398
Views
33
CrossRef citations to date
0
Altmetric
Review

Identification of biomarkers for colorectal cancer through proteomics-based approaches

Pages 879-895 | Published online: 09 Jan 2014

References

  • Jass JR, Morson BC. Reporting colorectal cancer. J. Clin. Pathol.40, 1016–1023 (1987).
  • Booth RA. Minimally invasive biomarkers for detection and staging of colorectal cancer. Cancer Lett.249, 87–96 (2007).
  • Simon J. Should all people over the age of 50 have regular fecal occult-blood tests? Postpone population screening until problems are solved. N. Engl. J. Med.338, 1151–1152 (1998).
  • Lieberman D. Clinical practice. Screening for colorectal cancer. N. Engl. J. Med.361, 1179–1187 (2009).
  • Center MM, Jemal A, Smith RA, Ward E. Worldwide variations in colorectal cancer. CA Cancer J. Clin.59, 366–378 (2009).
  • Vogelstein B, Kinzler KW. Digital PCR. Proc. Natl Acad. Sci. USA96, 9236–9241 (1999).
  • Melotte V, Lentjes M, van den Bosch S et al. N-Myc downstream-regulated gene 4 (NDRG4): a candidate tumor suppressor gene and potential biomarker for colorectal cancer. J. Natl. Cancer Inst.101, 916–927 (2009).
  • Nagasaka T, Tanaka N, Cullings HM et al. Analysis of fecal DNA methylation to detect gastrointestinal neoplasia. J. Natl. Cancer Inst.101, 1244–1258 (2009).
  • Tan E, Gouvas N, Nicholls RJ, Ziprin P, Xynos E, Tekkis PP. Diagnostic precision of carcinoembryonic antigen in the detection of recurrence of colorectal cancer. Surg. Oncol. (Oxf.)18, 15–24 (2009).
  • Duffy MJ, van Dalen A, Haglund C et al. Tumour markers in colorectal cancer: European Group on Tumour Markers (EGTM) guidelines for clinical use. Eur. J. Cancer43, 1348–1360 (2007).
  • Huerta S. Recent advances in the molecular diagnosis and prognosis of colorectal cancer. Expert Rev. Mol. Diagn.8, 277–288 (2008).
  • Sagynaliev E, Steinert R, Nestler G, Lippert H, Knoch M, Reymond MA. Web-based data warehouse on gene expression in human colorectal cancer. Proteomics5, 3066–3078 (2005).
  • Reymond MA, Steinert R, Kahne T, Sagynaliev E, Allal AS, Lippert H. Expression and functional proteomics studies in colorectal cancer. Pathol. Res. Pract.200, 119–127 (2004).
  • Barderas R, Babel I, Casal JI. Colorectal cancer proteomics molecular characterization and biomarker discovery. Proteomics Clin. Appl.4, 159–178 (2010).
  • O’Farrell P. The pre-omics era: the early days of two-dimensional gels. Proteomics8(23–24), 4842–4852 (2008).
  • Petricoin EF, Ardekani AM, Hitt BA et al. Use of proteomic patterns in serum to identify ovarian cancer. Lancet359(9306), 572–577 (2002).
  • Issaq HJ, Xiao Z, Veenstra TD. Serum and plasma proteomics. Chem. Rev.107, 3601–3620 (2007).
  • Mehta AI, Ross S, Lowenthal MS et al. Biomarker amplification by serum carrier protein binding. Dis. Markers19, 1–10 (2003).
  • Seam N, Gonzales DA, Kern SJ, Hortin GL, Hoehn GT, Suffredini AF. Quality control of serum albumin, depletion for proteomic analysis. Clin. Chem.53, 1915–1920 (2007).
  • Hu LH, Ye ML, Zou HF. Recent advances in mass spectrometry-based peptidome analysis. Expert Rev. Proteomics6, 433–447 (2009).
