity restores function to misfolded CFTR in cystic fibrosis. Nat. Chem. Biol.6(1), 25–33 (2010).
  • Cheng J, Cebotaru V, Cebotaru L, Guggino WB. Syntaxin 6 and CAL mediate the degradation of the cystic fibrosis transmembrane conductance regulator. Mol. Biol. Cell21(7), 1178–1187 (2010).
  • Cheng J, Moyer BD, Milewski M et al. A Golgi-associated PDZ domain protein modulates cystic fibrosis transmembrane regulator plasma membrane expression. J. Biol. Chem.277(5), 3520–3529 (2002).
  • Wolde M, Fellows A, Cheng J et al. Targeting CAL as a negative regulator of ΔF508-CFTR cell-surface expression: an RNA interference and structure-based mutagenetic approach. J. Biol. Chem.282(11), 8099–8109 (2007).
  • Favia M, Guerra L, Fanelli T et al. Na+/H+ exchanger regulatory factor 1 overexpression-dependent increase of cytoskeleton organization is fundamental in the rescue of F508del cystic fibrosis transmembrane conductance regulator in human airway CFBE41o- cells. Mol. Biol. Cell21(1), 73–86 (2010).
  • Kwon SH, Pollard H, Guggino WB. Knockdown of NHERF1 enhances degradation of temperature rescued ΔF508 CFTR from the cell surface of human airway cells. Cell Physiol. Biochem.20(6), 763–772 (2007).
  • Cheng J, Wang H, Guggino WB. Regulation of cystic fibrosis transmembrane regulator trafficking and protein expression by a Rho family small GTPase TC10. J. Biol. Chem.280(5), 3731–3739 (2005).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.