106
Views
32
CrossRef citations to date
0
Altmetric
Review

Misfolded proteins and neurodegeneration: role of non-native cytochrome c in cell death

, , , &
Pages 507-517 | Published online: 09 Jan 2014

References

  • Gregersen N, Bross P, Vang S, Christensen JH. Protein misfolding and human disease. Annu. Rev. Genomics Hum. Genet.7, 103–124 (2006).
  • Santucci R, Sinibaldi F, Fiorucci L. Protein folding, unfolding and misfolding. Role played by intermediate states. Mini Rev. Med. Chem.8(1), 57–62 (2008).
  • Gooptu B, Lomas DA. Conformational pathology of the serpins: themes, variations, and therapeutic strategies. Annu. Rev. Biochem.78, 147–176 (2009).
  • Kupfer L, Hinrichs W, Groschup MH. Prion protein misfolding. Curr. Mol. Med.9, 826–835 (2009).
  • Querfurth HW, LaFerla FM. Alzheimer’s disease. N. Engl. J. Med.362, 329–344 (2010).
  • Roder H, Maki K, Cheng H, Shastry MC. Rapid mixing methods for exploring the kinetics of protein folding. Methods34(1), 15–27 (2004).
  • Wolynes PG. Recent successes of the energy landscape theory of protein folding and function. Q. Rev. Biophys.38(4), 405–410 (2005).
  • Lindorff-Larsen K, Røgen P, Paci E, Vendruscolo M, Dobson CM. Protein folding and the organization of the protein topology universe. Trends Biochem. Sci.30(1), 13–19 (2005).
  • Laskowska E, Matuszewska E, Kuczynska-Wisnik D. Small heat shock proteins and protein-misfolding diseases. Curr. Pharm. Biotechnol.11(2), 146–157 (2010).
  • Cutting GR. Modifier genetics: cystic fibrosis. Rev. Genomics Hum. Genet.6, 237–260 (2005).
  • MacDonald KD, McKenzie KR, Zeitlin PL. Cystic fibrosis transmembrane regulator protein mutations: ‘class’ opportunity for novel drug innovation. Pediatr. Drugs9(1), 1–10 (2007).
  • Shirley ED, Sponseller PD. Marfan syndrome. J. Am. Acad. Orthop. Surg.17(9), 572–581 (2009).
  • Zarate YA, Hopkin RJ. Fabry’s disease. Lancet372(9647), 1427–1435 (2008).
  • Boot RG, van Breemen MJ, Wegdam W et al. Gaucher disease: a model disorder for biomarker discovery. Expert Rev. Proteomics6(4), 411–419 (2009).
  • Palmero EI, Achatz MI, Ashton-Prolla P, Olivier M, Hainaut P. Tumor protein 53 mutations and inherited cancer: beyond Li-Fraumeni syndrome. Curr. Opin. Oncol.22(1), 64–69 (2010).
  • Wetzel R, Shivaprasad S, Williams AD. Plasticity of amyloid fibrils. Biochemistry46(1), 1–10 (2007).
  • Douglas MR, Lewthwaite AJ, Nicholl DJ. Genetics of Parkinson’s disease and parkinsonism. Expert Rev. Neurother.7(6), 657–666 (2007).
  • Uversky VN, Eliezer D. Biophysics of Parkinson’s disease: structure and aggregation of α-synuclein. Curr. Protein Pept. Sci.10(5), 483–499 (2009).
  • Fändrich M, Meinhardt J, Grigorieff N. Structural polymorphism of Alzheimer Aβ and other amyloid fibrils. Prion3(2), 89–93 (2009).
  • Baldwin RL. The search for folding intermediates and the mechanism of protein folding. Annu. Rev. Biophys.37, 1–21 (2008).
  • Murphy RM. Kinetics of amyloid formation and membrane interaction with amyloidogenic proteins. Biochim. Biophys. Acta1768(8), 1923–1934 (2007).
  • Ptitsyn OB. The molten globule state. In: Protein Folding. Creighton TE (Ed.). Freeman and Company, NY, USA 243–300 (1992).
