367
Views
53
CrossRef citations to date
0
Altmetric
Review

Clinical application of urinary proteomics/peptidomics

, &
Pages 615-629 | Published online: 09 Jan 2014

References

  • Grodos D, Tonglet R. Scandinavian simvastatin study (4S). Lancet344(8939–8940), 1768–1769 (1994).
  • Sicree R, Shaw J,Zimmet P. Diabetes and impared glucose tolerance. In: Diabetes Atlas. Gan D (Ed.). International Diabetes Federation, Brussels, Belgium, 15–109 (2006).
  • Fliser D, Novak J, Thongboonkerd V et al. Advances in urinary proteome analysis and biomarker discovery. J. Am. Soc. Nephrol.18(4), 1057–1071 (2007).
  • Fung ET. A recipe for proteomics diagnostic test development: The OVA1 test, from biomarker discovery to FDA clearance. Clin. Chem.56(2), 327–329 (2010).
  • Ransohoff DF. Lessons from controversy: ovarian cancer screening and serum proteomics. J. Natl. Cancer Inst.97(4), 315–319 (2005).
  • Rhea JM, Molinaro RJ. Cancer biomarkers: surviving the journey from bench to bedside. (cover story). Med. Lab. Obs.43(3), 10–18 (2011).
  • Mischak H, Allmaier G, Apweiler R et al. Recommendations for biomarker identification and qualification in clinical proteomics. Sci. Transl. Med.2(46), 46ps42 (2010).
  • Mathivanan S, Ahmed M, Ahn NG et al. Human Proteinpedia enables sharing of human protein data. Nat. Biotechnol.26(2), 164–167 (2008).
  • Weissinger EM, Schiffer E, Hertenstein B et al. Proteomic patterns predict acute graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. Blood109(12), 5511–5519 (2007).
  • Weissinger EM, Mischak H. Application of proteomics to posttransplantational follow-up. Methods Mol. Med.134, 217–228 (2007).
  • Mischak H, Rossing P. Proteomic biomarkers in diabetic nephropathy – reality or future promise? Nephrol. Dial. Transplant.25(9), 2843–2845 (2010).
  • Anderson NL, Anderson NG. The human plasma proteome: history, character, and diagnostic prospects. Mol. Cell. Proteomics1(11), 845–867 (2002).
  • Thongboonkerd V. Urinary proteomics: towards biomarker discovery, diagnostics and prognostics. Mol. Biosyst.4, 810–815 (2008).
  • Surinova S, Schiess R, Hüttenhain R, Cerciello F, Wollscheid B, Aebersold R. On the development of plasma protein biomarkers. J. Proteome Res.10(1), 5–16 (2010).
  • Mischak H, Delles C, Klein J, Schanstra JP. Urinary proteomics based on capillary electrophoresis-coupled mass spectrometry in kidney disease: discovery and validation of biomarkers, and clinical application. Adv. Chronic Kidney Dis.17(6), 493–506 (2010).
  • Rossing K, Mischak H, Dakna M et al. Urinary proteomics in diabetes and CKD. J. Am. Soc. Nephrol.19(7), 1283–1290 (2008).
  • Theodorescu D, Schiffer E, Bauer HW et al. Discovery and validation of urinary biomarkers for prostate cancer. Proteomics Clin. Appl.2(4), 556–570 (2008).
  • Strong KJ, Osicka TM, Comper WD. Urinary-peptide excretion by patients with and volunteers without diabetes. J. Lab. Clin. Med.145(5), 239–246 (2005).
  • Brenner BM, Rector F, Levine S. The Kidney (7th Edition). Saunders HJ (Ed.). Elsevier, PA, USA (2004).
  • Schaub S, Wilkins J, Weiler T, Sangster K, Rush D, Nickerson P. Urine protein profiling with surface-enhanced laser-desorption/ionization time-of-flight mass spectrometry. Kidney Int.65(1), 323–332 (2004).
  • Theodorescu D, Wittke S, Ross MM et al. Discovery and validation of new protein biomarkers for urothelial cancer: a prospective analysis. Lancet Oncol.7(3), 230–240 (2006).
  • Mischak H, Kolch W, Aivalotis M et al. Comprehensive human urine standards for comparability and standardization in clinical proteome analysis. Proteomics Clin. Appl.4(4), 464–478 (2010).
  • Lescuyer P, Hochstrasser D, Rabilloud T. How shall we use the proteomics toolbox for biomarker discovery? J. Proteome Res.6, 3371–3376 (2007).
