250
Views
22
CrossRef citations to date
0
Altmetric
Review

Combined analysis of the glia secretome and the CSF proteome: neuroinflammation and novel biomarkers

Pages 263-274 | Published online: 09 Jan 2014

References

  • Streit WJ, Mrak RE, Griffin WS. Microglia and neuroinflammation: a pathological perspective. J. Neuroinflammation1(1), 14 (2004).
  • Harry GJ, Kraft AD. Neuroinflammation and microglia: considerations and approaches for neurotoxicity assessment. Expert Opin. Drug Metab. Toxicol.4(10), 1265–1277 (2008).
  • Graeber MB, Streit WJ. Microglia: biology and pathology. Acta Neuropathol.119(1), 89–105 (2010).
  • Ransohoff RM, Perry VH. Microglial physiology: unique stimuli, specialized responses. Annu. Rev. Immunol.27, 119–145 (2009).
  • Pivneva TA. Microglia in normal condition and pathology. Fiziol. Zh.54(5), 81–89 (2008).
  • Lynch MA. The multifaceted profile of activated microglia. Mol. Neurobiol.40(2), 139–156 (2009).
  • Seth P, Koul N. Astrocyte, the star avatar: redefined. J. Biosci.33(3), 405–421 (2008).
  • Wang DD, Bordey A. The astrocyte odyssey. Prog. Neurobiol.86(4), 342–367 (2008).
  • Araque A, Perea G. Glial modulation of synaptic transmission in culture. Glia47(3), 241–248 (2004).
  • Norton WT, Aquino DA, Hozumi I, Chiu FC, Brosnan CF. Quantitative aspects of reactive gliosis: a review. Neurochem. Res.17(9), 877–885 (1992).
  • Kim SU, de Vellis J. Microglia in health and disease. J. Neurosci. Res.81(3), 302–313 (2005).
  • Walter L, Neumann H. Role of microglia in neuronal degeneration and regeneration. Semin. Immunopathol.31(4), 513–525.
  • Sanders P, De Keyser J. Janus faces of microglia in multiple sclerosis. Brain Res. Rev.54(2), 274–285 (2007).
  • Nakajima K, Kohsaka S. Microglia: activation and their significance in the central nervous system. J. Biochem. (Tokyo)130(2), 169–175 (2001).
  • Liu B, Hong JS. Role of microglia in inflammation-mediated neurodegenerative diseases: mechanisms and strategies for therapeutic intervention. J. Pharmacol. Exp. Ther.304(1), 1–7 (2003).
  • Chavarria A, Alcocer-Varela J. Is damage in central nervous system due to inflammation? Autoimmun. Rev.3(4), 251–260 (2004).
  • Olson EE, McKeon RJ. Characterization of cellular and neurological damage following unilateral hypoxia/ischemia. J. Neurol. Sci.227(1), 7–19 (2004).
  • Morioka T, Kalehua AN, Streit WJ. Characterization of microglial reaction after middle cerebral artery occlusion in rat brain. J. Comp. Neurol.327(1), 123–132 (1993).
  • Inoue K, Tsuda M. Microglia and neuropathic pain. Glia57(14), 1469–1479 (2009).
  • Akiyama H, Barger S, Barnum S et al. Inflammation and Alzheimer’s disease. Neurobiol. Aging21(3), 383–421 (2000).
  • El Khoury J, Luster AD. Mechanisms of microglia accumulation in Alzheimer’s disease: therapeutic implications. Trends Pharmacol. Sci.29(12), 626–632 (2008).
  • Forman MS, Trojanowski JQ, Lee VM. Neurodegenerative diseases: a decade of discoveries paves the way for therapeutic breakthroughs. Nat. Med.10(10), 1055–1063 (2004).
  • Rogers J, Mastroeni D, Leonard B, Joyce J, Grover A. Neuroinflammation in Alzheimer’s disease and Parkinson’s disease: are microglia pathogenic in either disorder? Int. Rev. Neurobiol.82, 235–246 (2007).
  • Kim YS, Joh TH. Microglia major player in the brain inflammation: their roles in the pathogenesis of Parkinson’s disease. Exp. Mol. Med.38(4), 333–347 (2006).
  • Long-Smith CM, Sullivan AM, Nolan YM. The influence of microglia on the pathogenesis of Parkinson’s disease. Prog. Neurobiol.89(3), 277–287 (2009).
  • Villoslada P, Steinman L, Baranzini SE. Systems biology and its application to the understanding of neurological diseases. Ann. Neurol.65(2), 124–139 (2009).