  • Englander SW, Mayne L, Krishna MM. Protein folding and misfolding: mechanism and principles. Q. Rev. Biophys.40(4), 287–326 (2007).
  • Seshadri S, Oberg KA, Uversky VN. Mechanisms and consequences of protein aggregation: the role of folding intermediates. Curr. Protein Pept. Sci.10(5), 456–463 (2009).
  • Onuchic JN, Wolynes PG. Theory of protein folding. Curr. Opin. Struct. Biol.14(1), 70–75 (2004).
  • Oliveberg M, Wolynes PG. The experimental survey of protein-folding energy landscapes. Q. Rev. Biophys.38(3), 245–288 (2005).
  • Wales DJ. Energy landscapes: some new horizons. Curr. Opin. Struct. Biol.20, 3–10 (2010).
  • Weinkam P, Romesberg FE, Wolynes PG. Chemical frustration in the protein folding landscape: grand canonical ensemble simulations of cytochrome c. Biochemistry48(11), 2394–2402 (2009).
  • Borgia A, Williams PM, Clarke J. Single-molecule studies of protein folding. Annu. Rev. Biochem.77, 101–125 (2008).
  • Schuler B, Eaton WA. Protein folding studied by single-molecule FRET. Curr. Opin. Struct. Biol.18(1), 16–26 (2008).
  • Dobson CM. Principles of protein folding, misfolding and aggregation. Semin. Cell Dev. Biol.15(1), 3–16 (2004).
  • Lee TW, Matthews DA, Blair GE. Novel molecular approaches to cystic fibrosis gene therapy. Biochem. J.387, 1–15 (2005).
  • Amaral MD. Therapy through chaperones: sense or antisense? Cystic fibrosis as a model disease. J. Inherit. Metab. Dis.29(2–3), 477–487 (2006).
  • Mendes F, Farinha CM, Roxo-Rosa M et al. Antibodies for CFTR studies. J. Cyst. Fibros.3, 69–72 (2004).
  • Amaral MD, Kunzelmann K. Molecular targeting of CFTR as a therapeutic approach to cystic fibrosis. Trends Pharmacol. Sci.28(7), 334–341 (2007).
  • Yancey PH. Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J. Exp. Biol.208(Pt 15), 2819–2830 (2005).
  • Powers ET, Morimoto RI, Dillin A, Kelly JW, Balch WE. Biological and chemical approaches to diseases of proteostasis deficiency. Annu. Rev. Biochem.78, 959–991 (2009).
  • Roxo-Rosa M, Davezac N, Bensalem N et al. Proteomics techniques for cystic fibrosis research. J. Cyst. Fibros.3(2), 85–89 (2004).
  • Davezac N, Tondelier D, Lipecka J et al. Global proteomic approach unmasks involvement of keratins 8 and 18 in the delivery of cystic fibrosis transmembrane conductance regulator (CFTR)/ΔF508-CFTR to the plasma membrane. Proteomics4(12), 3833–3844 (2004).
  • Ollero M, Brouillard F, Edelman A. Cystic fibrosis enters the proteomics scene: new answers to old questions. Proteomics6(14), 4084–4099 (2006).
  • Gharib SA, Vaisar T, Aitken ML, Park DR, Heinecke JW, Fu X. Mapping the lung proteome in cystic fibrosis. J. Proteome Res.8(6), 3020–3028 (2009).
  • Gomes-Alves P, Couto F, Pesquita C, Coelho AV, Penque D. Rescue of F508del-CFTR by RXR motif inactivation triggers proteome modulation associated with the unfolded protein response. Biochim. Biophys. Acta1804(4), 856–865 (2010).
  • Chiti F, Dobson CM. Amyloid formation by globular proteins under native conditions. Nat. Chem. Biol.5(1), 15–22 (2009).
  • Luheshi LM, Dobson CM. Bridging the gap: from protein misfolding to protein misfolding diseases. FEBS Lett.583, 2581–2586 (2009).
  • Kodali R, Wetzel R. Polymorphism in the intermediates and products of amyloid assembly. Curr. Opin. Struct. Biol.17, 48–57 (2007).
