301
Views
31
CrossRef citations to date
0
Altmetric
Review

Autoantibodies in cancer: prognostic biomarkers and immune activation

&
Pages 577-589 | Published online: 09 Jan 2014

References

  • Lee JS, Lo PK, Fackler MJ et al. A comparative study of Korean with Caucasian breast cancer reveals frequency of methylation in multiple genes correlates with breast cancer in young, ER, PR-negative breast cancer in Korean women. Cancer Biol. Ther.6(7), 1114–1120 (2007).
  • Resnick KE, Alder H, Hagan JP, Richardson DL, Croce CM, Cohn DE. The detection of differentially expressed microRNAs from the serum of ovarian cancer patients using a novel real-time PCR platform. Gynecol. Oncol.112(1), 55–59 (2009).
  • Jacob F, Goldstein DR, Bovin NV et al. Serum anti-glycan antibody detection of non-mucinous ovarian cancers by using a printed glycan array. Int. J. Cancer DOI: 10.1002/ijc.26002 (2011) (Epub ahead of print).
  • Miller JC, Zhou H, Kwekel J et al. Antibody microarray profiling of human prostate cancer sera: antibody screening and identification of potential biomarkers. Proteomics3(1), 56–63 (2003).
  • Desmetz C, Maudelonde T, Mange A, Solassol J. Identifying autoantibody signatures in cancer: a promising challenge. Expert Rev. Proteomics6(4), 377–386 (2009).
  • Tabernero MD, Lv LL, Anderson KS. Autoantibody profiles as biomarkers of breast cancer. Cancer Biomark.6(5–6), 247–256 (2009).
  • Nagrath S, Sequist LV, Maheswaran S et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature450(7173), 1235–1239 (2007).
  • Cramer DW, Bast RC Jr, Berg CD et al. Ovarian cancer biomarker performance in prostate, lung, colorectal, and ovarian cancer screening trial specimens. Cancer Prev. Res.4(3), 365–374 (2011).
  • Chapman CJ, Thorpe AJ, Murray A et al. Immunobiomarkers in small cell lung cancer: potential early cancer signals. Clin. Cancer Res.17(6), 1474–1480 (2010).
  • Trivers GE, Cawley HL, DeBenedetti VM et al. Anti-p53 antibodies in sera of workers occupationally exposed to vinyl chloride. J. Natl Cancer Inst.87(18), 1400–1407 (1995).
  • Rubinstein ND, Mayrose I, Martz E, Pupko T. Epitopia: a web-server for predicting B-cell epitopes. BMC Bioinformatics10, 287 (2009).
  • Gaudin E, Hao Y, Rosado MM, Chaby R, Girard R, Freitas AA. Positive selection of B cells expressing low densities of self-reactive BCRs. J. Exp. Med.199(6), 843–853 (2004).
  • Wardemann H, Yurasov S, Schaefer A, Young JW, Meffre E, Nussenzweig MC. Predominant autoantibody production by early human B cell precursors. Science301(5638), 1374–1377 (2003).
  • Soussi T. p53 antibodies in the sera of patients with various types of cancer: a review. Cancer Res.60(7), 1777–1788 (2000).
  • Chen YT, Scanlan MJ, Sahin U et al. A testicular antigen aberrantly expressed in human cancers detected by autologous antibody screening. Proc. Natl Acad. Sci. USA94(5), 1914–1918 (1997).
  • Schubert U, Anton LC, Gibbs J, Norbury CC, Yewdell JW, Bennink JR. Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature404(6779), 770–774 (2000).
  • Ulanet DB, Torbenson M, Dang CV, Casciola-Rosen L, Rosen A. Unique conformation of cancer autoantigen B23 in hepatoma: a mechanism for specificity in the autoimmune response. Proc. Natl Acad. Sci. USA100(21), 12361–12366 (2003).
  • von Mensdorff-Pouilly S, Petrakou E, Kenemans P et al. Reactivity of natural and induced human antibodies to MUC1 mucin with MUC1 peptides and N-acetylgalactosamine (GalNAc) peptides. Int. J. Cancer86(5), 702–712 (2000).
