488
Views
92
CrossRef citations to date
0
Altmetric
Review

Salivary peptidomics

, , , &
Pages 709-721 | Published online: 09 Jan 2014

References

  • Schulz-Knappe P, Zucht HD, Heine G, Jurgens M, Hess R, Schrader M. Peptidomics: the comprehensive analysis of peptides in complex biological mixtures. Comb. Chem. High Throughput Screen.4(2), 207–217 (2001).
  • Doucet A, Butler GS, Rodriguez D, Prudova A, Overall CM. Metadegradomics: toward in vivo quantitative degradomics of proteolytic post-translational modifications of the cancer proteome. Mol. Cell Proteomics7(10), 1925–1951 (2008).
  • Villanueva J, Shaffer DR, Philip J et al. Differential exoprotease activities confer tumor-specific serum peptidome patterns. J. Clin. Invest.116(1), 271–284 (2006).
  • Villanueva J, Martorella AJ, Lawlor K et al. Serum peptidome patterns that distinguish metastatic thyroid carcinoma from cancer-free controls are unbiased by gender and age. Mol. Cell Proteomics5(10), 1840–1852 (2006).
  • Boonen K, Landuyt B, Baggerman G, Husson SJ, Huybrechts J, Schoofs L. Peptidomics: the integrated approach of MS, hyphenated techniques and bioinformatics for neuropeptide analysis. J. Sep. Sci.31(3), 427–445 (2008).
  • Villanueva J, Philip J, Chaparro CA et al. Correcting common errors in identifying cancer-specific serum peptide signatures. J. Proteome Res.4(4), 1060–1072 (2005).
  • Merchant ML, Perkins BA, Boratyn GM et al. Urinary Peptidome may predict renal function decline in Type 1 diabetes and microalbuminuria. J. Am. Soc. Nephrol.20(9), 2065–2074 (2009).
  • Balog CI, Hensbergen PJ, Derks R et al. Novel automated biomarker discovery work flow for urinary peptidomics. Clin. Chem.55(1), 117–125 (2009).
  • Hook V, Funkelstein L, Lu D, Bark S, Wegrzyn J, Hwang SR. Proteases for processing proneuropeptides into peptide neurotransmitters and hormones. Annu. Rev. Pharmacol. Toxicol.48, 393–423 (2008).
  • Hu S, Arellano M, Boontheung P et al. Salivary proteomics for oral cancer biomarker discovery. Clin. Cancer Res.14(19), 6246–6252 (2008).
  • Hu S, Loo JA, Wong DT. Human saliva proteome analysis and disease biomarker discovery. Expert Rev. Proteomics4(4), 531–538 (2007).
  • Rudney JD, Staikov RK, Johnson JD. Potential biomarkers of human salivary function: a modified proteomic approach. Arch. Oral Biol.54(1), 91–100 (2009).
  • Sun X, Salih E, Oppenheim FG, Helmerhorst EJ. Kinetics of histatin proteolysis in whole saliva and the effect on bioactive domains with metal-binding, antifungal, and wound-healing properties. FASEB J.23(8), 2691–2701 (2009).
  • Xie H, Onsongo G, Popko J et al. Proteomics analysis of cells in whole saliva from oral cancer patients via value-added three-dimensional peptide fractionation and tandem mass spectrometry. Mol. Cell Proteomics7(3), 486–498 (2008).
  • Messana I, Inzitari R, Fanali C, Cabras T, Castagnola M. Facts and artifacts in proteomics of body fluids. What proteomics of saliva is telling us? J. Sep. Sci.31(11), 1948–1963 (2008).
  • Oppenheim FG, Salih E, Siqueira WL, Zhang W, Helmerhorst EJ. Salivary proteome and its genetic polymorphisms. Ann. NY Acad. Sci.1098, 22–50 (2007).
  • Huq NL, Cross KJ, Ung M et al. A review of the salivary proteome and peptidome and saliva-derived peptide therapeutics. Int. J. Pept. Res. Ther.13(4), 547–564 (2007).
  • Helmerhorst EJ, Oppenheim FG. Saliva: a dynamic proteome. J. Dent. Res.86(8), 680–693 (2007).
  • Helmerhorst EJ. Whole saliva proteolysis: wealth of information for diagnostic exploitation. Ann. NY Acad. Sci.1098, 454–460 (2007).