  • Van Broeck B, Van Broeckhoven C, Kumar-Singh S. Current insights into molecular mechanisms of Alzheimer disease and their implications for therapeutic approaches. Neurodegener. Dis.4, 349–365 (2007).
  • Moloney A, Sattelle DB, Lomas DA, Crowther DC. Alzheimer’s disease: insights from Drosophila melanogaster models. Trends Biochem. Sci.35(4), 228–235 (2010).
  • Hsu M-J, Sheu J-R, Lin C-H, Shen M-Y, Hsu Cy. Mitochondrial mechanisms in amyloid b peptide-induced cerebrovascular degeneration. Biochim. Biophys. Acta1800, 290–296 (2010).
  • Chiti F, Dobson CM. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem.75, 333–366 (2006).
  • Jager M, Deechongkit S, Koepf EK et al. Understanding the mechanism of β-sheet folding from a chemical and biological perspective. Biopolymers90(6), 751–758 (2008).
  • Pedersen JS, Christensen G, Otzen DE. Modulation of S6 fibrillation by unfolding rates and gatekeeper residues. J. Mol. Biol.341(2), 575–588 (2004).
  • Morozova-Roche LA, Zamotin V, Malisauskas M et al. Fibrillation of carrier protein albebetin and its biologically active constructs. Multiple oligomeric intermediates and pathways. Biochemistry43(30), 9610–9619 (2004).
  • Gosal WS, Morten IJ, Hewitt EW, Smith DA, Thomson NH, Radford SE. Competing pathways determine fibril morphology in the self-assembly of b2-microglobulin into amyloid. J. Mol. Biol.351(4), 850–864 (2005).
  • Frey HJ, Mattila KM, Korolainen MA, Pirttilä T. Problems associated with biological markers of Alzheimer’s disease. Neurochem. Res.30(12), 1501–1510 (2005).
  • Abdi F, Quinn JF, Jankovic J et al. Detection of biomarkers with a multiplex quantitative proteomic platform in cerebrospinal fluid of patients with neurodegenerative disorders. J. Alzheimers Dis.9(3), 293–348 (2006).
  • Gustaw-Rothenberg K, Lerner A et al. Biomarkers in Alzheimer’s disease: past, present and future. Biomark. Med.4(1), 15–26 (2010).
  • Korolainen MA, Nyman TA, Aittokallio T, Pirttilä T. An update on clinical proteomics in Alzheimer’s research. J. Neurochem.112(6), 1386–1414 (2010).
  • Tapiola T, Alafuzoff I, Herukka SK et al. Cerebrospinal fluid {b}-amyloid 42 and tau proteins as biomarkers of Alzheimer-type pathologic changes in the brain. Arch. Neurol.66(3), 382–389 (2009).
  • Brunnström H, Rawshani N, Zetterberg H et al. Cerebrospinal fluid biomarker results in relation to neuropathological dementia diagnoses. Alzheimers Dement.6(2), 104–109 (2010).
  • Reed TT, Pierce WM, Markesbery WR, Butterfield DA. Proteomic identification of HNE-bound proteins in early Alzheimer disease: insights into the role of lipid peroxidation in the progression of AD. Brain Res.1274, 66–76 (2009).
  • Heneka MT, O’Banion MK. Inflammatory processes in Alzheimer’s disease. J. Neuroimmunol.184(1–2), 69–91 (2007).
  • Bharadwaj PR, Dubey AK, Masters CL, Martins RN, Macreadie IG. Aβ aggregation and possible implications in Alzheimer’s disease pathogenesis. J. Cell. Mol. Med.13(3), 412–421 (2009).
  • Alikhani N, Ankarcrona M, Glaser E. Mitochondria and Alzheimer’s disease: amyloid-b peptide uptake and degradation by the presequence protease, hPreP. J. Bioenerg. Biomembr.41(5), 447–451 (2009).
  • Galasko D, Montine TJ. Biomarkers of oxidative damage and inflammation in Alzheimer’s disease. Biomark. Med.4(1), 27–36 (2010).