  • Ait-Tahar K, Damm-Welk C, Burkhardt B et al. Correlation of the autoantibody response to the ALK oncoantigen in pediatric anaplastic lymphoma kinase-positive anaplastic large cell lymphoma with tumor dissemination and relapse risk. Blood115(16), 3314–3319 (2010).
  • Albanopoulos K, Armakolas A, Konstadoulakis MM et al. Prognostic significance of circulating antibodies against carcinoembryonic antigen (anti-CEA) in patients with colon cancer. Am. J. Gastroenterol.95(4), 1056–1061 (2000).
  • Albertus DL, Seder CW, Chen G et al. AZGP1 autoantibody predicts survival and histone deacetylase inhibitors increase expression in lung adenocarcinoma. J. Thorac. Oncol.3(11), 1236–1244 (2008).
  • Anderson KS, Wong J, Vitonis A et al. p53 autoantibodies as potential detection and prognostic biomarkers in serous ovarian cancer. Cancer Epidemiol. Biomarkers Prev.19(3), 859–868 (2010).
  • Goodell V, Salazar LG, Urban N et al. Antibody immunity to the p53 oncogenic protein is a prognostic indicator in ovarian cancer. J. Clin. Oncol.24(5), 762–768 (2006).
  • Haidopoulos D, Konstadoulakis MM, Antonakis PT et al. Circulating anti-CEA antibodies in the sera of patients with breast cancer. Eur. J. Surg. Oncol.26(8), 742–746 (2000).
  • Hamanaka Y, Suehiro Y, Fukui M, Shikichi K, Imai K, Hinoda Y. Circulating anti-MUC1 IgG antibodies as a favorable prognostic factor for pancreatic cancer. Int. J. Cancer103(1), 97–100 (2003).
  • Heller A, Zornig I, Muller T et al. Immunogenicity of SEREX-identified antigens and disease outcome in pancreatic cancer. Cancer Immunol. Immunother.59(9), 1389–1400 (2010).
  • Hirasawa Y, Kohno N, Yokoyama A, Kondo K, Hiwada K, Miyake M. Natural autoantibody to MUC1 is a prognostic indicator for non-small cell lung cancer. Am. J. Respir. Crit. Care Med.161(2 Pt 1), 589–594 (2000).
  • Kurtenkov O, Klaamas K, Mensdorff-Pouilly S, Miljukhina L, Shljapnikova L, Chuzmarov V. Humoral immune response to MUC1 and to the Thomsen–Friedenreich (TF) glycotope in patients with gastric cancer: relation to survival. Acta Oncol.46(3), 316–323 (2007).
  • Lakota J, Skultety L, Dubrovcakova M, Altaner C. Presence of serum carbonic anhydrase autoantibodies in patients relapsed after autologous stem cell transplantation indicates an improved prognosis. Neoplasma55(6), 488–492 (2008).
  • Litvak DA, Gupta RK, Yee R, Wanek LA, Ye W, Morton DL. Endogenous immune response to early- and intermediate-stage melanoma is correlated with outcomes and is independent of locoregional relapse and standard prognostic factors. J. Am. Coll. Surg.198(1), 27–35 (2004).
  • Pallasch CP, Struss AK, Munnia A et al. Autoantibodies against GLEA2 and PHF3 in glioblastoma: tumor-associated autoantibodies correlated with prolonged survival. Int. J. Cancer117(3), 456–459 (2005).
  • Tamura H, Dan K, Yokose N et al. Prognostic significance of WT1 mRNA and anti-WT1 antibody levels in peripheral blood in patients with myelodysplastic syndromes. Leuk. Res.34(8), 986–990 (2010).
  • Tomaino B, Cappello P, Capello M et al. Circulating autoantibodies to phosphorylated α-enolase are a hallmark of pancreatic cancer. J. Proteome Res.10(1), 105–112 (2011).
  • von Mensdorff-Pouilly S, Verstraeten AA, Kenemans P et al. Survival in early breast cancer patients is favorably influenced by a natural humoral immune response to polymorphic epithelial mucin. J. Clin. Oncol.18(3), 574–583 (2000).
  • Sahin U, Tureci O, Schmitt H et al. Human neoplasms elicit multiple specific immune responses in the autologous host. Proc. Natl Acad. Sci. USA92(25), 11810–11813 (1995).
