403
Views
66
CrossRef citations to date
0
Altmetric
Review

Proteomic analysis in allergy and intolerance to wheat products

, , &
Pages 95-115 | Published online: 09 Jan 2014

References

  • Shewry PR, D’Ovidio R, Lafiandra D, Jenkins JA, Mills ENC, Békés F. Wheat grain proteins. In: Wheat Chemistry and Technology (Fourth Edition). Khan K, Shewry PR (Eds). American Association of Cereal Chemists International Press, MN, USA, 223–298 (2009).
  • Inomata M. Wheat allergy. Curr. Opin. Allergy Clin. Immunol.9, 238–243 (2009).
  • Lohi S, Mustalahti K, Kaukinen K et al. Increasing prevalence of coeliac disease over time. Aliment Pharmacol Ther.26, 1217–1225 (2007).
  • Johansson SGO, Bieber T, Dahl R et al. A revised nomenclature for allergy for global use. Report on Nomenclature Review Committee of the World Allergy Organization. October 2003. J. Allergy Clin. Immunol.113, 832–836 (2004).
  • Sander I, Raulf-Heimsoth M, Düser M, Flagge A, Czuppon AB, Baur X. Differentiation between cosensitization and cross-reactivity in wheat flour and grass pollen-sensitized subjects. Int. Arch. Allergy Immunol.112, 378–385 (1997).
  • Shan L, Molberg Ø, Parrot I et al. Structural basis for gluten intolerance in celiac sprue. Science297, 2275–2279 (2002).
  • Rindsjö E, Scheynius A. Mechanisms of IgE-mediated allergy. Exp. Cell Res.316, 1384–1389 (2010).
  • Mittag, D, Niggemann B, Sander I et al. Immunoglobulin E-reactivity of wheat-allergic subjects (baker’s asthma, food allergy, wheat-dependent, exercise-induced anaphylaxis) to wheat protein fractions with different solubility and digestibility. Mol. Nutr. Food Res.48, 380–389 (2004).
  • Brant A. Baker’s asthma. Curr. Opin. Allergy Clin. Immunol.7, 152–155 (2007).
  • Bousquet J, Anto JM, Bachert C et al. Factors responsible for differences between asymptomatic subjects and patients presenting an IgE sensitization to allergens. A GA2LEN project. Allergy61, 671–680 (2006).
  • Weichel M, Glaser AG, Ballmer-Weber BK, Schmid-Grendelmeier P, Crameri R. Wheat and maize thioredoxins: a novel cross-reactive cereal allergen familyrelated to baker’s asthma. J. Allergy Clin. Immunol.117, 676–681 (2006).
  • Gautier M-F, Lullien-Pellerin V, de Lamotte-Guery F, Guirao A, Joudrier P. Characterization of wheat thioredoxin h cDNA and production of an active Triticum aestivum protein in Escherichia coli. Eur. J. Biochem.252, 314–324 (1998).
  • Snégaroff J, Branlard G, Bouchez-Mahiout I et al. Recombinant proteins and peptides as tolls for studying IgE reactivity with low-molecular-weight glutenin subunits in some wheat allergies. J. Agric. Food Chem.55, 9837–9845 (2007).
  • Kimoto M, Suzuki M, Komyiama N et al. Isolation and molecular cloning of a major wheat allergen, Tri a Bd 27K. Biosci. Biotechnol. Biochem.73, 85–92 (2009).
  • Matsuo H, Kohno K, Morita E. Molecular cloning, recombinant expression and IgE-binding epitope of x-5 gliadin, a major allergen in wheat-dependent exercise-induced anaphylaxis. FEBS J.272, 4431–4438 (2005).
  • Bouchez-Mahiout I, Snégaroff J, Tylichova M, Pecquet C, Branlard G, Laurière M. Low molecular weight glutenins in wheat-dependant, exercise-induced anaphylaxis: allergenicity and antigenic relationships with ω 5-gliadins. Int. Arch. Allergy Immunol.153, 35–45 (2010).
  • Bittner C, Grassau B, Frenzel K, Baur X. Identification of wheat gliadins as an allergen family related to baker’s asthma. J. Allergy Clin. Immunol.121, 744–749 (2008).
  • Constantin C, Quirce S, Grote M et al. Molecular and immunological characterization of a wheat serine protease inhibitor as a novel allergen in baker’s asthma. J. Immunol.180, 7451–7460 (2008).