  • Segal MB. The Choroid plexuses and the barriers between the blood and the cerebrospinal fluid. Cell. Mol. Neurobiol.20(2), 183–196 (2000).
  • Teng PN, Bateman NW, Hood BL, Conrads TP. Advances in proximal fluid proteomics for disease biomarker discovery. J. Proteome Res.9(12), 6091–6100 (2010).
  • Wittke S, Mischak H, Walden M, Kolch W, Radler T, Wiedemann K. Discovery of biomarkers in human urine and cerebrospinal fluid by capillary electrophoresis coupled to mass spectrometry: towards new diagnostic and therapeutic approaches. Electrophoresis26(7–8), 1476–1487 (2005).
  • Palmblad M, Tiss A, Cramer R. Mass spectrometry in clinical proteomics – from the present to the future. Proteomics Clin. Appl.3(1), 6–17 (2009).
  • Mischak H, Schanstra JP. CE-MS in biomarker discovery, validation, and clinical application. Proteomics Clin. Appl.5(1–2), 9–23 (2011).
  • Liotta LA, Petricoin EF. Mass spectrometry-based protein biomarker discovery: solving the remaining challenges to reach the promise of clinical benefit. Clin. Chem.56(10), 1641–1642 (2010).
  • Mischak H, Coon JJ, Novak J, Weissinger EM, Schanstra JP, Dominiczak AF. Capillary electrophoresis-mass spectrometry as a powerful tool in biomarker discovery and clinical diagnosis: an update of recent developments. Mass Spectrom. Rev.28(5), 703–724 (2009).
  • Metzger J, Luppa PB, Good DM, Mischak H. Adapting mass spectrometry-based platforms for clinical proteomics applications: the capillary electrophoresis coupled mass spectrometry paradigm. Crit. Rev. Clin. Lab. Sci.46(3), 129–152 (2009).
  • McLerran D, Grizzle WE, Feng Z et al. SELDI-TOF MS whole serum proteomic profiling with IMAC surface does not reliably detect prostate cancer. Clin. Chem.54(1), 53–60 (2008).
  • Kolch W, Neususs C, Pelzing M, Mischak H. Capillary electrophoresis-mass spectrometry as a powerful tool in clinical diagnosis and biomarker discovery. Mass Spectrom. Rev.24(6), 959–977 (2005).
  • Zurbig P, Renfrow MB, Schiffer E et al. Biomarker discovery by CE-MS enables sequence analysis via MS/MS with platform-independent separation. Electrophoresis27(11), 2111–2125 (2006).
  • Collier TS, Sarkar P, Rao B, Muddiman DC. Quantitative top-down proteomics of SILAC labeled human embryonic stem cells. J. Am. Soc. Mass Spectrom.21(6), 879–889 (2010).
  • Geiger T, Cox J, Ostasiewicz P, Wisniewski JR, Mann M. Super-SILAC mix for quantitative proteomics of human tumor tissue. Nat. Meth.7(5), 383–385 (2010).
  • Collier TS, Sarkar P, Franck WL, Rao BM, Dean RA, Muddiman DC. Direct comparison of stable isotope labeling by amino acids in cell culture and spectral counting for quantitative proteomics. Anal. Chem.82(20), 8696–8702 (2010).
  • Jantos-Siwy J, Schiffer E, Brand K et al. Quantitative urinary proteome analysis for biomarker evaluation in chronic kidney disease. J. Proteome Res.8(1), 268–281 (2009).
  • Lapolla A, Seraglia R, Molin L et al. Low molecular weight proteins in urines from healthy subjects as well as diabetic, nephropathic and diabetic-nephropathic patients: a MALDI study. J. Mass Spectrom.44(3), 419–425 (2009).
  • Delles C, Schiffer E, von Zur MC et al. Urinary proteomic diagnosis of coronary artery disease: identification and clinical validation in 623 individuals. J. Hypertens.28(11), 2316–2322 (2010).
  • Good DM, Zurbig P, Argiles A et al. Naturally occurring human urinary peptides for use in diagnosis of chronic kidney disease. Mol. Cell. Proteomics9(11), 2424–2437 (2010).
  • Lapolla A, Molin L, Sechi A et al. A further investigation on a MALDI-based method for evaluation of markers of renal damage. J. Mass Spectrom.44(12), 1754–1760 (2009).
  • Kaiser T, Wittke S, Just I et al. Capillary electrophoresis coupled to mass spectrometer for automated and robust polypeptide determination in body fluids for clinical use. Electrophoresis25(13), 2044–2055 (2004).