  • Klade CS, Voss T, Krystek E et al. Identification of tumor antigens in renal cell carcinoma by serological proteome analysis. Proteomics1(7), 890–898 (2001).
  • Seliger B, Kellner R. Design of proteome-based studies in combination with serology for the identification of biomarkers and novel targets. Proteomics2(12), 1641–1651 (2002).
  • Seliger B, Lichtenfels R, Kellner R. Detection of renal cell carcinoma-associated markers via proteome- and other ‘ome’-based analyses. Brief Funct. Genomic Proteomic2(3), 194–212 (2003).
  • Hardouin J, Lasserre JP, Canelle L et al. Usefulness of autoantigens depletion to detect autoantibody signatures by multiple affinity protein profiling. J. Sep. Sci.30(3), 352–358 (2007).
  • Ramachandran N, Hainsworth E, Bhullar B et al. Self-assembling protein microarrays. Science305(5680), 86–90 (2004).
  • Ramachandran N, Raphael JV, Hainsworth E et al. Next-generation high-density self-assembling functional protein arrays. Nat. Methods5(6), 535–538 (2008).
  • Wang X, Yu J, Sreekumar A et al. Autoantibody signatures in prostate cancer. N. Engl. J. Med.353(12), 1224–1235 (2005).
  • Fosså A, Berner A, Fosså SD, Hernes E, Gaudernack G, Smeland EB. NY-ESO-1 protein expression and humoral immune responses in prostate cancer. Prostate59(4), 440–447 (2004).
  • Kelley MC, Gupta RK, Hsueh EC, Yee R, Stern S, Morton DL. Tumor-associated antigen TA90 immune complex assay predicts recurrence and survival after surgical treatment of stage I–III melanoma. J. Clin. Oncol.19(4), 1176–1182 (2001).
  • Regele S, Vogl FD, Kohler T, Kreienberg R, Runnebaum IB. p53 autoantibodies can be indicative of the development of breast cancer relapse. AntiCancer Res.23(1B), 761–764 (2003).
  • Ehrlich JR, Caiazzo RJ, Jr., Qiu W et al. A native antigen ‘reverse capture’ microarray platform for autoantibody profiling of prostate cancer sera. Proteomics Clin. Appl.1(5), 476–485 (2007).
  • Li L, Chen SH, Yu CH, Li YM, Wang SQ. Identification of hepatocellular-carcinoma-associated antigens and autoantibodies by serological proteome analysis combined with protein microarray. J. Proteome Res.7(2), 611–620 (2008).
  • Merbl Y, Itzchak R, Vider-Shalit T et al. A systems immunology approach to the host–tumor interaction: large-scale patterns of natural autoantibodies distinguish healthy and tumor-bearing mice. PLoS One4(6), e6053 (2009).
  • Qin S, Qiu W, Ehrlich JR et al. Development of a ‘reverse capture’ autoantibody microarray for studies of antigen-autoantibody profiling. Proteomics6(10), 3199–3209 (2006).
  • Stempfer R, Syed P, Vierlinger K et al. Tumour auto-antibody screening: performance of protein microarrays using SEREX derived antigens. BMC Cancer10, 627 (2010).
  • Wong J, Sibani S, Lokko NN, LaBaer J, Anderson KS. Rapid detection of antibodies in sera using multiplexed self-assembling bead arrays. J. Immunol. Methods350(1–2), 171–182 (2009).
  • Sahin U, Tureci O, Pfreundschuh M. Serological identification of human tumor antigens. Curr. Opin. Immunol.9(5), 709–716 (1997).
  • Gure AO, Altorki NK, Stockert E, Scanlan MJ, Old LJ, Chen YT. Human lung cancer antigens recognized by autologous antibodies: definition of a novel cDNA derived from the tumor suppressor gene locus on chromosome 3p21.3. Cancer Res.58(5), 1034–1041 (1998).
  • Gure AO, Stockert E, Scanlan MJ et al. Serological identification of embryonic neural proteins as highly immunogenic tumor antigens in small cell lung cancer. Proc. Natl Acad. Sci. USA97(8), 4198–4203 (2000).