  • Petricoin EF, Belluco C, Araujo RP, Liotta LA. The blood peptidome: a higher dimension of information content for cancer biomarker discovery. Nat. Rev. Cancer6, 961–967 (2006).
  • Villanueva J, Martorella AJ, Lawlor K et al. Serum peptidome patterns that distinguish metastatic thyroid carcinoma from cancer-free controls are unbiased by gender and age. Mol. Cell. Proteomics5, 1840–1852 (2006).
  • Villanueva J, Nazarian A, Lawlor K, Yi SS, Robbins RJ, Temps P. A sequence-specific exopeptidase activity test (SSEAT) for ‘functional’ biomarker discovery. Mol. Cell. Proteomics7, 509–518 (2008).
  • Peccerella T, Lukan N, Hofheinz R et al. Endoprotease profiling with double-tagged peptide substrates: a new diagnostic approach in oncology. Clin. Chem.56, 272–280 (2010).
  • Dekker LJ, Burgers PC, Charif H et al. Differential expression of protease activity in serum samples of prostate carcinoma patients with metastases. Proteomics10(12), 2348–2358 (2010).
  • Check E. Proteomics and cancer – running before we can walk? Nature429, 496–497 (2004).
  • Baggerly KA, Morris JS, Edmonson SR, Coombes KR. Signal in noise: evaluating reported reproducibility of serum proteomic tests for ovarian cancer. J. Natl. Cancer Inst.97, 307–309 (2005).
  • Gast MC, van Gils CH, Wessels LFA et al. Influence of sample storage duration on serum protein profiles assessed by surface-enhanced laser desorption/ionisation time-of-flight mass spectrometry (SELDI-TOF MS). Clin. Chem. Lab. Med.47, 694–705 (2009).
  • Findeisen P, Neumaier M. Mass spectrometry based proteomics profiling as diagnostic tool in oncology: current status and future perspective. Clin. Chem. Lab. Med.47, 666–684 (2009).
  • Wright GL. 2-dimensional acrylamide gel electrophoresis of cancer-patient serum proteins. Ann. Clin. Lab. Sci.4, 281–293 (1974).
  • de Noo ME, Mertens BJA, Ozalp A et al. Detection of colorectal cancer using MALDI-TOF serum protein profiling. Eur. J. Cancer42, 1068–1076 (2006).
  • de Noo ME, Tollenaar R, Deelder AM, Bouwman LH. Current status and prospects of clinical proteomics studies on detection of colorectal cancer: hopes and fears. World J. Gastroenterol.12, 6594–6601 (2006).
  • Tuck MK, Chan DW, Chia D et al. Standard operating procedures for serum and plasma collection: early detection research network consensus statement standard operating procedure integration working group. J. Proteome Res.8, 113–117 (2009).
  • McLerran D, Grizzle WE, Feng ZD et al. SELDI-TOF MS whole serum proteomic profiling with IMAC surface does not reliably detect prostate cancer. Clin. Chem.54, 53–60 (2008).
  • McLerran D, Grizzle WE, Feng Z et al. Analytical validation of serum proteomic profiling for diagnosis of prostate cancer: sources of sample bias. Clin. Chem.54, 44–52 (2008).
  • Ward DG, Suggett N, Cheng Y et al. Identification of serum biomarkers for colon cancer by proteomic analysis. Br. J. Cancer94, 1898–1905 (2006).
  • Chen YD, Zheng S, Yu JK, Hu X. Artificial neural networks analysis of surface-enhanced laser desorption/ionization mass spectra of serum protein pattern distinguishes colorectal cancer from healthy population. Clin. Cancer Res.10, 8380–8385 (2004).
  • Yu J, Chen Y, Zheng S. An integrated approach to the detection of colorectal cancer utilizing proteomics and bioinformatics. World J. Gastroenterol.10, 3127–3131 (2004).