  • Geschwind DH, Konopka G. Neuroscience in the era of functional genomics and systems biology. Nature461(7266), 908–915 (2009).
  • Quintana FJ, Farez MF, Weiner HL. Systems biology approaches for the study of multiple sclerosis. J. Cell Mol. Med.12(4), 1087–1093 (2008).
  • Vodovotz Y, Csete M, Bartels J, Chang S, An G. Translational systems biology of inflammation. PLoS Comput. Biol.4(4), e1000014 (2008).
  • Grant SG. Systems biology in neuroscience: bridging genes to cognition. Curr. Opin. Neurobiol.13(5), 577–582 (2003).
  • Hwang D, Lee IY, Yoo H et al. A systems approach to prion disease. Mol. Syst. Biol.5, 252 (2009).
  • Kandpal R, Saviola B, Felton J. The era of ‘omics unlimited. Biotechniques46(5), 351–352, 354–355 (2009).
  • Bruggeman FJ, Westerhoff HV. The nature of systems biology. Trends Microbiol.15(1), 45–50 (2007).
  • Kitano H. Systems biology: a brief overview. Science295(5560), 1662–1664 (2002).
  • Kirschner MW. The meaning of systems biology. Cell121(4), 503–504 (2005).
  • Aderem A. Systems biology: its practice and challenges. Cell121(4), 511–513 (2005).
  • Liu ET. Systems biology, integrative biology, predictive biology. Cell121(4), 505–506 (2005).
  • Petranovic D, Nielsen J. Can yeast systems biology contribute to the understanding of human disease? Trends Biotechnol.26(11), 584–590 (2008).
  • Hathout Y. Approaches to the study of the cell secretome. Expert Rev. Proteomics4(2), 239–248 (2007).
  • Weston AD, Hood L. Systems biology, proteomics and the future of health care: toward predictive, preventative, and personalized medicine. J. Proteome Res.3(2), 179–196 (2004).
  • Greenbaum D, Luscombe NM, Jansen R, Qian J, Gerstein M. Interrelating different types of genomic data, from proteome to secretome: ‘oming in on function. Genome Res.11(9), 1463–1468 (2001).
  • Grimmond SM, Miranda KC, Yuan Z et al. The mouse secretome: functional classification of the proteins secreted into the extracellular environment. Genome Res.13(6B), 1350–1359 (2003).
  • Thouvenot E, Lafon-Cazal M, Demettre E, Jouin P, Bockaert J, Marin P. The proteomic analysis of mouse choroid plexus secretome reveals a high protein secretion capacity of choroidal epithelial cells. Proteomics6(22), 5941–5952 (2006).
  • Khwaja FW, Svoboda P, Reed M, Pohl J, Pyrzynska B, Van Meir EG. Proteomic identification of the wt-p53-regulated tumor cell secretome. Oncogene25(58), 7650–7661 (2006).
  • Pellitteri-Hahn MC, Warren MC, Didier DN et al. Improved mass spectrometric proteomic profiling of the secretome of rat vascular endothelial cells. J. Proteome Res.5(10), 2861–2864 (2006).
  • Zvonic S, Lefevre M, Kilroy G et al. Secretome of primary cultures of human adipose-derived stem cells: modulation of serpins by adipogenesis. Mol. Cell Proteomics6(1), 18–28 (2007).
  • Dupont A, Corseaux D, Dekeyzer O et al. The proteome and secretome of human arterial smooth muscle cells. Proteomics5(2), 585–596 (2005).
  • Dupont A, Tokarski C, Dekeyzer O et al. Two-dimensional maps and databases of the human macrophage proteome and secretome. Proteomics4(6), 1761–1778 (2004).
  • Lafon-Cazal M, Adjali O, Galeotti N et al. Proteomic analysis of astrocytic secretion in the mouse. Comparison with the cerebrospinal fluid proteome. J. Biol. Chem.278(27), 24438–24448 (2003).
  • Delcourt N, Jouin P, Poncet J et al. Difference in mass analysis using labeled lysines (DIMAL-K): a new, efficient proteomic quantification method applied to the analysis of astrocytic secretomes. Mol. Cell Proteomics4(8), 1085–1094 (2005).
  • Wu HY, Chang YH, Chang YC, Liao PC. Proteomics analysis of nasopharyngeal carcinoma cell secretome using a hollow fiber culture system and mass spectrometry. J. Proteome Res.8(1), 380–389 (2009).
  • Dowell JA, Johnson JA, Li L. Identification of astrocyte secreted proteins with a combination of shotgun proteomics and bioinformatics. J. Proteome Res.8(8), 4135–4143 (2009).