  • Liébecq C. International Union of Biochemistry and Molecular Biology. Committee of Editors of Biochemical Journals, International Union of Biochemistry and Molecular Biology. In: Biochemical Nomenclature and Related Documents : a Compendium. Portland Press, London, UK 39–69 (1992).
  • Castagnola M, Inzitari R, Rossetti DV et al. A cascade of 24 histatins (histatin 3 fragments) in human saliva. Suggestions for a pre-secretory sequential cleavage pathway. J. Biol. Chem.279(40), 41436–41443 (2004).
  • Amerongen AV, Veerman EC. Saliva – the defender of the oral cavity. Oral Dis.8(1), 12–22 (2002).
  • Mandel ID. The diagnostic uses of saliva. J. Oral Pathol. Med.19(3), 119–125 (1990).
  • Mandel ID. The functions of saliva. J. Dent. Res.66(Spec. No.), 623–627 (1987).
  • Amado FM, Vitorino RM, Domingues PM, Lobo MJ, Duarte JA. Analysis of the human saliva proteome. Expert Rev. Proteomics2(4), 521–539 (2005).
  • Hu S, Loo JA, Wong DT. Human body fluid proteome analysis. Proteomics6(23), 6326–6353 (2006).
  • Schlesinger DH, Hay DI, Levine MJ.Complete primary structure of statherin, a potent inhibitor of calcium phosphate precipitation, from the saliva of the monkey, Macaca arctoides.Int. J. Pept. Protein Res.34(5), 374–380 (1989).
  • Oppenheim FG, Xu T, McMillian FM et al. Histatins, a novel family of histidine-rich proteins in human parotid secretion. Isolation, characterization, primary structure, and fungistatic effects on Candida albicans.J. Biol. Chem.263(16), 7472–7477 (1988).
  • Hay DI, Bennick A, Schlesinger DH, Minaguchi K, Madapallimattam G, Schluckebier SK. The primary structures of six human salivary acidic proline-rich proteins (PRP-1, PRP-2, PRP-3, PRP-4, PIF-s and PIF-f). Biochem. J.255(1), 15–21 (1988).
  • Shomers JP, Tabak LA, Levine MJ, Mandel ID, Ellison SA. Characterization of cysteine-containing phosphoproteins from human submandibular–sublingual saliva. J. Dent. Res.61(6), 764–767 (1982).
  • Kauffman D, Wong R, Bennick A, Keller P. Basic proline-rich proteins from human parotid saliva: complete covalent structure of protein IB-9 and partial structure of protein IB-6, members of a polymorphic pair. Biochemistry21(25), 6558–6562 (1982).
  • Isemura S, Saitoh E, Sanada K. Fractionation and characterization of basic proline-rich peptides of human parotid saliva and the amino acid sequence of proline-rich peptide P-E. J. Biochem.91(6), 2067–2075 (1982).
  • Isemura S, Saitoh E, Sanada K. The amino acid sequence of a salivary proline-rich peptide, P-C, and its relation to a salivary proline-rich phosphoprotein, protein C. J. Biochem.87(4), 1071–1077 (1980).
  • Bennick A. Chemical and physical characterization of a phosphoprotein, Protein C, from human saliva and comparison with a related protein A. Biochem. J.163(2), 229–239 (1977).
  • Bennick A. Chemical and physical characteristics of a phosphoprotein from human parotid saliva. Biochem. J.145(3), 557–567 (1975).
  • Hay DI, Oppenheim FG. The isolation from human parotid saliva of a further group of proline-rich proteins. Arch. Oral Biol.19(8), 627–632 (1974).
  • Azen EA, Oppenheim FG. Genetic polymorphism of proline-rich human salivary proteins. Science180(90), 1067–1069 (1973).
  • Oppenheim FG, Hay DI, Franzblau C. Proline-rich proteins from human parotid saliva. I. Isolation and partial characterization. Biochemistry10(23), 4233–4238 (1971).
  • Vitorino R, Lobo MJ, Duarte JA, Ferrer-Correia AJ, Domingues PM, Amado FM. Analysis of salivary peptides using HPLC-electrospray mass spectrometry. Biomed. Chromatogr.18(8), 570–575 (2004).
  • Inzitari R, Cabras T, Rossetti DV et al. Detection in human saliva of different statherin and P-B fragments and derivatives. Proteomics6(23), 6370–6379 (2006).