  • Liu X, Shen J, Li Z, Yan L, Gu J. A serum proteomic pattern for the detection of colorectal adenocarcinoma using surface enhanced laser desorption and ionization mass spectrometry. Cancer Invest.24, 747–753 (2006).
  • Ward DG, Nyangoma S, Joy H et al. Proteomic profiling of urine for the detection of colon cancer. Proteome Sci.6, 19 (2008).
  • Ward DG, Roberts K, Brookes MJ et al. Increased hepcidin expression in colorectal carcinogenesis. World J. Gastroenterol.14, 1339–1345 (2008).
  • Kemna E, Tjalsma H, Willems HL, Swinkels DW. Hepcidin: from discovery to differential diagnosis. Haematologica93, 90–97 (2008).
  • Schlosser G, Pocsfalvi G, Huszar E, Malorni A, Hudecz F. MALDI-TOF mass spectrometry of a combinatorial peptide library: effect of matrix composition on signal suppression. J. Mass Spectrom.40, 1590–1594 (2005).
  • Szajli E, Feher T, Medzihradszky KF. Investigating the quantitative nature of MALDI-TOF MS. Mol. Cell. Proteomics7, 2410–2418 (2008).
  • Wang Q, Shen J, Li ZF et al. Limitations in SELDI-TOF MS whole serum proteomic profiling with IMAC surface to specifically detect colorectal cancer. BMC Cancer9, 287 (2009).
  • Swinkels DW, Girelli D, Laarakkers C et al. Advances in quantitative hepcidin measurements by time-of-flight mass spectrometry. PloS ONE3(7), e2706 (2008).
  • Quaresima B, Crugliano T, Gaspari M et al. A proteomics approach to identify changes in protein profiles in serum of Familial adenomatous polyposis patients. Cancer Lett.272, 40–52 (2008).
  • Hung KE, Kho AT, Sarracino D et al. Mass spectrometry-based study of the plasma proteome in a mouse intestinal tumor model. J. Proteome Res.5, 1866–1878 (2006).
  • Kocer B, McKolanis J, Soran A. Humoral immune response to MUC5AC in patients with colorectal polyps and colorectal carcinoma. BMC Gastroenterol.6, 4 (2006).
  • Silk AW, Schoen RE, Potter DM, Finn OJ. Humoral immune response to abnormal MUC1 in subjects with colorectal adenoma and cancer. Mol. Immunol.47, 52–56 (2009).
  • Bresalier RS, Byrd JC, Tessler D et al. A circulating ligand for galectin-3 glycoprotein elevated in individual is a haptoglobin-related with colon cancer. Gastroenterology127, 741–748 (2004).
  • Arredondo M, Kloosterman J, Nunez S et al. Heme iron uptake by Caco-2 cells is a saturable, temperature sensitive and modulated by extracellular pH and potassium. Biological Trace Element Res.125, 109–119 (2008).
  • Peng JY, Zhang QF, Ma YL et al. A rat-to-human search for proteomic alterations reveals transgelin as a biomarker relevant to colorectal carcinogenesis and liver metastasis. Electrophoresis30, 2976–2987 (2009).
  • Xing PX, Young GP, Ho D, Sinatra MA, Hoj PB, McKenzie IF. A new approach to fecal occult blood testing based on the detection of haptoglobin. Cancer78, 48–56 (1996).
  • Reuschenbach M, Kloor M, Morak M et al. Serum antibodies against frameshift peptides in microsatellite unstable colorectal cancer patients with Lynch syndrome. Familial Cancer9, 173–179 (2010).
  • Tjalsma H, Schaeps RM, Swinkels DW. Immunoproteomics: from biomarker discovery to diagnostic applications. Proteomics Clin. Appl.2, 167–180 (2008).
  • He YJ, Mou ZR, Li WL et al. Identification of IMPDH2 as a tumor-associated antigen in colorectal cancer using immunoproteomics analysis. Int. J. Colorectal Dis.24, 1271–1279 (2009).