  • Palacin A, Varela J, Quirce S et al. Recombinant lipid transfer protein Tri a 14: a novel heat and proteolytic resistant tool for the diagnosis of baker’s asthma. Clin. Exp. Allergy39, 1267–1276 (2009).
  • Maruyama N, Ichise K, Katsube T et al. Identification of major wheat allergens by means of the Escherichia coli expression system. Eur. J. Biochem.255, 739–745 (1998).
  • González-Buitrago JM, Ferreira L, Isidoro-García M, Sanz C, Lorente F, Dávila I. Proteomic approaches for identifying new allergens and diagnosing allergic diseases. Clin. Chim. Acta385, 21–27 (2007).
  • Sander I, Flagge A, Merget R, Halder TM, Meyer H, Baur X. Identification of wheat flour allergens by means of 2-dimensional immunoblotting. J. Allergy Clin. Immunol.107, 907–913 (2001).
  • Letho M, Airaksinen L, Puustinen A et al. Thaumatin-like protein and baker’s respiratory allergy. Ann. Allergy Asthma Immunol.104, 139–146 (2010).
  • Hauser M, Roulias A, Ferreira F, Egger M. Panallergens and their impact on the allergic patient. Allergy Asthma Clin. Immunol.18, 6, 1–14 (2010)
  • Bodinier M, Legoux MA, Pineau F et al. Intestinal translocation capabilities of wheat allergens using the Caco-2 cell line. J. Agric. Food Chem.55, 4576–4583 (2007).
  • Weichel M, Vergoossen NJ, Bonomi S et al. Screening the allergenic repertoires of wheat and maize with sera from double-blind, placebo-controlled food challenge positive patients. Allergy61, 128–135 (2006).
  • Palacin A, Quirce S, Armentia A et al. Wheat lipid transfer protein is a major antigen associated with bakers’ asthma. J. Allergy Clin. Immunol.120, 1132–1138 (2007).
  • Fasoli E, Pastorello EA, Farioli L et al. Searching for allergens in maize kernels via proteomic tools. J. Proteomics72, 501–510 (2009).
  • Hischenhuber C, Crevel R, Jarry B et al. Review article: safe amounts of gluten for patients with wheat allergy or coeliac disease. Aliment. Pharmacol. Ther.23, 559–575 (2006).
  • Yong YH, Yamaguchi S, Matsumura Y. Effect of enzymatic deamidation by protein-glutaminase on structure and functional properties of wheat gluten. J. Agric. Food Chem.54, 6034–6040 (2006).
  • Palosuo K, Varjonen E, Nurkkala J et al. Transglutaminase-mediated cross-linking of a peptic fraction of ω-5 gliadin enhances IgE reactivity in wheat-dependent, exercise-induced anaphylaxis. J. Allergy Clin. Immunol.111, 1386–1392 (2003).
  • Moreno FJ. Gastrointestinal digestion of food allergens: effect on their allergenicity. Biomed. Pharmacother.61, 50–60 (2007).
  • Pastorello EA, Farioli L, Conti A et al. Wheat IgE-mediated food allergy in European patients: α-amylase inhibitors, lipid transfer protein and low molecular weight glutenins. Int. Arch. Allergy Immunol.144, 10–22 (2007).
  • Akagawa M, Handoyo T, Ishii T, Kumazawa S, Morita N, Suyama K. Proteomic analysis of wheat food allergens. J. Agric. Food Chem.55, 6863–6870 (2007).
  • Tanabe S. Epitope peptides and immunotherapy. Curr. Prot. Pept. Sci.8, 109–118 (2007).
  • Laver WG, Air GM, Webster RG, Smith-Gill SJ. Epitopes on protein antigens: misconceptions and realities. Cell61, 553–556 (1990).
  • Crameri R. Correlating IgE reactivity with three-dimensional structure. Biochem. J.376, e1–e2 (2003).
  • De Gregorio M, Armentia A, Diaz-Perales A et al. Salt-soluble proteins from wheat derived foodstuffs show ower allergenic potecy than those from raw flour. J. Agric. Food Chem.57, 3325–3330 (2009).
  • De Zorzi M, Curioni A, Simonato B, Giannattasio M, Pasini G. Effect of pasta drying temperature on gastrointestinal digestibility and allergenicity of durum wheat proteins. Food Chem.104, 353–363 (2007).
  • Simonato B, Pasini G, Giannattasio M, Del Balin Peruffo A, De Lazzari M, Curioni A. Food allergy to wheat products: the effects of bread baking and in vitro digestion on wheat allergenic proteins. A study with bread dough, crumb and crust. J. Agric. Food Chem.49, 5668–5673 (2001).