  • Doig AJ. Peptide inhibitors of β-amyloid aggregation. Curr. Opin. Drug Discov. Devel.10(5), 533–539 (2007).
  • Young KJ, Bennett JP. The Mitochondrial Secret(ase) of Alzheimer’s Disease. J. Alzheimers Dis.20(Suppl. 2), 381–400 (2010).
  • Matsunaga Y, Fujii A, Awasthi A, Yokotani J, Takakura T, Yamada T. Eight-residue A-β peptides inhibit the aggregation and enzymatic activity of A-b42. Regul. Pept.120(1–3), 227–236 (2004).
  • Hirohata M, Ono K, Yamada M. Non-steroidal anti-inflammatory drugs as anti-amyloidogenic compounds. Curr. Pharm. Des.14(30), 3280–3294 (2008).
  • Polverino de Laureto P, Frare E, Gottardo R, Fontana A. Molten globule of bovine α-lactalbumin at neutral pH induced by heat, trifluoro-ethanol, and oleic acid: a comparative analysis by circular dichroism spectroscopy and limited proteolysis. Proteins49(3), 385–397 (2002).
  • Svensson M, Mossberg AK, Pettersson J, Linse S, Svanborg C. Lipids as cofactors in protein folding: stereo-specific lipid–protein interactions are required to form HAMLET (human α-lactalbumin made lethal to tumor cells). Protein Sci.12(12), 2805–2814 (2003).
  • Sinibaldi F, Mei G, Polticelli F, Piro MC, Howes BD, Smulevich G, Santucci R, Ascoli F, Fiorucci L. ATP specifically drives refolding of non-native conformations of cytochrome c.Protein Sci.14(4), 1049–1058 (2005).
  • Patriarca A, Eliseo T, Sinibaldi F et al. ATP acts as regulatory effector in modulating structural transitions of cytochrome c: implications for apoptotic activity. Biochemistry48(15), 3279–3287 (2009).
  • Bushnell GW, Louie GV, Brayer GD. High-resolution three-dimensional structure of horse heart cytochrome c. J. Mol. Biol.214(2), 585–595 (1990).
  • Banci L, Bertini I, Gray HB et al. Solution structure of oxidized horse heart cytochrome c. Biochemistry36(32), 9867–9877 (1997).
  • Bayir H, Fadeel B, Palladino MJ et al. Apoptotic interactions of cytochrome c: redox flirting with anionic phospholipids within and outside of mitochondria. Biochim. Biophys. Acta1757(5–6), 648–659 (2006).
  • Berezhna S, Wohlrab H, Champion PM. Resonance Raman investigations of cytochrome c conformational change upon interaction with membranes of intact and Ca2+-exposed mitochondria. Biochemistry42(20), 6149–6158 (2003).
  • Kagan VE, Borisenko G, Tyurina YY et al. Oxidative lipidomics of apoptosis: redox catalytic interactions of cytochrome c with cardiolipin and phosphatidylserine. Free Radic. Biol. Med.37(12), 1963–1985 (2004).
  • Sharonov GV, Feofanov AV, Bocharova OV et al. Comparative analysis of proapoptotic activity of cytochrome c mutants in living cells. Apoptosis10(4), 797–808 (2005).
  • Lewis RN, McElhaney RN. The physicochemical properties of cardiolipin bilayers and cardiolipin-containing lipid membranes. Biochim. Biophys. Acta1788(10), 2069–2079 (2009).
  • Kagan VE, Bayir HA, Belikova NA et al. Cytochrome c/cardiolipin relations in mitochondria: a kiss of death. Free Radic. Biol. Med.46(11), 1439–1453 (2009).
  • Caroppi P, Sinibaldi F, Fiorucci L, Santucci R. Apoptosis and human diseases: mitochondrion damage and lethal role of released cytochrome c as proapoptotic protein. Curr. Med. Chem.16(31), 4058–4065 (2009).
  • Sinibaldi F, Fiorucci L, Patriarca A et al. Insights into cytochrome c–cardiolipin interaction. Role played by ionic strength. Biochemistry47(26), 6928–6935 (2008).