  • Jager D, Stockert E, Gure AO et al. Identification of a tissue-specific putative transcription factor in breast tissue by serological screening of a breast cancer library. Cancer Res.61(5), 2055–2061 (2001).
  • Jager D, Unkelbach M, Frei C et al. Identification of tumor-restricted antigens NY-BR-1, SCP-1, and a new cancer/testis-like antigen NW-BR-3 by serological screening of a testicular library with breast cancer serum. Cancer Immun.2, 5 (2002).
  • Minenkova O, Pucci A, Pavoni E et al. Identification of tumor-associated antigens by screening phage-displayed human cDNA libraries with sera from tumor patients. Int. J. Cancer106(4), 534–544 (2003).
  • Chatterjee M, Mohapatra S, Ionan A et al. Diagnostic markers of ovarian cancer by high-throughput antigen cloning and detection on arrays. Cancer Res.66(2), 1181–1190 (2006).
  • Chen G, Wang X, Yu J et al. Autoantibody profiles reveal ubiquilin 1 as a humoral immune response target in lung adenocarcinoma. Cancer Res.67(7), 3461–3467 (2007).
  • Boder ET, Wittrup KD. Yeast surface display for screening combinatorial polypeptide libraries. Nat. Biotechnol.15(6), 553–557 (1997).
  • Kim MS, Choi HY, Choi YS, Kim J, Kim YS. Optimized serological isolation of lung-cancer-associated antigens from a yeast surface-expressed cDNA library. J. Microbiol. Biotechnol.17(6), 993–1001 (2007).
  • Wadle A, Mischo A, Imig J et al. Serological identification of breast cancer-related antigens from a Saccharomyces cerevisiae surface display library. Int. J. Cancer117(1), 104–113 (2005).
  • Li Q, Lv Y, Li C et al. Vitiligo autoantigen VIT75 is identified as lamin A in vitiligo by serological proteome analysis based on mass spectrometry. J. Invest. Dermatol.131(3), 727–734 (2011).
  • Fujita Y, Nakanishi T, Hiramatsu M et al. Proteomics-based approach identifying autoantibody against peroxiredoxin VI as a novel serum marker in esophageal squamous cell carcinoma. Clin. Cancer Res.12(21), 6415–6420 (2006).
  • Park S, Lim Y, Lee D et al. Identification and characterization of a novel cancer/testis antigen gene CAGE-1. Biochim. Biophys. Acta1625(2), 173–182 (2003).
  • Yang F, Xiao ZQ, Zhang XZ et al. Identification of tumor antigens in human lung squamous carcinoma by serological proteome analysis. J. Proteome Res.6(2), 751–758 (2007).
  • Bouwman K, Qiu J, Zhou H et al. Microarrays of tumor cell derived proteins uncover a distinct pattern of prostate cancer serum immunoreactivity. Proteomics3(11), 2200–2207 (2003).
  • Nam MJ, Madoz-Gurpide J, Wang H et al. Molecular profiling of the immune response in colon cancer using protein microarrays: occurrence of autoantibodies to ubiquitin C-terminal hydrolase L3. Proteomics3(11), 2108–2115 (2003).
  • Qiu J, Madoz-Gurpide J, Misek DE et al. Development of natural protein microarrays for diagnosing cancer based on an antibody response to tumor antigens. J. Proteome Res.3(2), 261–267 (2004).
  • Hudson ME, Pozdnyakova I, Haines K, Mor G, Snyder M. Identification of differentially expressed proteins in ovarian cancer using high-density protein microarrays. Proc. Natl Acad. Sci. USA104(44), 17494–17499 (2007).
  • Anderson KS, Ramachandran N, Wong J et al. Application of protein microarrays for multiplexed detection of antibodies to tumor antigens in breast cancer. J. Proteome Res.7(4), 1490–1499 (2008).
  • Anderson KS, Sibani S, Wallstrom G et al. Protein microarray signature of autoantibody biomarkers for the early detection of breast cancer. J. Proteome Res.10(1), 85–96 (2011).
  • Ramachandran N, Anderson KS, Raphael JV et al. Tracking humoral responses using self assembling protein microarrays. Proteomics Clin. Appl.2(10–11), 1518–1527 (2008).
  • Anderson KS. Multiplexed detection of antibodies using programmable bead arrays. Methods Mol. Biol.723, 227–238 (2011).