  • Jensen JL, Lamkin MS, Oppenheim FG. Adsorption of human salivary proteins to hydroxyapatite: a comparison between whole saliva and glandular salivary secretions. J. Dent. Res.71(9), 1569–1576 (1992).
  • Troxler RF, Offner GD, Xu T, Vanderspek JC, Oppenheim FG. Structural relationship between human salivary histatins. J. Dent. Res.69(1), 2–6 (1990).
  • Perinpanayagam HE, Van Wuyckhuyse BC, Ji ZS, Tabak LA. Characterization of low-molecular-weight peptides in human parotid saliva. J. Dent. Res.74(1), 345–350 (1995).
  • Gyurko C, Lendenmann U, Helmerhorst EJ, Troxler RF, Oppenheim FG. Killing of Candida albicans by histatin 5: cellular uptake and energy requirement. Antonie Van Leeuwenhoek79(3–4), 297–309 (2001).
  • Helmerhorst EJ, Alagl AS, Siqueira WL, Oppenheim FG. Oral fluid proteolytic effects on histatin 5 structure and function. Arch. Oral Biol.51(12), 1061–1070 (2006).
  • Tamaki N, Tada T, Morita M, Watanabe T. Comparison of inhibitory activity on calcium phosphate precipitation by acidic proline-rich proteins, statherin, and histatin-1. Calcif. Tissue Int.71(1), 59–62 (2002).
  • Oudhoff MJ, Kroeze KL, Nazmi K et al. Structure-activity analysis of histatin, a potent wound healing peptide from human saliva: cyclization of histatin potentiates molar activity 1,000-fold. FASEB J.23(11), 3928–3935 (2009).
  • Oudhoff MJ, Bolscher JG, Nazmi K et al. Histatins are the major wound-closure stimulating factors in human saliva as identified in a cell culture assay. FASEB J.22(11), 3805–3812 (2008).
  • Lyons KM, Azen EA, Goodman PA, Smithies O. Many protein products from a few loci: assignment of human salivary proline-rich proteins to specific loci. Genetics120(1), 255–265 (1988).
  • Azen EA, Amberger E, Fisher S, Prakobphol A, Niece RL. PRB1, PRB2, and PRB4 coded polymorphisms among human salivary concanavalin-A binding, II-1, and Po proline-rich proteins. Am. J. Hum. Genet.58(1), 143–153 (1996).
  • Messana I, Cabras T, Pisano E et al. Trafficking and post-secretory events responsible for the formation of secreted human salivary peptides. A proteomic approach. Mol. Cell Proteomics7(5), 911–926 (2008).
  • Kauffman D, Hofmann T, Bennick A, Keller P. Basic proline-rich proteins from human parotid saliva: complete covalent structures of proteins IB-1 and IB-6. Biochemistry25(9), 2387–2392 (1986).
  • Kauffman DL, Bennick A, Blum M, Keller PJ. Basic proline-rich proteins from human parotid saliva: relationships of the covalent structures of ten proteins from a single individual. Biochemistry30(14), 3351–3356 (1991).
  • Stubbs M, Chan J, Kwan A et al. Encoding of human basic and glycosylated proline-rich proteins by the PRB gene complex and proteolytic processing of their precursor proteins. Arch. Oral Biol.43(10), 753–770 (1998).
  • Lamkin MS, Oppenheim FG. Structural features of salivary function. Crit. Rev. Oral Biol. Med.4(3–4), 251–259 (1993).
  • Bennick A. Interaction of plant polyphenols with salivary proteins. Crit. Rev. Oral Biol. Med.13(2), 184–196 (2002).
  • Naurato N, Wong P, Lu Y, Wroblewski K, Bennick A. Interaction of tannin with human salivary histatins. J. Agric. Food Chem.47(6), 2229–2234 (1999).
  • Shimada T. Salivary proteins as a defense against dietary tannins. J. Chem. Ecol.32(6), 1149–1163 (2006).
  • Robinovitch MR, Ashley RL, Iversen JM, Vigoren EM, Oppenheim FG, Lamkin M. Parotid salivary basic proline-rich proteins inhibit HIV-I infectivity. Oral Dis.7(2), 86–93 (2001).
  • Isemura S, Saitoh E. Nucleotide sequence of gene PBI encoding a protein homologous to salivary proline-rich protein P-B. J. Biochem.121(6), 1025–1030 (1997).