  • Schiffer E, Mischak H, Novak J. High resolution proteome/peptidome analysis of body fluids by capillary electrophoresis coupled with MS. Proteomics6(20), 5615–5627 (2006).
  • Dakna M, Harris K, Kalousis A et al. Addressing the challenge of defining valid proteomic biomarkers and classifiers. BMC Bioinformatics11(1), 594 (2010).
  • Adachi J, Kumar C, Zhang Y, Olsen JV, Mann M. The human urinary proteome contains more than 1500 proteins, including a large proportion of membrane proteins. Genome Biol.7(9), R80 (2006).
  • Kentsis A, Monigatti F, Dorff K, Campagne F, Bachur R, Steen H. Urine proteomics for profiling of human disease using high accuracy mass spectrometry. Proteomics Clin. Appl.3(9), 1052–1061 (2009).
  • Good DM, Thongboonkerd V, Novak J et al. Body fluid proteomics for biomarker discovery: lessons from the past hold the key to success in the future. J. Proteome Res.6(12), 4549–4555 (2007).
  • Lapolla A, Tubaro M, Fedele D et al. A matrix-assisted laser desorption/ionization mass spectrometry study of the non-enzymatic glycation products of human globins in diabetes. Rapid Comm. Mass Spectrom.19(2), 162–168 (2005).
  • Chalmers MJ, Mackay CL, Hendrickson CL et al. Combined top-down and bottom-up mass spectrometric approach to characterization of biomarkers for renal disease. Anal. Chem.77(22), 7163–7171 (2005).
  • Renfrow M.B., Cooper HJ, Tomana M et al. Determination of aberrant O-glycosilation in the IgA1 hinge region by electron capture dissociation Fourier transform-ion cyclotron resonance mass spectrometry. J. Biol. Chem.280, 19136–19145 (2005).
  • Renfrow M.B., Mackay CL, Chalmers MJ et al. Analysis of O-glycan heterogeneity in IgA1 myeloma proteins by Fourier transform ion cyclotron resonance mass spectrometry: implications for IgA nephropathy. Anal. Bioanal. Chem.389, 1397–1407 (2007).
  • Olsen JV, Macek B, Lange O, Makarov A, Horning S, Mann M. Higher-energy C-trap dissociation for peptide modification analysis. Nat. Methods4(9), 709–712 (2007).
  • Knepper MA. Common sense approaches to urinary biomarker study design. J. Am. Soc. Nephrol.20(6), 1175–1178 (2009).
  • LaBaer J. So, you want to look for biomarkers (introduction to the special biomarkers issue). J. Proteome Res.4(4), 1053–1059 (2005).
  • Alkhalaf A, Zurbig P, Bakker SJ et al. Multicentric validation of proteomic biomarkers in urine specific for diabetic nephropathy. PLoS One5(10), e13421 (2010).
  • Zimmerli LU, Schiffer E, Zürbig P et al. Urinary proteomics biomarkers in coronary artery disease. Mol. Cell. Proteomics7(2), 290–298 (2008).
  • Goodsaid FM, Frueh FW, Mattes W. Strategic paths for biomarker qualification. Toxicology245(3), 219–223 (2008).
  • Manolis E, Vamvakas S, Isaac M. New pathway for qualification of novel methodologies in the European medicines agency. Proteomics Clin. Appl.5(5–6), 367–374 (2011).
  • Khoury MJ, Gwinn M, Ioannidis JPA. The emergence of translational epidemiology: from scientific discovery to population health impact. Am. J. Epidemiol.172(5), 517–524 (2010).
  • Butler D. Translational research: crossing the valley of death. Nature453, 840–842 (2008).
  • Weissinger EM, Wittke S, Kaiser T et al. Proteomic patterns established with capillary electrophoresis and mass spectrometry for diagnostic purposes. Kidney Int.65(6), 2426–2434 (2004).
  • Tonelli M, Wiebe N, Culleton B et al. Chronic kidney disease and mortality risk: a systematic review. J. Am. Soc. Nephrol.17(7), 2034–2047 (2006).
  • Rossing K, Mischak H, Rossing P, Schanstra JP, Wiseman A, Maahs DM. The urinary proteome in diabetes and diabetes-associated complications: new ways to assess disease progression and evaluate therapy. Proteomics Clin. Appl.2(7–8), 997–1007 (2008).
  • Rossing P. The changing epidemiology of diabetic microangiopathy in Type 1 diabetes. Diabetologia48(8), 1439–1444 (2005).
  • Haller H, Ito S, Izzo JL et al. Olmesartan for the delay or prevention of microalbuminuria in Type 2 diabetes. N. Engl. J. Med.364(10), 907–917 (2011).