  • Keene SD, Greco TM, Parastatidis I et al. Mass spectrometric and computational analysis of cytokine-induced alterations in the astrocyte secretome. Proteomics9(3), 768–782 (2009).
  • Kim S, Ock J, Kim AK et al. Neurotoxicity of microglial cathepsin D revealed by secretome analysis. J. Neurochem.103(6), 2640–2650 (2007).
  • Liu J, Hong Z, Ding J, Liu J, Zhang J, Chen S. Predominant release of lysosomal enzymes by newborn rat microglia after LPS treatment revealed by proteomic studies. J. Proteome Res.7(5), 2033–2049 (2008).
  • Mohri I, Taniike M, Taniguchi H et al. Prostaglandin D2-mediated microglia/astrocyte interaction enhances astrogliosis and demyelination in twitcher. J. Neurosci.26(16), 4383–4393 (2006).
  • Hansson E, Ronnback L. Glial neuronal signaling in the central nervous system. FASEB J.17(3), 341–348 (2003).
  • Biber K, Vinet J, Boddeke HW. Neuron-microglia signaling: chemokines as versatile messengers. J. Neuroimmunol.198(1–2), 69–74 (2008).
  • Wang T, Gong N, Liu J et al. HIV-1-infected astrocytes and the microglial proteome. J. Neuroimmune Pharmacol.3(3), 173–186 (2008).
  • Rohl C, Armbrust E, Kolbe K et al. Activated microglia modulate astroglial enzymes involved in oxidative and inflammatory stress and increase the resistance of astrocytes to oxidative stress in vitro. Glia56(10), 1114–1126 (2008).
  • Tannu NS, Hemby SE. Methods for proteomics in neuroscience. Prog. Brain Res.158, 41–82 (2006).
  • Poon TC. Opportunities and limitations of SELDI-TOF-MS in biomedical research: practical advices. Expert Rev. Proteomics4(1), 51–65 (2007).
  • Seibert V, Ebert MP, Buschmann T. Advances in clinical cancer proteomics: SELDI-ToF-mass spectrometry and biomarker discovery. Brief. Funct. Genomic Proteomic4(1), 16–26 (2005).
  • Findeisen P, Neumaier M. Mass spectrometry-based clinical proteomics profiling: current status and future directions. Expert Rev. Proteomics6(5), 457–459 (2009).
  • Xue H, Lu B, Lai M. The cancer secretome: a reservoir of biomarkers. J. Transl. Med.6, 52 (2008).
  • Zwickl H, Traxler E, Staettner S et al. A novel technique to specifically analyze the secretome of cells and tissues. Electrophoresis26(14), 2779–2785 (2005).
  • Enose Y, Destache CJ, Mack AL et al. Proteomic fingerprints distinguish microglia bone marrow, and spleen macrophage populations. Glia51(3), 161–172 (2005).
  • Potolicchio I, Carven GJ, Xu X et al. Proteomic analysis of microglia-derived exosomes: metabolic role of the aminopeptidase CD13 in neuropeptide catabolism. J. Immunol.175(4), 2237–2243 (2005).
  • Reynolds AD, Stone DK, Mosley RL, Gendelman HE. Proteomic studies of nitrated α-synuclein microglia regulation by CD4+CD25+ T cells. J. Proteome Res.8(7), 3497–3511 (2009).
  • Bernhart E, Kollroser M, Rechberger G et al. Lysophosphatidic acid receptor activation affects the C13NJ microglial cell line proteome leading to alterations in glycolysis, motility, and cytoskeletal architecture. Proteomics10(1), 141–158 (2010).
  • Egnaczyk GF, Pomonis JD, Schmidt JA et al. Proteomic analysis of the reactive phenotype of astrocytes following endothelin-1 exposure. Proteomics3(5), 689–698 (2003).
  • Yang JW, Suder P, Silberring J, Lubec G. Proteome analysis of mouse primary astrocytes. Neurochem. Int.47(3), 159–172 (2005).
  • Hauck SM, Suppmann S, Ueffing M. Proteomic profiling of primary retinal Muller glial cells reveals a shift in expression patterns upon adaptation to in vitro conditions. Glia44(3), 251–263 (2003).
  • Pocernich CB, Boyd-Kimball D, Poon HF et al. Proteomics analysis of human astrocytes expressing the HIV protein Tat. Brain Res. Mol. Brain Res.133(2), 307–316 (2005).