  • Isemura S. Nucleotide sequence of gene PBII encoding salivary proline-rich protein P-B. J. Biochem.127(3), 393–398 (2000).
  • Denny P, Hagen FK, Hardt M et al. The proteomes of human parotid and submandibular/sublingual gland salivas collected as the ductal secretions. J. Proteome Res.7(5), 1994–2006 (2008).
  • Aguirre A, Testa-Weintraub LA, Banderas JA, Dunford R, Levine MJ. Levels of salivary cystatins in periodontally healthy and diseased older adults. Arch. Oral Biol.37(5), 355–361 (1992).
  • Henskens YM, van der Velden U, Veerman EC, Nieuw Amerongen AV. Protein, albumin and cystatin concentrations in saliva of healthy subjects and of patients with gingivitis or periodontitis. J. Periodont. Res.28(1), 43–48 (1993).
  • Dickinson DP. Cysteine peptidases of mammals: their biological roles and potential effects in the oral cavity and other tissues in health and disease. Crit. Rev. Oral Biol. Med.13(3), 238–275 (2002).
  • Baron A, DeCarlo A, Featherstone J.Functional aspects of the human salivary cystatins in the oral environment. Oral Dis.5(3), 234–240 (1999).
  • Baron AC, Gansky SA, Ryder MI, Featherstone JD. Cysteine protease inhibitory activity and levels of salivary cystatins in whole saliva of periodontally diseased patients. J. Periodontal Res.34(8), 437–444 (1999).
  • Dickinson DP. Salivary (SD-type) cystatins: over one billion years in the making – but to what purpose? Crit. Rev. Oral Biol. Med.13(6), 485–508 (2002).
  • Messana I, Loffredo F, Inzitari R et al. The coupling of RP-HPLC and ESI-MS in the study of small peptides and proteins secreted in vitro by human salivary glands that are soluble in acidic solution. Eur. J. Morphol.41(2), 103–106 (2003).
  • Vitorino R, Lobo MJ, Ferrer-Correira AJ et al. Identification of human whole saliva protein components using proteomics. Proteomics4(4), 1109–1115 (2004).
  • Huang CM, Zhu W. Profiling human saliva endogenous peptidome via a high throughput MALDI-TOF-TOF mass spectrometry. Comb. Chem. High Throughput Screen.12(5), 521–531 (2009).
  • Helmerhorst EJ, Sun X, Salih E, Oppenheim FG. Identification of Lys-Pro-Gln as a novel cleavage site specificity of saliva-associated proteases. J. Biol. Chem.283(29), 19957–19966 (2008).
  • Cabras T, Fanali C, Monteiro JA et al. Tyrosine polysulfation of human salivary histatin 1. A post-translational modification specific of the submandibular gland. J. Proteome Res.6(7), 2472–2480 (2007).
  • Cabras T, Inzitari R, Fanali C et al. HPLC-MS characterization of cyclo-statherin Q-37, a specific cyclization product of human salivary statherin generated by transglutaminase 2. J. Sep. Sci.29(17), 2600–2608 (2006).
  • Pisano E, Cabras T, Montaldo C et al. Peptides of human gingival crevicular fluid determined by HPLC-ESI-MS. Eur. J. OralSci.113(6), 462–468 (2005).
  • Hardt M, Thomas LR, Dixon SE et al. Toward defining the human parotid gland salivary proteome and peptidome: identification and characterization using 2D SDS-PAGE, ultrafiltration, HPLC, and mass spectrometry. Biochemistry44(8), 2885–2899 (2005).
  • Lupi A, Messana I, Denotti G et al. Identification of the human salivary cystatin complex by the coupling of high-performance liquid chromatography and ion-trap mass spectrometry. Proteomics3(4), 461–467 (2003).
  • Castagnola M, Congiu D, Denotti G et al. Determination of the human salivary peptides histatins 1, 3, 5 and statherin by high-performance liquid chromatography and by diode-array detection. J. Chromatogr. B. Biomed. Sci. Appl.751(1), 153–160 (2001).
  • Vitorino R, Barros A, Caseiro A, Domingues P, Duarte J, Amado F. Towards defining the whole salivary peptidome. Proteomics Clin. Appl.3(5), 528–540 (2009).
  • Shaw MM, Riederer BM. Sample preparation for two-dimensional gel electrophoresis. Proteomics3(8), 1408–1417 (2003).