  • Ameur RB, Molina L, Bolvin C et al. Proteomic approaches for discovering biomarkers of diabetic nephropathy. Nephrol. Dial. Transplant.25, 2866–2875 (2010).
  • Merchant ML, Perkins BA, Boratyn GM et al. Urinary peptidome may predict renal function decline in Type 1 diabetes and microalbuminuria. J. Am. Soc. Nephrol.20(9), 2065–2074 (2009).
  • Haubitz M, Good DM, Woywodt A et al. Identification and validation of urinary biomarkers for differential diagnosis and evaluation of therapeutic intervention in ANCA associated vasculitis. Mol. Cell. Proteomics8, 2296–2307 (2009).
  • Haubitz M, Wittke S, Weissinger EM et al. Urine protein patterns can serve as diagnostic tools in patients with IgA nephropathy. Kidney Int.67(6), 2313–2320 (2005).
  • Julian BA, Wittke S, Novak J et al. Electrophoretic methods for analysis of urinary polypeptides in IgA-associated renal diseases. Electrophoresis28(23), 4469–4483 (2007).
  • Kistler AD, Mischak H, Poster D, Dakna M, Wuthrich RP, Serra AL. Identification of a unique urinary biomarker profile in patients with autosomal dominant polycystic kidney disease. Kidney Int.76(1), 89–96 (2009).
  • Decramer S, Wittke S, Mischak H et al. Predicting the clinical outcome of congenital unilateral ureteropelvic junction obstruction in newborn by urinary proteome analysis. Nat. Med.12(4), 398–400 (2006).
  • Decramer S, Zürbig P, Wittke S, Mischak H, Bascands JL, Schanstra JP. Identification of urinary biomarkers by proteomics in newborns: use in obstructive nephropathy. Contrib. Nephrol.160, 127–141 (2008).
  • Coca SG, Parikh CR. Urinary biomarkers for acute kidney injury: perspectives on translation. Clin. J. Am. Soc. Nephrol.3(2), 481–490 (2008).
  • Herget-Rosenthal S, Marggraf G, Husing J et al. Early detection of acute renal failure by serum cystatin C. Kidney Int.66(3), 1115–1122 (2004).
  • Mishra J, Dent C, Tarabishi R et al. Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet365(9466), 1231–1238 (2005).
  • Parikh CR, Abraham E, Ancukiewicz M, Edelstein CL. Urine IL-18 is an early diagnostic marker for acute kidney injury and predicts mortality in the intensive care unit. J. Am. Soc. Nephrol.16(10), 3046–3052 (2005).
  • Han WK, Waikar SS, Johnson A et al. Urinary biomarkers in the early diagnosis of acute kidney injury. Kidney Int.73(7), 863–869 (2008).
  • Haase M, Bellomo R, Story D, Davenport P, Haase-Fielitz A. Urinary interleukin-18 does not predict acute kidney injury after adult cardiac surgery: a prospective observational cohort study. Crit. Care12(4), R96 (2008).
  • Wagener G, Gubitosa G, Wang S, Borregaard N, Kim M, Lee HT. Urinary neutrophil gelatinase-associated lipocalin and acute kidney injury after cardiac surgery. Am. J. Kidney Dis.52(3), 425–433 (2008).
  • Zhou H, Pisitkun T, Aponte A et al. Exosomal Fetuin-A identified by proteomics: a novel urinary biomarker for detecting acute kidney injury. Kidney Int.70(10), 1847–1857 (2006).
  • Metzger J, Kirsch T, Schiffer E et al. Diagnostic marker pattern of sequenced urinary peptides for early and accurate detection of acute kidney injury. Kidney Int.78(12), 1252–1262 (2010).
  • Rush DN, Nickerson P, Jeffery JR, McKenna RM, Grimm PC, Gough J. Protocol biopsies in renal transplantation: research tool or clinically useful? Curr. Opin. Nephrol. Hypertens.6(7), 691–694 (1998).
  • Schaub S, Wilkins JA, Antonovici M et al. Proteomic-based identification of cleaved urinary β2-microglobulin as a potential marker for acute tubular injury in renal allografts. Am. J. Transplant5(4 Pt 1), 729–738 (2005).
  • Wittke S, Haubitz M, Walden M et al. Detection of acute tubulointerstitial rejection by proteomic analysis of urinary samples in renal transplant recipients. Am. J. Transplant5(10), 2479–2488 (2005).