  • Moore NH, Costa LG, Shaffer SA, Goodlett DR, Guizzetti M. Shotgun proteomics implicates extracellular matrix proteins and protease systems in neuronal development induced by astrocyte cholinergic stimulation. J. Neurochem.108(4), 891–908 (2009).
  • Thouvenot E, Urbach S, Dantec C et al. Enhanced detection of CNS cell secretome in plasma protein-depleted cerebrospinal fluid. J. Proteome Res.7(10), 4409–4421 (2008).
  • Bachoo RM, Kim RS, Ligon KL et al. Molecular diversity of astrocytes with implications for neurological disorders. Proc. Natl Acad. Sci. USA101(22), 8384–8389 (2004).
  • Cahoy JD, Emery B, Kaushal A et al. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J. Neurosci.28(1), 264–278 (2008).
  • Gabelle A, Roche S, Lehmann S. [CSF biomarkers: proteomics investigations and clinical applications in neurodegenerative disorders]. Rev. Neurol. (Paris)165(3), 213–222 (2009).
  • Maurer MH. Proteomics of brain extracellular fluid (ECF) and cerebrospinal fluid (CSF). Mass Spectrom. Rev.29(1), 17–28 (2010).
  • Westman-Brinkmalm A, Ruetschi U, Portelius E et al. Proteomics/peptidomics tools to find CSF biomarkers for neurodegenerative diseases. Front. Biosci.14, 1793–1806 (2009).
  • Zougman A, Pilch B, Podtelejnikov A et al. Integrated analysis of the cerebrospinal fluid peptidome and proteome. J. Proteome Res.7(1), 386–399 (2008).
  • Nussbaum RL, Ellis CE. Alzheimer’s disease and Parkinson’s disease. N. Engl. J. Med.348(14), 1356–1364 (2003).
  • Teunissen CE, Petzold A, Bennett JL et al. A consensus protocol for the standardization of cerebrospinal fluid collection and biobanking. Neurology73(22), 1914–1922 (2009).
  • Tumani H, Teunissen C, Sussmuth S, Otto M, Ludolph AC, Brettschneider J. Cerebrospinal fluid biomarkers of neurodegeneration in chronic neurological diseases. Expert Rev. Mol. Diagn.8(4), 479–494 (2008).
  • Romeo MJ, Espina V, Lowenthal M, Espina BH, Petricoin EF 3rd, Liotta LA. CSF proteome: a protein repository for potential biomarker identification. Expert Rev. Proteomics2(1), 57–70 (2005).
  • Davidsson P, Sjogren M. Proteome studies of CSF in AD patients. Mech. Ageing Dev.127(2), 133–137 (2006).
  • Ekegren T, Hanrieder J, Bergquist J. Clinical perspectives of high-resolution mass spectrometry-based proteomics in neuroscience: exemplified in amyotrophic lateral sclerosis biomarker discovery research. J. Mass Spectrom.43(5), 559–571 (2008).
  • Pan S, Zhu D, Quinn JF et al. A combined dataset of human cerebrospinal fluid proteins identified by multi-dimensional chromatography and tandem mass spectrometry. Proteomics7(3), 469–473 (2007).
  • Zhang J, Goodlett DR, Montine TJ. Proteomic biomarker discovery in cerebrospinal fluid for neurodegenerative diseases. J. Alzheimers Dis.8(4), 377–386 (2005).
  • Aluise CD, Sowell RA, Butterfield DA. Peptides and proteins in plasma and cerebrospinal fluid as biomarkers for the prediction, diagnosis, and monitoring of therapeutic efficacy of Alzheimer’s disease. Biochim. Biophys. Acta1782(10), 549–558 (2008).
  • Shaw LM, Vanderstichele H, Knapik-Czajka M et al. Cerebrospinal fluid biomarker signature in Alzheimer’s disease neuroimaging initiative subjects. Ann. Neurol.65(4), 403–413 (2009).
  • Yin GN, Lee HW, Cho JY, Suk K. Neuronal pentraxin receptor in cerebrospinal fluid as a potential biomarker for neurodegenerative diseases. Brain Res.1265, 158–170 (2009).
  • Zhang J, Goodlett DR, Quinn JF et al. Quantitative proteomics of cerebrospinal fluid from patients with Alzheimer disease. J. Alzheimers Dis.7(2), 125–133; discussion 173–180 (2005).
  • Straten G, Eschweiler GW, Maetzler W, Laske C, Leyhe T. Glial cell-line derived neurotrophic factor (GDNF) concentrations in cerebrospinal fluid and serum of patients with early Alzheimer’s disease and normal controls. J. Alzheimers Dis.18(2), 331–337 (2009).