  • Collart FR, Chubb CB, Mirkin BL, Huberman E. I Increased inosine-5´-phosphate dehydrogenase gene-expression in solid tumor-tissues and tumor-cell lines. Cancer Res.52, 5826–5828 (1992).
  • Ran YL, Hu H, Zhou Z et al. Profiling tumor-associated autoantibodies for the detection of colon cancer. Clin. Cancer Res.14, 2696–2700 (2008).
  • Babel I, Barderas R, Diaz-Uriarte R, Martinez-Torrecuadrada JL, Sanchez-Carbayo M, Casal JI. Identification of tumor-associated autoantigens for the diagnosis of colorectal cancer in serum using high density protein microarrays. Mol. Cell. Proteomics8, 2382–2395 (2009).
  • Coutinho A, Kazatchkine MD, Avrameas S. Natural autoantibodies. Curr. Opin. Immunol.7, 812–818 (1995).
  • Hausen HZ. Streptococcus bovis: causal or incidental involvement in cancer of the colon? Int. J. Cancer119, XI–XII (2006).
  • Tjalsma H, Scholler-Guinard M, Lasonder E, Ruers TJ, Willems HL, Swinkels DW. Profiling the humoral immune response in colon cancer patients: diagnostic antigens from Streptococcus bovis. Int. J. Cancer119, 2127–2135 (2006).
  • Boleij A, Roelofs R, Schaeps RM et al. Increased exposure to bacterial antigen RpL7/L12 in early stage colorectal cancer patients. Cancer116(17), 4014–4022 (2010).
  • Abdulamir AS, Hafidh RR, Mahdi LK, Al-Jeboori T, Abubaker F. Investigation into the controversial association of Streptococcus gallolyticus with colorectal cancer and adenoma. BMC Cancer9, 403 (2009).
  • Ma YL, Peng JY, Liu WJ et al. Proteomics identification of desmin as a potential oncofetal diagnostic and prognostic biomarker in colorectal cancer. Mol. Cell. Proteomics8, 1878–1890 (2009).
  • Bendtsen JD, Jensen LJ, Blom N, von Heijne G, Brunak S. Feature-based prediction of non-classical and leaderless protein secretion. Protein Eng. Des. Sel.17, 349–356 (2004).
  • Zhang YB, Ye YJ, Shen DH et al. Identification of transgelin-2 as a biomarker of colorectal cancer by laser capture microdissection and quantitative proteome analysis. Cancer Sci.101, 523–529 (2010).
  • Tjalsma H, Pluk W, van den Heuvel LP, Peters WH, Roelofs R, Swinkels DW. Proteomic inventory of ‘anchorless’ proteins on the colon adenocarcinoma cell surface. Biochim. Biophys. Acta Proteins Proteomics1764, 1607–1617 (2006).
  • Xing XM, Lai MD, Wang YH, Xu EP, Huang Q. Overexpression of glucose-regulated protein 78 in colon cancer. Clin. Chim. Acta364, 308–315 (2006).
  • Roessler M, Rollinger W, Palme S et al. Identification of nicotinamide N-methyltransferase as a novel serum tumor marker for colorectal cancer. Clin. Cancer Res.11, 6550–6557 (2005).
  • Roessler M, Rollinger W, Mantovani-Endl L et al. Identification of PSME3 as a novel serum tumor marker for colorectal cancer by combining two-dimensional polyacrylamide gel electrophoresis with a strictly mass spectrometry-based approach for data analysis. Mol. Cell. Proteomics5, 2092–2101 (2006).
  • Kim H, Kang HJ, You KT et al. Suppression of human selenium-binding protein 1 is a late event in colorectal carcinogenesis and is associated with poor survival. Proteomics6, 3466–3476 (2006).
  • Chen WS, Chang HY, Li CP, Liu JM, Huang TS. Tumor β-1,4-galactosyltransferase IV overexpression is closely associated with colorectal cancer metastasis and poor prognosis. Clin. Cancer Res.11, 8615–8622 (2005).