  • Schulz-Knappe P, Schrader M, Zucht HD. The peptidomics concept. Comb. Chem. High Throughput Screen.8(8), 697–704 (2005).
  • Hardt M, Witkowska HE, Webb S et al. Assessing the effects of diurnal variation on the composition of human parotid saliva: quantitative analysis of native peptides using iTRAQ reagents. Anal. Chem.77(15), 4947–4954 (2005).
  • Ambatipudi KS, Lu B, Hagen FK, Melvin JE, Yates JR. Quantitative analysis of age specific variation in the abundance of human female parotid salivary proteins. J. Proteome Res.8(11), 5093–5102 (2009).
  • Cabras T, Pisano E, Boi R et al. Age-dependent modifications of the human salivary secretory protein complex. J. Proteome Res.8(8), 4126–4134 (2009).
  • Johnson DA, Yeh CK, Dodds MW. Effect of donor age on the concentrations of histatins in human parotid and submandibular/sublingual saliva. Arch. Oral Biol.45(9), 731–740 (2000).
  • Neyraud E, Sayd T, Morzel M, Dransfield E. Proteomic analysis of human whole and parotid salivas following stimulation by different tastes. J. Proteome Res.5(9), 2474–2480 (2006).
  • Sarni-Manchado P, Canals-Bosch JM, Mazerolles G, Cheynier V. Influence of the glycosylation of human salivary proline-rich proteins on their interactions with condensed tannins. J. Agric. Food Chem.56(20), 9563–9569 (2008).
  • Mandel ID. Relation of saliva and plaque to caries. J. Dent. Res.53(2), 246–266 (1974).
  • Neyraud E, Bult JH, Dransfield E. Continuous analysis of parotid saliva during resting and short-duration simulated chewing. Arch. Oral Biol.54(5), 449–456 (2009).
  • Engelen L, van den Keybus PA, de Wijk RA et al. The effect of saliva composition on texture perception of semi-solids. Arch. Oral Biol.52(6), 518–525 (2007).
  • Inzitari R, Vento G, Capoluongo E et al. Proteomic analysis of salivary acidic proline-rich proteins in human preterm and at-term newborns. J. Proteome Res.6(4), 1371–1377 (2007).
  • Schipper RG, Silletti E, Vingerhoeds MH. Saliva as research material: biochemical, physicochemical and practical aspects. Arch. Oral Biol.52(12), 1114–1135 (2007).
  • Robinson S, Niles RK, Witkowska HE et al. A mass spectrometry-based strategy for detecting and characterizing endogenous proteinase activities in complex biological samples. Proteomics8(3), 435–445 (2008).
  • Jensen JL, Lamkin MS, Troxler RF, Oppenheim FG. Multiple forms of statherin in human salivary secretions. Arch. Oral Biol.36(7), 529–534 (1991).
  • Saitoh E, Isemura S, Sanada K. Further fractionation of basic proline-rich peptides from human parotid saliva and complete amino acid sequence of basic proline-rich peptide P-H. J. Biochem.94(6), 1991–1999 (1983).
  • Saitoh E, Isemura S, Sanada K. Complete amino acid sequence of a basic proline-rich peptide, P-F, from human parotid saliva. J. Biochem.93(3), 883–888 (1983).
  • Saitoh E, Isemura S, Sanada K. Complete amino acid sequence of a basic proline-rich peptide, P-D, from human parotid saliva. J. Biochem.93(2), 495–502 (1983).
  • Hirtz C, Chevalier F, Centeno D et al. MS characterization of multiple forms of α-amylase in human saliva. Proteomics5(17), 4597–4607 (2005).
  • Wilmarth PA, Riviere MA, Rustvold DL, Lauten JD, Madden TE, David LL. Two-dimensional liquid chromatography study of the human whole saliva proteome. J. Proteome Res.3(5), 1017–1023 (2004).
  • Hu S, Xie Y, Ramachandran P et al. Large-scale identification of proteins in human salivary proteome by liquid chromatography/mass spectrometry and two-dimensional gel electrophoresis-mass spectrometry. Proteomics5(6), 1714–1728 (2005).
  • Xie H, Rhodus NL, Griffin RJ, Carlis JV, Griffin TJ. A catalogue of human saliva proteins identified by free flow electrophoresis-based peptide separation and tandem mass spectrometry. Mol. Cell Proteomics4(11), 1826–1830 (2005).