  • Jesse S, Steinacker P, Cepek L et al. Glial fibrillary acidic protein and protein S-100B: different concentration pattern of glial proteins in cerebrospinal fluid of patients with Alzheimer’s disease and Creutzfeldt-Jakob disease. J. Alzheimers Dis.17(3), 541–551 (2009).
  • Eller M, Williams DR. Biological fluid biomarkers in neurodegenerative parkinsonism. Nat. Rev. Neurol.5(10), 561–570 (2009).
  • Abdi F, Quinn JF, Jankovic J et al. Detection of biomarkers with a multiplex quantitative proteomic platform in cerebrospinal fluid of patients with neurodegenerative disorders. J. Alzheimers Dis.9(3), 293–348 (2006).
  • Constantinescu R, Zetterberg H, Holmberg B, Rosengren L. Levels of brain related proteins in cerebrospinal fluid: an aid in the differential diagnosis of parkinsonian disorders. Parkinsonism Relat. Disord.15(3), 205–212 (2009).
  • Mitchell RM, Freeman WM, Randazzo WT et al. A CSF biomarker panel for identification of patients with amyotrophic lateral sclerosis. Neurology72(1), 14–19 (2009).
  • Brechlin P, Jahn O, Steinacker P et al. Cerebrospinal fluid-optimized two-dimensional difference gel electrophoresis (2-D DIGE) facilitates the differential diagnosis of Creutzfeldt-Jakob disease. Proteomics8(20), 4357–4366 (2008).
  • Bayes A, Grant SG. Neuroproteomics: understanding the molecular organization and complexity of the brain. Nat. Rev. Neurosci.10(9), 635–646 (2009).
  • Lewczuk P, Zimmermann R, Wiltfang J, Kornhuber J. Neurochemical dementia diagnostics: a simple algorithm for interpretation of the CSF biomarkers. J. Neural Transm.116(9), 1163–1167 (2009).
  • Choi C, Jeong JH, Jang JS et al. Multiplex analysis of cytokines in the serum and cerebrospinal fluid of patients with Alzheimer’s disease by color-coded bead technology. J. Clin. Neurol.4(2), 84–88 (2008).
  • Ray S, Britschgi M, Herbert C et al. Classification and prediction of clinical Alzheimer’s diagnosis based on plasma signaling proteins. Nat. Med.13(11), 1359–1362 (2007).
  • Knopman DS, DeKosky ST, Cummings JL et al. Practice parameter: diagnosis of dementia (an evidence-based review). Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology56(9), 1143–1153 (2001).
  • Cedazo-Minguez A, Winblad B. Biomarkers for Alzheimer’s disease and other forms of dementia: clinical needs, limitations and future aspects. Exp. Gerontol.45(1), 5–14 (2010).
  • Kunz GM Jr, Chan DW. The use of laser capture microscopy in proteomics research – a review. Dis. Markers20(3), 155–160 (2004).
  • Ye X, Blonder J, Veenstra TD. Targeted proteomics for validation of biomarkers in clinical samples. Brief Funct. Genomic Proteomic8(2), 126–135 (2009).
  • Yocum AK, Chinnaiyan AM. Current affairs in quantitative targeted proteomics: multiple reaction monitoring-mass spectrometry. Brief. Funct. Genomic Proteomic8(2), 145–157 (2009).
  • Pan S, Aebersold R, Chen R et al. Mass spectrometry based targeted protein quantification: methods and applications. J. Proteome Res.8(2), 787–797 (2009).
  • Anderson L, Hunter CL. Quantitative mass spectrometric multiple reaction monitoring assays for major plasma proteins. Mol. Cell Proteomics5(4), 573–588 (2006).
  • Picotti P, Bodenmiller B, Mueller LN, Domon B, Aebersold R. Full dynamic range proteome analysis of S. cerevisiae by targeted proteomics. Cell138(4), 795–806 (2009).
  • Pasinetti GM, Ungar LH, Lange DJ et al. Identification of potential CSF biomarkers in ALS. Neurology66(8), 1218–1222 (2006).
  • O’Connor KC, Roy SM, Becker CH, Hafler DA, Kantor AB. Comprehensive phenotyping in multiple sclerosis: discovery based proteomics and the current understanding of putative biomarkers. Dis. Markers22(4), 213–225 (2006).
  • Qin Z, Qin Y, Liu S. Alteration of DBP levels in CSF of patients with MS by proteomics analysis. Cell Mol. Neurobiol.29(2), 203–210 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.