  • Waterboer T, Sehr P, Michael KM et al. Multiplex human papillomavirus serology based on in situ-purified glutathione s-transferase fusion proteins. Clin. Chem.51(10), 1845–1853 (2005).
  • Lenshof A, Ahmad-Tajudin A, Jaras K et al. Acoustic whole blood plasmapheresis chip for prostate specific antigen microarray diagnostics. Anal. Chem.81(15), 6030–6037 (2009).
  • Tiberti C, Verrienti A, Fiore B et al. IA-2 combined epitope assay: a new, highly sensitive approach to evaluate IA-2 humoral autoimmunity in Type 1 diabetes. Clin. Immunol.115(3), 260–267 (2005).
  • Jaras K, Ressine A, Nilsson E et al. Reverse-phase versus sandwich antibody microarray, technical comparison from a clinical perspective. Anal. Chem.79(15), 5817–5825 (2007).
  • Jaras K, Tajudin AA, Ressine A et al. ENSAM: europium nanoparticles for signal enhancement of antibody microarrays on nanoporous silicon. J. Proteome Res.7(3), 1308–1314 (2008).
  • Nishizuka S, Charboneau L, Young L et al. Proteomic profiling of the NCI-60 cancer cell lines using new high-density reverse-phase lysate microarrays. Proc. Natl Acad. Sci. USA100(24), 14229–14234 (2003).
  • Gustafsdottir SM, Schlingemann J, Rada-Iglesias A et al.In vitro analysis of DNA–protein interactions by proximity ligation. Proc. Natl Acad. Sci. USA104(9), 3067–3072 (2007).
  • Zhou H, Bouwman K, Schotanus M et al. Two-color, rolling-circle amplification on antibody microarrays for sensitive, multiplexed serum-protein measurements. Genome Biol.5(4), R28 (2004).
  • Burbelo PD, Bren KE, Ching KH et al. LIPS arrays for simultaneous detection of antibodies against partial and whole proteomes of HCV, HIV and EBV. Mol. Biosyst.7(5), 1453–1462 (2011).
  • Gnjatic S, Nishikawa H, Jungbluth AA et al. NY-ESO-1: review of an immunogenic tumor antigen. Adv. Cancer Res.95, 1–30 (2006).
  • Davidoff AM, Iglehart JD, Marks JR. Immune response to p53 is dependent upon p53/HSP70 complexes in breast cancers. Proc. Natl Acad. Sci. USA89(8), 3439–3442 (1992).
  • Green JA, Mudenda B, Jenkins J et al. Serum p53 auto-antibodies: incidence in familial breast cancer. Eur. J. Cancer30A(5), 580–584 (1994).
  • Lechpammer M, Lukac J, Lechpammer S, Kovacevic D, Loda M, Kusic Z. Humoral immune response to p53 correlates with clinical course in colorectal cancer patients during adjuvant chemotherapy. Int. J. Colorectal Dis.19(2), 114–120 (2004).
  • Warnakulasuriya S, Soussi T, Maher R, Johnson N, Tavassoli M. Expression of p53 in oral squamous cell carcinoma is associated with the presence of IgG and IgA p53 autoantibodies in sera and saliva of the patients. J. Pathol.192(1), 52–57 (2000).
  • Goodell V, Waisman J, Salazar LG et al. Level of HER-2/neu protein expression in breast cancer may affect the development of endogenous HER-2/neu-specific immunity. Mol. Cancer Ther.7(3), 449–454 (2008).
  • Maio M, Coral S, Sigalotti L et al. Analysis of cancer/testis antigens in sporadic medullary thyroid carcinoma: expression and humoral response to NY-ESO-1. J. Clin. Endocrinol. Metab.88(2), 748–754 (2003).
  • Jager E, Stockert E, Zidianakis Z et al. Humoral immune responses of cancer patients against ‘cancer-testis’ antigen NY-ESO-1: correlation with clinical events. Int. J. Cancer84(5), 506–510 (1999).
  • Stockert E, Jager E, Chen YT et al. A survey of the humoral immune response of cancer patients to a panel of human tumor antigens. J. Exp. Med.187(8), 1349–1354 (1998).