  • Siqueira WL, Salih E, Wan DL, Helmerhorst EJ, Oppenheim FG. Proteome of human minor salivary gland secretion. J. Dent. Res.87(5), 445–450 (2008).
  • Hu S, Denny P, Denny P et al. Differentially expressed protein markers in human submandibular and sublingual secretions. Int. J. Oncol.25(5), 1423–1430 (2004).
  • Segawa A, Loffredo F, Puxeddu R, Yamashina S, Testa Riva F, Riva A. Exocytosis in human salivary glands visualized by high-resolution scanning electron microscopy. Cell Tissue Res.291(2), 325–336 (1998).
  • Anderson LC, Garrett JR, Zhang X, Proctor GB. Protein secretion from rat submandibular acini and granular ducts: effects of exogenous VIP and substance P during parasympathetic nerve stimulation. Comp. Biochem. Physiol. A. Mol. Integr. Physiol.119(1), 327–331 (1998).
  • Carpenter GH, Garrett JR, Hartley RH, Proctor GB. The influence of nerves on the secretion of immunoglobulin A into submandibular saliva in rats. J. Physiol.512(Pt 2), 567–573 (1998).
  • Castle JD, Arvan P, Cameron R. Protein production and secretion in exocrine cells. J. Dent. Res.66(Spec. No.), 633–637 (1987).
  • Castle JD, Castle AM. Sorting and secretion of salivary proteins. Crit. Rev. Oral Biol. Med.4(3–4), 393–398 (1993).
  • Gorr SU, Venkatesh SG, Darling DS. Parotid secretory granules: crossroads of secretory pathways and protein storage. J. Dent. Res.84(6), 500–509 (2005).
  • Huang AY, Castle AM, Hinton BT, Castle JD. Resting (basal) secretion of proteins is provided by the minor regulated and constitutive-like pathways and not granule exocytosis in parotid acinar cells. J. Biol. Chem.276(25), 22296–22306 (2001).
  • Embery G, Waddington R. Gingival crevicular fluid: biomarkers of periodontal tissue activity. Adv. Dent. Res.8(2), 329–336 (1994).
  • Ngo LH, Veith PD, Chen YY, Chen D, Darby IB, Reynolds EC. Mass spectrometric analyses of peptides and proteins in human gingival crevicular fluid. J. Proteome Res.9(4), 1683–1693 (2010).
  • Inzitari R, Cabras T, Pisano E et al. HPLC-ESI-MS analysis of oral human fluids reveals that gingival crevicular fluid is the main source of oral thymosins b(4) and b(10). J. Sep. Sci.32(1), 57–63 (2009).
  • Vacca Smith AM, Bowen WH. In situ studies of pellicle formation on hydroxyapatite discs. Arch. Oral Biol.45(4), 277–291 (2000).
  • Lendenmann U, Grogan J, Oppenheim FG. Saliva and dental pellicle – a review. Adv. Dent. Res.14, 22–28 (2000).
  • Carlen A, Borjesson AC, Nikdel K, Olsson J. Composition of pellicles formed in vivo on tooth surfaces in different parts of the dentition, and in vitro on hydroxyapatite. Caries Res.32(6), 447–455 (1998).
  • Li J, Helmerhorst EJ, Corley RB, Luus LE, Troxler RF, Oppenheim FG. Characterization of the immunologic responses to human in vivo acquired enamel pellicle as a novel means to investigate its composition. Oral Microbiol. Immunol.18(3), 183–191 (2003).
  • Li J, Helmerhorst EJ, Yao Y, Nunn ME, Troxler RF, Oppenheim FG. Statherin is an in vivo pellicle constituent: identification and immuno-quantification. Arch. Oral Biol.49(5), 379–385 (2004).
  • Yao Y, Grogan J, Zehnder M et al. Compositional analysis of human acquired enamel pellicle by mass spectrometry. Arch. Oral Biol.46(4), 293–303 (2001).
  • Siqueira WL, Zhang W, Helmerhorst EJ, Gygi SP, Oppenheim FG. Identification of protein components in in vivo human acquired enamel pellicle using LC-ESI-MS/MS. J. Proteome Res.6(6), 2152–2160 (2007).