  • Rytömaa M, Kinnunen PKJ. Reversibility of the binding of cytochrome c to liposomes. Implications for lipid–protein interactions. J. Biol. Chem.270(7), 3197–3202 (1995).
  • Kalanxhi E, Wallace CJA. Cytochrome c impaled: investigation of the extended lipid anchorage of a soluble protein to mitochondrial membrane models. Biochem. J.407(2), 179–187 (2007).
  • Sinibaldi F, Howes BD, Piro MC et al. Extended cardiolipin anchorage to cytochrome c: a model for protein-mitochondrial membrane binding. J. Biol. Inorg. Chem.15(5), 689–700 (2010).
  • Schug ZT, Gottlieb E. Cardiolipin acts as a mitochondrial signaling platform to launch apoptosis. Biochim. Biophys. Acta1788(10), 2022–2031 (2009).
  • Hoye AT, Davoren JE, Wipf, Fink MP, Kagan VE. Targeting mitochondria. Acc. Chem. Res.41(1), 87–97 (2008).
  • Kagan VE, Tyurin VA, Jiang J et al. Cytochrome c acts as a cardiolipin oxygenase required for release of proapoptotic factors. Nat. Chem. Biol.1(4), 223–232 (2005).
  • Youle RJ, Strasser A. The BCL-2 protein family: opposing activities that mediate cell death. Nat. Rev. Mol. Cell Biol.9(1), 47–59 (2008).
  • Brown GC, Borutaite V. Regulation of apoptosis by the redox state of cytochrome c. Biochim Biophys Acta1777(7–8), 877–881 (2008).
  • Vaughn AE, Deshmukh M. Glucose metabolism inhibits apoptosis in neurons and cancer cells by redox inactivation of cytochrome c. Nat. Cell. Biol.10(12), 1477–1483 (2008).
  • Martin HL, Teismann P. Glutathione-a review on its role and significance in Parkinson’s disease. FASEB J.23(10), 3263–3272 (2009).
  • Fatokun AA, Stone TW, Smith RA. Oxidative stress in neurodegeneration and available means of protection. Front. Biosci.13, 3288–3311 (2008).
  • Borutaite V. Mitochondria as decision-makers in cell death. Environ. Mol. Mutagen.51(5), 406–416 (2010).
  • Bayir H, Kapralov AA, Jiang J et al. Peroxidase mechanism of lipid-dependent cross-linking of synuclein with cytochrome c: protection against apoptosis versus delayed oxidative stress in Parkinson disease. J. Biol. Chem.284, 15951–15969 (2009).
  • Gao HM, Kotzbauer PT, Uryu K et al. Neuroinflammation and oxidation/nitration of α-synuclein linked to dopaminergic neurodegeneration. J. Neurosci.237687–7698 (2008).
  • Cherra SJ 3rd, Dagda RK, Chu CT. Review: autophagy and neurodegeneration: survival at a cost? Neuropathol. Appl. Neurobiol.36, 125–132 (2010).
  • Kim HS, Suh YH. Minocycline and neurodegenerative diseases. Behav. Brain Res.196(2), 168–179 (2009).
  • Schulenborg T, Schmidt O, van Hall A, Meyer HE, Hamacher M, Marcus K. Proteomics in neurodegeneration-disease driven approaches. J. Neural Transm.113(8), 1055–1073 (2006).
  • Everse J, Coates PW. Neurodegeneration and peroxidases. Neurobiol. Aging30, 1011–1025 (2009).
  • Garcia-Martinez EM, Sanz-Blasco S, Karachitos A et al. Mitochondria and calcium flux as targets of neuroprotection caused by minocycline in cerebellar granule cells. Biochem. Pharmacol.79(2), 239–250 (2010).
  • Kagan VE, Wipf P, Stoyanovsky D et al. Mitochondrial targeting of electron scavenging antioxidants: regulation of selective oxidation vs random chain reactions. Adv. Drug Deliv. Rev.61, 1375–1385 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.