  • Picariello G, Bonomi F, Iametti S et al. Proteomic and peptidomic characterization of beer: immunological and technological implications. Food Chem.124(4), 1718–1726 (2010).
  • Constantin C, Huber WD, Granditsch G et al. Different profiles of wheat antigens are recognized by patients suffering from coeliac disease and IgE-mediated food allergy. Int. Arch. Allergy Immunol.138, 257–266 (2005).
  • Kitta K, Ohnishi-Kameyama M, Moriyama T, Ogawa T, Kawamoto S. Detection of low-molecular weight allergens resolved on two-dimensional electrophoresis with acid-urea polyacrylamide gel. Anal. Biochem.351, 290–297 (2006).
  • Sotkowsky P, Hubalek M, Hermychova L et al. Proteomic analysis of wheat proteins recognized by IgE antibodies of allergic patients. Proteomics8, 1677–1691 (2008).
  • Diosdado B, van Oort E, Wijmenga C. ‘Coelionomics’: towards understanding the molecular pathology of coeliac disease. Clin. Chem. Lab. Med.43, 685–695 (2005).
  • Setty M, Hormaza L, Guandalini S. Celiac disease: risk assessment, diagnosis, and monitoring. Mol. Diagn. Ther.12, 289–298 (2008).
  • Londei M, Ciacci C, Ricciardelli I, Vacca L, Quaratino S, Maiuri L. Gliadin as a simulator of innate responses in celiac disease. Mol. Immunol.42, 913–916 (2005).
  • Mamone G, Ferranti P, Rossi M et al. Identification of a peptide from α-gliadin resistant to digestive enzymes: implications for celiac disease. J. Chromatogr. B855, 236–242 (2007).
  • Maiuri L, Ciacci C, Ricciardelli I et al. Association between innate response to gliadin and activation of pathogenic T cells in coeliac disease. Lancet362, 30–33 (2003).
  • Cippocioppo R, Di Sabatino A, Corazza GR. The immune recognition of gluten in celiac disease. Clin. Exp. Immunol.140, 408–416 (2005).
  • Camarca A, Anderson RP, Mamone G et al. Intestinal T cell responses to gluten peptides are largely heterogeneous: implications for a peptide-based therapy in celiac disease. J. Immunol.182, 4158–4166 (2009).
  • Mamone G, Ferranti P, Melck D et al. Susceptibility to transglutaminase of gliadin peptides predicted by a mass spectrometry-based assay. FEBS Lett.562, 177–183 (2004).
  • Gianfrani C, Siciliano RA, Facchiano AM et al. Transamidation of wheat flour inhibits the response to gliadin of intestinal T cells in celiac disease. Gastroenterology133, 780–789 (2007).
  • Shan L, Qiao SW, Arentz-Hansen H et al. Identification and analysis of multivalent proteolytically resistant peptides from gluten: implications for celiac sprue. J. Proteome Res.4, 1732–1735 (2005).
  • Stulík J, Hernychová L, Porkertová S et al. Identification of new celiac disease autoantigens using proteomic analysis. Proteomics3, 951–956 (2003).
  • Palosuo K. Update on wheat hypersensitivity. Curr. Opin. Allergy Clin. Immunol.3, 205–209 (2003).
  • Ferrer M, Sanz ML, Sastre J et al. Molecular diagnosis in allergology: application of the microarray technique. J. Investig. Allergol. Clin. Immunol.19, 19–24 (2009).
  • Wohrl S, Vigl K, Zehetmayer S et al. The performance of a component-based allergen-microarray in clinical practice. Allergy61, 633–639 (2006).
  • Constantin C, Quirce S, Poorafshar M et al. Micro-arrayed wheat seed and grass pollen allergens for component-resolved diagnosis. Allergy64, 1030–1037 (2009).
  • Nakamura A, Tanabe S, Watanabe J, Makino T. Primary screening of relatively less allergenic wheat varieties. J. Nutr. Sci. Vitaminol.51, 204–206 (2005).
  • Tada Y, Nakase M, Adachi T et al. Reduction of 14–16 kDa allergenic proteins in transgenic rice plants by antisense gene. FEBS Lett.391, 341–345 (1996).
  • Leduc V, Moneret-Vautrin D, Guerin L, Kanny G. Anaphylaxis to wheat isolates: immunochemical study of a case proved by means of double-blind, placebo-controlled food challenge. J. Allergy Clin. Immunol.111, 897–899 (2003).