  • Larriba MJ, Casado-Vela J, Pendas-Franco N et al. Novel Snail1 target proteins in human colon cancer identified by proteomic analysis. PloS ONE5, E10221 (2010).
  • Renert AF, Leprince P, Dieu M et al. The proapoptotic C16-ceramide-dependent pathway requires the death-promoting factor Btf in colon adenocarcinoma cells. J. Proteome Res.8, 4810–4822 (2009).
  • Bendtsen JD, Nielsen H, von Heijne G, Brunak S. Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol.340, 783–795 (2004).
  • Kim HJ, Kang HJ, Lee H et al. Identification of S100A8 and S100A9 as serological markers for colorectal cancer. J. Proteome Res.8, 1368–1379 (2009).
  • Lambert O, Cavusoglu N, Gallay J et al. Novel organization and properties of annexin 2-membrane complexes. J. Biol. Chem.279, 10872–10882 (2004).
  • Melle C, Ernst G, Schimmel B, Bleul A, von Eggeling F. Colon-derived liver metastasis, colorectal carcinoma, and hepatocellular carcinoma can be discriminated by the Ca2+-binding proteins S100A6 and S100A11. PloS ONE3, E3767 (2008).
  • Melle C, Ernst G, Schimmel B et al. Discovery and identification of α-defensins as low abundant, tumor-derived serum markers in colorectal cancer. Gastroenterology129, 66–73 (2005).
  • Brunagel G, Vietmeier BN, Bauer AJ, Schoen RE, Getzenberg RH. Identification of nuclear matrix protein alterations associated with human colon cancer. Cancer Res.62, 2437–2442 (2002).
  • Konety BR, Nguyen TS, Brenes G et al. Clinical usefulness of the novel marker BLCA-4 for the detection of bladder cancer. J. Urol.164, 634–639 (2000).
  • Miller TE, Beausang LA, Winchell LF, Lidgard GP. Detection of nuclear matrix proteins in serum from cancer-patients. Cancer Res.52, 422–427 (1992).
  • Walgenbach-Brunagel G, Burger B, Leman ES et al. The use of a colon cancer associated nuclear antigen CCSA-2 for the blood based detection of colon cancer. J. Cell. Biochem.104, 286–294 (2008).
  • Caldwell RL, Caprioli RM. Tissue profiling by mass spectrometry – a review of methodology and applications. Mol. Cell. Proteomics4, 394–401 (2005).
  • Chaurand P, Norris JL, Cornett DS, Mobley JA, Caprioli RM. New developments in profiling and imaging of proteins from tissue sections by MALDI mass spectrometry. J. Proteome Res.5, 2889–2900 (2006).
  • Mazzanti R, Solazzo M, Fantappie O et al. Differential expression proteomics of human colon cancer. Am. J. Physiol. Gastrointest. Liver Physiol.290, G1329–G1338 (2006).
  • Pei HP, Zhu H, Zeng S et al. Proteome analysis and tissue microarray for profiling protein markers associated with lymph node metastasis in colorectal cancer. J. Proteome Res.6, 2495–2501 (2007).
  • Hanash S. It takes a village to develop biomarkers. J. Proteome Res.6, 3362 (2007).
  • Ruginis T, Taglia L, Matusiak D, Lee BS, Benya RV. Consequence of gastrin-releasing peptide receptor activation in a human colon cancer cell line: a proteomic approach. J. Proteome Res.5, 1460–1468 (2006).
  • Dippold W, Wittig B, Schwaeble W, Mayet W, Zumbuschenfelde KH. Expression of intercellular-adhesion molecule-1 (Icam-1, Cd54) in colonic epithelial-cells. Gut34, 1593–1597 (1993).