  • Reuschenbach M, Waterboer T, Wallin KL et al. Characterization of humoral immune responses against p16, p53, HPV16 E6 and HPV16 E7 in patients with HPV-associated cancers. Int. J. Cancer123(11), 2626–2631 (2008).
  • Akcakanat A, Kanda T, Koyama Y et al. NY-ESO-1 expression and its serum immunoreactivity in esophageal cancer. Cancer Chemother. Pharmacol.54(1), 95–100 (2004).
  • Reuschenbach M, von Knebel Doeberitz M, Wentzensen N. A systematic review of humoral immune responses against tumor antigens. Cancer Immunol. Immunother.58(10), 1535–1544 (2009).
  • Sotiriou C, Pusztai L. Gene-expression signatures in breast cancer. N. Engl. J. Med.360(8), 790–800 (2009).
  • Qiu J, Choi G, Li L et al. Occurrence of autoantibodies to annexin I, 14–13–3 θ and LAMR1 in prediagnostic lung cancer sera. J. Clin. Oncol.26(31), 5060–5066 (2008).
  • Suzuki H, Graziano DF, McKolanis J, Finn OJ. T cell-dependent antibody responses against aberrantly expressed cyclin B1 protein in patients with cancer and premalignant disease. Clin. Cancer Res.11(4), 1521–1526 (2005).
  • Trivers GE, De Benedetti VM, Cawley HL et al. Anti-p53 antibodies in sera from patients with chronic obstructive pulmonary disease can predate a diagnosis of cancer. Clin. Cancer Res.2(10), 1767–1775 (1996).
  • Jimenez LG, Aguilar MC, Monroy OL et al. Detection of autoantibodies to survivin in cervical mucus from patients with human papillomavirus-associated cervical cancer and precursor lesions. Autoimmunity40(1), 66–72 (2007).
  • Tureci O, Mack U, Luxemburger U et al. Humoral immune responses of lung cancer patients against tumor antigen NY-ESO-1. Cancer Lett.236(1), 64–71 (2006).
  • Abendstein B, Marth C, Muller-Holzner E, Widschwendter M, Daxenbichler G, Zeimet AG. Clinical significance of serum and ascitic p53 autoantibodies in epithelial ovarian carcinoma. Cancer88(6), 1432–1437 (2000).
  • Lai CL, Tsai CM, Tsai TT et al. Presence of serum anti-p53 antibodies is associated with pleural effusion and poor prognosis in lung cancer patients. Clin. Cancer Res.4(12), 3025–3030 (1998).
  • Lenner P, Wiklund F, Emdin SO et al. Serum antibodies against p53 in relation to cancer risk and prognosis in breast cancer: a population-based epidemiological study. Br. J. Cancer79(5–6), 927–932 (1999).
  • Mayerhofer K, Tempfer C, Kucera E et al. Humoral p53 antibody response is a prognostic parameter in ovarian cancer. Anti Cancer Res.19(1B), 875–878 (1999).
  • Tang R, Ko MC, Wang JY et al. Humoral response to p53 in human colorectal tumors: a prospective study of 1,209 patients. Int. J. Cancer94(6), 859–863 (2001).
  • Takeda A, Shimada H, Nakajima K et al. Monitoring of p53 autoantibodies after resection of colorectal cancer: relationship to operative curability. Eur. J. Surg.167(1), 50–53 (2001).
  • Metcalfe S, Wheeler TK, Picken S, Negus S, Jo Milner A. P53 autoantibodies in 1006 patients followed up for breast cancer. Breast Cancer Res.2(6), 438–443 (2000).
  • Rodolfo M, Luksch R, Stockert E et al. Antigen-specific immunity in neuroblastoma patients: antibody and T-cell recognition of NY-ESO-1 tumor antigen. Cancer Res.63(20), 6948–6955 (2003).
  • Kanojia D, Garg M, Gupta S, Gupta A, Suri A. Sperm-associated antigen 9, a novel biomarker for early detection of breast cancer. Cancer Epidemiol. Biomarkers Prev.18(2), 630–639 (2009).
  • Jager D, Knuth A. Antibodies and vaccines – hope or illusion? Breast14(6), 631–635 (2005).