  • Leszczynskaa J, Lackaa A, Bryszewskaa M. The use of transglutaminase in the reduction of immunoreactivity of wheat flour. Food Agric. Immunol.17, 105–113 (2006).
  • Akiyama H, Sakara K, Yoshioka Y et al. Profile analysis of immunoglobulin E reactivity of wheat proteins hydrolysates. Int. Arch. Allergy Immunol.140, 36–42 (2006).
  • Rizzello CG, De Angelis M, Coda R, Gobbetti M. Use of selected sourdough lactic acid bacteria to hydrolyze wheat and rye proteins responsible for cereal allergy. Eur. Food Res. Technol.223, 405–411 (2006).
  • De Angelis M, Cassone A, Rizzello CG et al. Mechanism of degradation of immunogenic gluten epitopes from Triticum turgidum L. var. durum by sourdough lactobacilli and fungal proteases. Appl. Environ. Microbiol.76, 508–518 (2010).
  • Sollid LM, Khosla C. Future therapeutic options for celiac disease. Nat. Clin. Pract. Gastroenterol. Hepatol.2, 140–147 (2005).
  • van den Broeck HC, van Herpen TW, Schuit C et al. Removing celiac disease-related gluten proteins from bread wheat while retaining technological properties: a study with Chinese Spring deletion lines. BMC Plant Biol.9, 41–45 (2009).
  • Molberg O, Uhlen AK, Jensen T et al. Mapping of gluten T-cell epitopes in the bread wheat ancestors: implications for celiac disease. Gastroenterology128, 393–401 (2005).
  • Spaenij-Dekking L, Kooy-Winkelaar Y, van Veelen P et al. Natural variation in toxicity of wheat: potential for selection of nontoxic varieties for celiac disease patients. Gastroenterology129, 797–806 (2005).
  • Marti T, Molberg O, Li Q, Gray GM, Khosla C, Sollid LM. Prolyl endopeptidase-mediated destruction of T cell epitopes in whole gluten: chemical and immunological characterization. J. Pharmacol. Exp. Theor.312, 19–24 (2005).
  • Stepniak D, Koning F. Enzymatic gluten detoxification: the proof of the pudding is in the eating! Trends Biotechnol.24, 433–434 (2006).
  • Stepniak D, Spaenij–Dekking L, Mitea C et al. Highly efficient gluten degradation with a newly identified prolyl endopeptidase: implications for celiac disease. Am. J. Gastrointest. Liver Physiol.291, G621–G629 (2006).
  • Matysiak–Budnik T, Candalh C, Cellier C et al. Limited efficiency of prolyl-endopeptidase in the detoxification of gliadins peptides in celiac disease. Gastroenterology129, 786–796 (205).
  • Silano M, Leonardi F, Trecca A, Mancini E, Di Benedetto R, De Vincenzi M. Prevention by a decapeptide from durum wheat of in vitro gliadin peptide-induced apoptosis in small-bowel mucosa from celiac patients Scand. J. Gastroenterology.42, 786–787 (2007).
  • Silano M, Vincentini O, De Vincenzi M. Toxic, immunostimulatory and antagonist gluten peptides in celiac disease. Curr. Med. Chem.16, 1489–1498 (2009).
  • Hatcher DW, You S, Dexter JE, Campbell C, Elzydorczyk MS. Evaluation of the performance of flours from cross and self-pollinating Canadian common buckwheat. Food Chem.107, 722–731 (2008).
  • Alvarez-Jubete L, Arendt EK, Gallagher E. Nutritive value and chemical composition of pseudocereals as gluten-free ingredients. Trends Food Sci. Technol.21, 106–113 (2010).
  • Taylor JRN, Emmambux N. Gluten-free foods and beverages from millets. In: Gluten-Free Cereal Products and Beverages. Arendt E, Dal Bello F (Eds). Food Science and Technology International Series, Elsevier, Amsterdam, The Netherlands (2008).
  • Taylor JRN Schober TJ, Bean SR. Novel food and non-food uses for sorghum and millets. J. Cereal Sci.44, 252–271 (2006).
  • Spaenij-Dekking L, Kooy-Winkelaar Y, Koning F. The Ethiopian cereal teff in celiac disease. N. Engl. J. Med.353, 1748–1749 (2005).
  • Mamone G, Picariello G, Caira S, Addeo F, Ferranti P. Analysis of food proteins and peptides by mass spectrometry-based techniques. J. Chromatogr. A1216, 7130–7142 (2009).
  • Stenman SM, Venalainen JI, Lindfors KA et al. Enzymatic detoxification of gluten by germinating wheat proteases: implications for new treatments of celiac disease. Ann. Med.41, 390–400 (2009).