  • Vitorino R, Calheiros-Lobo MJ, Duarte JA, Domingues PM, Amado FM. Peptide profile of human acquired enamel pellicle using MALDI tandem MS. J. Sep. Sci.31(3), 523–537 (2008).
  • Vitorino R, Calheiros-Lobo MJ, Williams J et al. Peptidomic analysis of human acquired enamel pellicle. Biomed. Chromatogr.21(11), 1107–1117 (2007).
  • Watanabe T, Ohata N, Morishita M, Iwamoto Y. Correlation between the protease activities and the number of epithelial cells in human saliva. J. Dent. Res.60(6), 1039–1044 (1981).
  • Soder PO. Proteolytic activity in the oral cavity: proteolytic enzymes from human saliva and dental plaque material. J. Dent. Res.51(2), 389–393 (1972).
  • Chan M, Bennick A. Proteolytic processing of a human salivary proline-rich protein precursor by proprotein convertases. Eur. J. Biochem.268(12), 3423–3431 (2001).
  • Kennedy S, Davis C, Abrams WR et al. Submandibular salivary proteases: lack of a role in anti-HIV activity. J. Dent. Res.77(7), 1515–1519 (1998).
  • Molloy SS, Bresnahan PA, Leppla SH, Klimpel KR, Thomas G. Human furin is a calcium-dependent serine endoprotease that recognizes the sequence Arg-X-X-Arg and efficiently cleaves anthrax toxin protective antigen. J. Biol. Chem.267(23), 16396–16402 (1992).
  • Cai K, Bennick A. Processing of acidic proline-rich proprotein by human salivary gland convertase. Arch. Oral Biol.49(11), 871–879 (2004).
  • Sun XL, Salih E, Oppenheim FG, Helmerhorst EJ. Activity-based mass spectrometric characterization of proteases and inhibitors in human saliva. Proteomics Clin. Appl.3(7), 810–820 (2009).
  • Barrett AJ. Bioinformatics of proteases in the MEROPS database. Curr. Opin. Drug Discov. Devel.7(3), 334–341 (2004).
  • Igarashi Y, Eroshkin A, Gramatikova S et al. CutDB: a proteolytic event database. Nucleic Acids Res.35(Database issue), D546–D549 (2007).
  • Kinney JS, Ramseier CA, Giannobile WV. Oral fluid-based biomarkers of alveolar bone loss in periodontitis. Ann. NY Acad. Sci.1098, 230–251 (2007).
  • Bildt MM, Bloemen M, Kuijpers-Jagtman AM, Von den Hoff JW. Collagenolytic fragments and active gelatinase complexes in periodontitis. J. Periodontol.79(9), 1704–1711 (2008).
  • Vuotila T, Ylikontiola L, Sorsa T et al. The relationship between MMPs and pH in whole saliva of radiated head and neck cancer patients. J. Oral Pathol. Med.31(6), 329–338 (2002).
  • Menon R, McIntyre JO, Matrisian LM, Fortunato SJ. Salivary proteinase activity: a potential biomarker for preterm premature rupture of the membranes. Am. J. Obstet. Gynecol.194(6), 1609–1615 (2006).
  • Rhodus N, Dahmer L, Lindemann K, Rudney J, Mathur A, Bereuter J. s-IgA and cytokine levels in whole saliva of Sjogren’s syndrome patients before and after oral pilocarpine hydrochloride administration: a pilot study. Clin. Oral Investig.2(4), 191–196 (1998).
  • Rao PV, Reddy AP, Lu X et al. Proteomic identification of salivary biomarkers of Type-2 diabetes. J. Proteome Res.8(1), 239–245 (2009).
  • Nagler RM, Nagler A. The effect of pilocarpine on salivary constituents in patients with chronic graft-versus-host disease. Arch. Oral Biol.46(8), 689–695 (2001).
  • Carpenter GH, Pankhurst CL, Proctor GB. Lectin binding studies of parotid salivary glycoproteins in Sjogren’s syndrome. Electrophoresis20(10), 2124–2132 (1999).
  • Peluso G, De Santis M, Inzitari R et al. Proteomic study of salivary peptides and proteins in patients with Sjogren’s syndrome before and after pilocarpine treatment. Arthritis Rheum.56(7), 2216–2222 (2007).
  • Rigante D, Inzitari R, Carone M et al. Correspondence between clinical improvement and proteomic changes of the salivary peptide complex in a child with primary Sjogren syndrome. Rheumatol. Int.28(8), 801–806 (2008).