  • Disis ML, Knutson KL, Schiffman K, Rinn K, McNeel DG. Pre-existent immunity to the HER-2/neu oncogenic protein in patients with HER-2/neu overexpressing breast and ovarian cancer. Breast Cancer Res. Treat.62(3), 245–252 (2000).
  • Disis ML, Pupa SM, Gralow JR, Dittadi R, Menard S, Cheever MA. High-titer HER-2/neu protein-specific antibody can be detected in patients with early-stage breast cancer. J. Clin. Oncol.15(11), 3363–3367 (1997).
  • Montgomery RB, Makary E, Schiffman K, Goodell V, Disis ML. Endogenous anti-HER2 antibodies block HER2 phosphorylation and signaling through extracellular signal-regulated kinase. Cancer Res.65(2), 650–656 (2005).
  • Disis ML, Schiffman K. Cancer vaccines targeting the HER2/neu oncogenic protein. Semin. Oncol.28(6 Suppl. 18), 12–20 (2001).
  • Kurtenkov O, Klaamas K, Rittenhouse-Olson K et al. IgG immune response to tumor-associated carbohydrate antigens (TF, Tn, αGal) in patients with breast cancer: impact of neoadjuvant chemotherapy and relation to the survival. Exp. Oncol.27(2), 136–140 (2005).
  • Anderson KS, Wong J, D’Souza G et al. Serum antibodies to the HPV16 proteome as biomarkers for head and neck cancer. Br. J. Cancer104(12), 1896–1905 (2011).
  • Lowy DR, Munger K. Prognostic implications of HPV in oropharyngeal cancer. N. Engl. J. Med.363(1), 82–84 (2010).
  • Smith EM, Rubenstein LM, Ritchie JM et al. Does pretreatment seropositivity to human papillomavirus have prognostic significance for head and neck cancers? Cancer Epidemiol. Biomarkers Prev.17(8), 2087–2096 (2008).
  • Dong J, Zeng BH, Xu LH et al. Anti-CDC25B autoantibody predicts poor prognosis in patients with advanced esophageal squamous cell carcinoma. J. Transl. Med.8, 81 (2010).
  • Bei R, Masuelli L, Palumbo C, Modesti M, Modesti A. A common repertoire of autoantibodies is shared by cancer and autoimmune disease patients: inflammation in their induction and impact on tumor growth. Cancer Lett.281(1), 8–23 (2009).
  • Dave SS, Wright G, Tan B et al. Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells. N. Engl. J. Med.351(21), 2159–2169 (2004).
  • Galon J, Costes A, Sanchez-Cabo F et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science313(5795), 1960–1964 (2006).
  • Pages F, Berger A, Camus M et al. Effector memory T cells, early metastasis, and survival in colorectal cancer. N. Engl. J. Med.353(25), 2654–2666 (2005).
  • Schmidt M, Bohm D, von Torne C et al. The humoral immune system has a key prognostic impact in node-negative breast cancer. Cancer Res.68(13), 5405–5413 (2008).
  • Zhang L, Conejo-Garcia JR, Katsaros D et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N. Engl. J. Med.348(3), 203–213 (2003).
  • Pages F, Galon J, Dieu-Nosjean MC, Tartour E, Sautes-Fridman C, Fridman WH. Immune infiltration in human tumors: a prognostic factor that should not be ignored. Oncogene29(8), 1093–1102 (2010).
  • Rauser S, Langer R, Tschernitz S et al. High number of CD45RO+ tumor infiltrating lymphocytes is an independent prognostic factor in non-metastasized (stage I–IIA) esophageal adenocarcinoma. BMC Cancer10, 608 (2010).
  • Milne K, Kobel M, Kalloger SE et al. Systematic analysis of immune infiltrates in high-grade serous ovarian cancer reveals CD20, FoxP3 and TIA-1 as positive prognostic factors. PLoS One4(7), e6412 (2009).
  • Nelson BH. CD20+ B cells: the other tumor-infiltrating lymphocytes. J. Immunol.185(9), 4977–4982 (2010).
  • Willis SN, Mallozzi SS, Rodig SJ et al. The microenvironment of germ cell tumors harbors a prominent antigen-driven humoral response. J. Immunol.182(5), 3310–3317 (2009).