  • Di Cagno R, Rizzello CG, De Angelis M et al. Use of selected sourdough strains of Lactobacillus for removing gluten and enhancing the nutrirional properties of gluten-free bread. J. Food Prot.71, 1491–1495 (2008).
  • Moroni AV, Dal Bello F, Arendt EK. Sourdough in gluten-free bread-making: an ancient technology to solve a novel issue. Food Microbiol.26, 675–684 (2009).
  • Dal Bello C, Clarke GI, Ryan LAM et al. Improvement of the quality and shelf-life of wheat bread by fermentation with the antifungal strain Lactobacillus plantarum FST 1.7. J. Cereal Sci.45, 309–318 (2007).
  • Gobbetti M, Rizzello CG, Di Cagno R, De Angelis M. Sourdough lactobacilli and celiac disease. Food Microbiol.24, 187–196 (2007).
  • Rizzello CG, Coda R, De Angelis M, Di Cagno R, Carnevali P, Gobbetti M. Long-term fungal inhibitory activity of water soluble extract from Amaranthus spp. seeds during storage of gluten-free and wheat flour bread. Int. J. Food Microbiol.131, 189–196 (2009).
  • De Angelis M, Rizzello CG, Fasano A et al. VSL#3 probiotic preparation has the capacity to hydrolyze gliadin polypeptides responsible for celiac sprue. Biochim. Biophys. Acta1762, 80–93 (2006).
  • Rizzello CG, De Angelis M, Di Cagno R et al. Highly efficient gluten degradation by lactobacilli and fungal proteases during food processing: new perspective for celiac disease. Appl. Environ. Microbiol.73, 449–4507 (2007).
  • Di Cagno R, De Angelis M, Alfonsi G et al. Pasta made from durum wheat semolina fermented with selected lactobacilli as a tool for a potential decrease of the gluten intolerance. J. Agric. Food Chem.53, 4393–4402 (2005).
  • De Angelis M, Coda FR, Silano M et al. Fermentation by selected sourdough lactic acid bacteria to decrease coeliac intolerance to rye flour. J. Cereal Sci.43, 301–314 (2006).
  • Sealey-Voyksner JA, Khosla C, Voyksner RD, Jorgenson JW. Novel aspects of quantitation of immunogenic wheat gluten peptides by liquid chromatography-mass spectrometry/mass spectrometry. J. Chromatogr. A1217(25), 4167–4183 (2010).
  • Ferranti P, Mamone G, Picariello G, Addeo F. Mass spectrometry analysis of gliadins in celiac disease. J. Mass Spectrom.42, 1531–1548 (2007).
  • Hernando A, Mujico JR, Juanas D, Mendez E. Confirmation of the cereal type in ot products highly contaminated with gluten. J. Am. Dietetic Ass.106, 665–666 (2006).
  • Dostálek P, Gabrovská D, Rysová J et al. Determination of gluten in glucose syrups. J. Food Comp. Analysis22, 762–765 (2009).
  • García-Casado G, Crespo JF, Rodríguez J, Salcedo G. Isolation and characterization of barley lipid transfer protein and protein Z as beer allergens. J. Allergy Clin. Immunol.108, 647–649 (2001).
  • Perrocheau L, Rogniaux H, Boivin P, Marion D. Probing heat-stable water-soluble proteins from barley to malt and beer. Proteomics5, 2849–2858 (2005).
  • Okada Y, Iimure T, Takoi K et al. The influence of barley malt protein modification on beer foam stability and their relationship to the barley dimeric α-amylase inhibitor-I (BDAI-I) as a possible foam-promoting protein. J. Agric. Food Chem.56, 1458–1464 (2008).
  • Iimure T, Nankaku N, Hirota N et al. Construction of a novel beer proteome map and its use in beer quality control. Food Chem.118, 566–574 (2010).
  • Hartmann G, Koehler P, Wieser H. Rapid degradation of gliadin peptides toxic for coeliac disease patients. J. Cereal Sci.44, 368–371 (2006).
  • Nieuwenhuizen WF, Dekker HL, Groneveld T, de Koster CG, de Jong GA. Transglutaminase-mediated modifications of glutamine and lysine residues in bovine β-lactoglobulin. Biotechnol. Bioeng.85, 248–258 (2004).
  • Lange V, Picotti P, Domon B, Aebersold R. Selected reaction monitoring for quantitative proteomics: a tutorial. Mol. Syst. Biol.4, 222–226 (2008).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.