  • Gaedtke L, Thoenes L, Culmsee C, Mayer B, Wagner E. Proteomic analysis reveals differences in protein expression in spheroid versus monolayer cultures of low-passage colon carcinoma cells. J. Proteome Res.6, 4111–4118 (2007).
  • Nam MJ, Kee MK, Kuick R, Hanash SM. Identification of defensin a 6 as a potential biomarker in colon adenocarcinoma. J. Biol. Chem.280, 8260–8265 (2005).
  • Lawlor K, Nazarlan A, Lacomis L, Tempst P, Villanueva J. Pathway-based biomarker search by high-throughput proteomics profiling of secretomes. J. Proteome Res.8, 1489–1503 (2009).
  • Shi HJ, Stubbs R, Hood K. Characterization of de novo synthesized proteins released from human colorectal tumour explants. Electrophoresis30, 2442–2453 (2009).
  • Wu CC, Chen HC, Chen SJ et al. Identification of collapsin response mediator protein-2 as a potential marker of colorectal carcinoma by comparative analysis of cancer cell secretomes. Proteomics8, 316–332 (2008).
  • Llanos S, Efeyan A, Monsech J, Dominguez O, Serrano M. A high-throughput loss-of-function screening identifies novel p53 regulators. Cell Cycle5, 1880–1885 (2006).
  • Volmer MW, Stuhler K, Zapatka M et al. Differential proteome analysis of conditioned media to detect Smad4 regulated secreted biomarkers in colon cancer. Proteomics5, 2587–2601 (2005).
  • Rangiah K, Tippornwong M, Sangar V et al. Differential secreted proteome approach in murine model for candidate biomarker discovery in colon cancer. J. Proteome Res.8, 5153–5164 (2009).
  • Yang X, Lazar IM. MRM screening/biomarker discovery with linear ion trap MS: a library of human cancer-specific peptides. BMC Cancer9, 96 (2009).
  • Makawita S, Diamandis EP. The bottleneck in the cancer biomarker pipeline and protein quantification through mass spectrometry-based approaches: current strategies for candidate verification. Clin. Chem.56(2), 212–222 (2010).
  • Chen Y, Lin P, Qiu SM et al. Autoantibodies to Ca2+ binding protein Calnuc is a potential marker in colon cancer detection. Int. J. Oncol.30, 1137–1144 (2007).
  • Kos J, Krasovec M, Cimerman N, Nielsen HJ, Christensen IJ, Brunner N. Cysteine proteinase inhibitors stefin A, stefin B, and cystatin C in sera from patients with colorectal cancer: relation to prognosis. Clin. Cancer Res.6, 505–511 (2000).
  • Verberkmoes NC, Russell AL, Shah M et al. Shotgun metaproteomics of the human distal gut microbiota. ISME J.3, 179–189 (2009).
  • Ang C, Rothacker J, Patsiouras H, Burgess A, Nice E. Murine fecal proteomics: a model system for the detection of potential biomarkers for colorectal cancer. J. Chromatogr. A1217, 3330–3340 (2010).
  • Karl J, Wild N, Tacke M et al. Improved diagnosis of colorectal cancer using a combination of fecal occult blood and novel fecal protein markers. Clin. Gastroenterol. Hepatol.6, 1122–1128 (2008).
  • Kaiser J. Cancer – first pass at cancer genome reveals complex landscape. Science313, 1370 (2006).
  • Sjoblom T, Jones S, Wood LD et al. The consensus coding sequences of human breast and colorectal cancers. Science314, 268–274 (2006).
  • Kilpelainen TP, Tammela TL, Maattanen L et al. False-positive screening results in the Finnish prostate cancer screening trial. Br. J. Cancer102, 469–474 (2010).
  • Gigerenzer G. Making sense of health statistics. Bull. World Health Organ.87, 567 (2009).
  • Gigerenzer G, Mata J, Frank R. Public knowledge of benefits of breast and prostate cancer screening in Europe. J. Natl. Cancer Inst.101, 1216–1220 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.