  • Dieu-Nosjean MC, Antoine M, Danel C et al. Long-term survival for patients with non-small-cell lung cancer with intratumoral lymphoid structures. J. Clin. Oncol.26(27), 4410–4417 (2008).
  • Carragher DM, Rangel-Moreno J, Randall TD. Ectopic lymphoid tissues and local immunity. Semin. Immunol.20(1), 26–42 (2008).
  • Drayton DL, Liao S, Mounzer RH, Ruddle NH. Lymphoid organ development: from ontogeny to neogenesis. Nat. Immunol.7(4), 344–353 (2006).
  • Bianchini G, Qi Y, Alvarez RH et al. Molecular anatomy of breast cancer stroma and its prognostic value in estrogen receptor-positive and -negative cancers. J. Clin. Oncol.28(28), 4316–4323 (2010).
  • Routsias JG, Tzioufas AG, Moutsopoulos HM. The clinical value of intracellular autoantigens B-cell epitopes in systemic rheumatic diseases. Clin. Chim. Acta340(1–2), 1–25 (2004).
  • Goodnow CC, Sprent J, Fazekas de St Groth B, Vinuesa CG. Cellular and genetic mechanisms of self tolerance and autoimmunity. Nature435(7042), 590–597 (2005).
  • Wardemann H, Nussenzweig MC. B-cell self-tolerance in humans. Adv. Immunol.95, 83–110 (2007).
  • Yurasov S, Nussenzweig MC. Regulation of autoreactive antibodies. Curr. Opin. Rheumatol.19(5), 421–426 (2007).
  • Bei R, Masuelli L, Moriconi E et al. Immune responses to all ErbB family receptors detectable in serum of cancer patients. Oncogene18(6), 1267–1275 (1999).
  • Hogquist KA, Baldwin TA, Jameson SC. Central tolerance: learning self-control in the thymus. Nat. Rev. Immunol.5(10), 772–782 (2005).
  • Kyewski B, Klein L. A central role for central tolerance. Annu. Rev. Immunol.24, 571–606 (2006).
  • Plotz PH. The autoantibody repertoire: searching for order. Nat. Rev. Immunol.3(1), 73–78 (2003).
  • Anderson KS, LaBaer J. The sentinel within: exploiting the immune system for cancer biomarkers. J. Proteome Res.4(4), 1123–1133 (2005).
  • Hardy B, Indjiia L, Rodionov G, Raiter A, Inbal A. Treatment with BAT monoclonal antibody decreases tumor burden in a murine model of leukemia/lymphoma. Int. J. Oncol.19(5), 897–902 (2001).
  • Liebman MA, Roche MI, Williams BR, Kim J, Pageau SC, Sharon J. Antibody treatment of human tumor xenografts elicits active anti-tumor immunity in nude mice. Immunol. Lett.114(1), 16–22 (2007).
  • Dejnirattisai W, Jumnainsong A, Onsirisakul N et al. Cross-reacting antibodies enhance dengue virus infection in humans. Science328(5979), 745–748 (2010).
  • Traggiai E, Becker S, Subbarao K et al. An efficient method to make human monoclonal antibodies from memory B cells: potent neutralization of SARS coronavirus. Nat. Med.10(8), 871–875 (2004).
  • Tiller T, Meffre E, Yurasov S, Tsuiji M, Nussenzweig MC, Wardemann H. Efficient generation of monoclonal antibodies from single human B cells by single cell RT-PCR and expression vector cloning. J. Immunol. Methods329(1–2), 112–124 (2008).
  • Gruel N, Kotlan B, Beuzard M, Teillaud JL. Generation of scFv from a phage display mini-library derived from tumor-infiltrating B-cells. Methods Mol. Biol.193, 281–300 (2002).
  • Philip R, Murthy S, Krakover J et al. Shared immunoproteome for ovarian cancer diagnostics and immunotherapy: potential theranostic approach to cancer. J. Proteome Res.6(7), 2509–2517 (2007).
  • Schmollinger JC, Vonderheide RH, Hoar KM et al. Melanoma inhibitor of apoptosis protein (ML-IAP) is a target for immune-mediated tumor destruction. Proc. Natl Acad. Sci. USA100(6), 3398–3403 (2003).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.