  • Contucci AM, Inzitari R, Agostino S et al. Statherin levels in saliva of patients with precancerous and cancerous lesions of the oral cavity: a preliminary report. Oral Dis.11(2), 95–99 (2005).
  • Vitorino R, Lobo MJ, Duarte JR, Ferrer-Correia AJ, Domingues PM, Amado FM. The role of salivary peptides in dental caries. Biomed. Chromatogr.19(3), 214–222 (2005).
  • Ayad M, Van Wuyckhuyse BC, Minaguchi K et al. The association of basic proline-rich peptides from human parotid gland secretions with caries experience. J. Dent. Res.79(4), 976–982 (2000).
  • Castagnola M, Messana I, Inzitari R et al. Hypo-phosphorylation of salivary peptidome as a clue to the molecular pathogenesis of autism spectrum disorders. J. Proteome Res.7(12), 5327–5332 (2008).
  • Bandhakavi S, Stone MD, Onsongo G, Van Riper SK, Griffin TJ. A dynamic range compression and three-dimensional peptide fractionation analysis platform expands proteome coverage and the diagnostic potential of whole saliva. J. Proteome Res.8(12), 5590–5600 (2009).
  • Oppenheim FG, Yang YC, Diamond RD, Hyslop D, Offner GD, Troxler RF. The primary structure and functional characterization of the neutral histidine-rich polypeptide from human parotid secretion. J. Biol. Chem.261(3), 1177–1182 (1986).
  • Shimotoyodome A, Kobayashi H, Tokimitsu I, Matsukubo T, Takaesu Y. Statherin and histatin 1 reduce parotid saliva-promoted Streptococcus mutans strain MT8148 adhesion to hydroxyapatite surfaces. Caries Res.40(5), 403–411 (2006).
  • Bolscher JG, Nazmi K, Ran LJ et al. Inhibition of HIV-1 IIIB and clinical isolates by human parotid, submandibular, sublingual and palatine saliva. Eur. J. Oral Sci.110(2), 149–156 (2002).
  • Gu M, Haraszthy GG, Collins AR, Bergey EJ. Identification of salivary proteins inhibiting herpes simplex virus 1 replication. Oral Microbiol. Immunol.10(1), 54–59 (1995).
  • MacKay BJ, Denepitiya L, Iacono VJ, Krost SB, Pollock JJ. Growth-inhibitory and bactericidal effects of human parotid salivary histidine-rich polypeptides on Streptococcus mutans.Infect. Immun.44(3), 695–701 (1984).
  • Ruissen AL, Groenink J, Helmerhorst EJ et al. Effects of histatin 5 and derived peptides on Candida albicans.Biochem. J.356(Pt 2), 361–368 (2001).
  • Mochon AB, Liu H. The antimicrobial peptide histatin-5 causes a spatially restricted disruption on the Candida albicans surface, allowing rapid entry of the peptide into the cytoplasm. PLoS Pathog.4(10), e1000190 (2008).
  • Leymarie N, Berg EA, McComb ME et al. Tandem mass spectrometry for structural characterization of proline-rich proteins: application to salivary PRP-3. Anal. Chem.74(16), 4124–4132 (2002).
  • Jonsson AP, Griffiths WJ, Bratt P et al. A novel Ser O-glucuronidation in acidic proline-rich proteins identified by tandem mass spectrometry. FEBS Lett.475(2), 131–134 (2000).
  • Campese M, Sun X, Bosch JA, Oppenheim FG, Helmerhorst EJ. Concentration and fate of histatins and acidic proline-rich proteins in the oral environment. Arch. Oral Biol.54(4), 345–353 (2009).
  • Messana I, Cabras T, Inzitari R et al. Characterization of the human salivary basic proline-rich protein complex by a proteomic approach. J. Proteome Res.3(4), 792–800 (2004).
  • Nemolato S, Messana I, Cabras T et al. Thymosin β(4) and β(10) levels in pre-term newborn oral cavity and foetal salivary glands evidence a switch of secretion during foetal development. PLoS ONE4(4), e5109 (2009).
  • Fanali C, Inzitari R, Cabras T et al. α-defensin levels in whole saliva of totally edentulous subjects. Int. J. Immunopathol. Pharmacol.21(4), 845–849 (2008).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.