  • Sigdel T, Kaushal A, Gritsenko M et al. Shotgun proteomics identifies proteins specific for acute renal transplant rejection. Proteomics Clin. Appl.4, 32–47 (2010).
  • Gwinner W, Hinzmann K, Erdbruegger U et al. Acute tubular injury in protocol biopsies of renal grafts: prevalence, associated factors and effect on long-term function. Am. J. Transplant8(8), 1684–1693 (2008).
  • Ling XB, Sigdel TK, Lau K et al. Integrative urinary peptidomics in renal transplantation identifies biomarkers for acute rejection. J. Am. Soc. Nephrol.21(4), 646–653 (2010).
  • Metzger J, Chatzikyrkou C, Broecker V et al. Diagnosis of subclinical and clinical acute T-cell mediated rejection in renal transplant patients by urinary proteome analysis. Proteomics Clin. Appl.5(5–6), 322–333 (2011).
  • Schroder FH, Hugosson J, Roobol MJ et al. Screening and prostate-cancer mortality in a randomized European study. N. Engl. J. Med.360(13), 1320–1328 (2009).
  • Siddiqui E, Mumtaz FH, Gelister J. Understanding prostate cancer. J. Royal Soc. Prom. Health124(5), 219–221 (2004).
  • M’Koma AE, Blum DL, Norris JL et al. Detection of pre-neoplastic and neoplastic prostate disease by MALDI profiling of urine. Biochem. Biophys. Res. Commun.353(3), 829–834 (2006).
  • Konety BR. Molecular markers in bladder cancer: a critical appraisal. Urol. Oncol.24(4), 326–337 (2006).
  • Dinney CP, McConkey DJ, Millikan RE et al. Focus on bladder cancer. Cancer Cell6(2), 111–116 (2004).
  • Vlahou A, Schellhammer PF, Mendrinos S et al. Development of a novel proteomic approach for the detection of transitional cell carcinoma of the bladder in urine. Am. J. Pathol.158(4), 1491–1502 (2001).
  • Schiffer E, Vlahou A, Petrolekas A et al. Prediction of muscle-invasive bladder cancer using urinary proteomics. Clin. Cancer Res.15(15), 4935–4943 (2009).
  • Sung HJ, Ryang YS, Jang SW, Lee CW, Han KH, Ko J. Proteomic analysis of differential protein expression in atherosclerosis. Biomarkers11(3), 279–290 (2006).
  • You SA, Archacki SR, Angheloiu G et al. Proteomic approach to coronary atherosclerosis shows ferritin light chain as a significant marker: evidence consistent with iron hypothesis in atherosclerosis. Physiol. Genomics13(1), 25–30 (2003).
  • Duran MC, Martin-Ventura JL, Mas S et al. Characterization of the human atheroma plaque secretome by proteomic analysis. Methods Mol. Biol.357, 141–150 (2007).
  • von Zur Muhlen C., Schiffer E, Zuerbig P et al. Evaluation of urine proteome pattern analysis for its potential to reflect coronary artery atherosclerosis in symptomatic patients. J. Proteome Res.8(1), 335–345 (2009).
  • Snell-Bergeon JK, Maahs DM, Ogden LG et al. Evaluation of urinary biomarkers for coronary artery disease, diabetes, and diabetic kidney disease. Diabetes Technol. Ther.11(1), 1–9 (2009).
  • Maahs DM, Siwy J, Argiles A et al. Urinary collagen fragments are significantly altered in diabetes: a link to pathophysiology. PLoS One5(9), e13051 (2010).
  • Kaiser T, Kamal H, Rank A et al. Proteomics applied to the clinical follow-up of patients after allogeneic hematopoietic stem cell transplantation. Blood104(2), 340–349 (2004).
  • Carty DM, Siwy J, Brennand JE et al. Urinary proteomics for prediction of preeclampsia. Hypertension57(3), 561–569 (2011).
  • Zürbig P, Decramer S, Dakna M et al. The human urinary proteome reveals high similarity between kidney aging and chronic kidney disease. Proteomics9(8), 2108–2117 (2009).
  • Siwy J, Mullen W, Golovko I, Franke J, Zurbig P. Human urinary peptide database for multiple disease biomarker discovery. Proteomics Clin. Appl.5(5–6), 367–374 (2011).
  • Schena FP, Gesualdo L. Pathogenetic mechanisms of diabetic nephropathy. J. Am. Soc. Nephrol.16(Suppl. 1), S30–S33 (2005).
  • Vlahou A, Schanstra J, Frokiaer J et al. Establishment of a European network for urine and kidney proteomics. J. Proteomics71(4), 490–492 (2008).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.