267
Views
14
CrossRef citations to date
0
Altmetric
Review

Brain asymmetry: both sides of the story

&
Pages 693-703 | Published online: 09 Jan 2014

References

  • Broca P. [Remarks on the centre of the faculty of articulate language, following an observation of aphemia (loss of speech)]. Bull. Soc. Anthropol.6, 330–357 (1861).
  • Wernicke C. [The Aphasic Symptom Complex: A Psychological Study of Anatomical basis]. Cohn W (Ed.). Springer, Breslau, Poland (1874).
  • Geschwind DH, Miller BL. Molecular approaches to cerebral laterality: development and neurodegeneration. Am. J. Med. Genet.101(4), 370–381 (2001).
  • Riss W. Testing a theory of brain function by computer methods. III. Detecting cerebral asymmetry in normal adults. Brain Behav. Evol.24(1), 13–20 (1984).
  • Toga AW, Thompson PM. Mapping brain asymmetry. Nat. Rev. Neurosci.4(1), 37–48 (2003).
  • Van Essen DC. A Population-Average, Landmark- and Surface-based (PALS) atlas of human cerebral cortex. Neuroimage28(3), 635–662 (2005).
  • LeMay M, Culebras A. Human brain – morphologic differences in the hemispheres demonstrable by carotid arteriography. N. Engl. J. Med.287(4), 168–170 (1972).
  • Geschwind N, Levitsky W. Human brain: left–right asymmetries in temporal speech region. Science161(837), 186–187 (1968).
  • Levitsky W, Geschwind N. Asymmetries of the right and left hemisphere in man. Trans. Am. Neurol. Assoc.93, 232–233 (1968).
  • Chi JG, Dooling EC, Gilles FH. Left–right asymmetries of the temporal speech areas of the human fetus. Arch. Neurol.34(6), 346–348 (1977).
  • Oke A, Lewis R, Adams RN. Hemispheric asymmetry of norepinephrine distribution in rat thalamus. Brain Res.188(1), 269–272 (1980).
  • Kristofiková Z, Kozmiková I, Hovorková P et al. Lateralization of hippocampal nitric oxide mediator system in people with Alzheimer disease, multi-infarct dementia and schizophrenia. Neurochem. Int.53(5), 118–125 (2008).
  • Afonso D, Santana C, Rodriguez M. Neonatal lateralization of behavior and brain dopaminergic asymmetry. Brain Res. Bull.32(1), 11–16 (1993).
  • Schneider LH, Murphy RB, Coons EE. Lateralization of striatal dopamine (D2) receptors in normal rats. Neurosci. Lett.33(3), 281–284 (1982).
  • Ginobili de Martinez MS, Barrantes FJ. Ca2+ and phospholipid-dependent protein kinase activity in rat cerebral hemispheres. Brain Res.440(2), 386–390 (1988).
  • Ginobili de Martinez MS, Rodriguez de Turco EB, Barrantes FJ. Asymmetry of diacylglycerol metabolism in rat cerebral hemispheres. J. Neurochem.46(5), 1382–1386 (1986).
  • Ginobili de Martinez MS, Rodriguez de Turco EB, Barrantes FJ. Endogenous asymmetry of rat brain lipids and dominance of the right cerebral hemisphere in free fatty acid response to electroconvulsive shock. Brain Res.339(2), 315–321 (1985).
  • Addington AM, Gauthier J, Piton A et al. A novel frameshift mutation in UPF3B identified in brothers affected with childhood onset schizophrenia and autism spectrum disorders. Mol. Psychiatry16(3), 238–239 (2011).
  • Moossy J, Zubenko Gs, Martinez Aj, Rao Gr, Kopp U, Hanin I. Lateralization of brain morphologic and cholinergic abnormalities in Alzheimer’s disease. Arch. Neurol.46(6), 639–642 (1989).
  • Garcia RR, Montiel JF, Villalon AU, Gatica MA, Aboitiz F. AChE-rich magnopyramidal neurons have a left-right size asymmetry in Broca’s area. Brain Res.1026(2), 313–316 (2004).
  • Kristofikova Z, Stastny F, Bubenikova V, Druga R, Klaschka J, Spaniel F. Age- and sex-dependent laterality of rat hippocampal cholinergic system in relation to animal models of neurodevelopmental and neurodegenerative disorders. Neurochem. Res.29(4), 671–680 (2004).
  • Hutsler JJ, Gazzaniga MS. Acetylcholinesterase staining in human auditory and language cortices: regional variation of structural features. Cereb. Cortex6(2), 260–270 (1996).
  • Rhodes ME, Rubin RT. Functional sex differences (‘sexual diergism’) of central nervous system cholinergic systems, vasopressin, and hypothalamic–pituitary–adrenal axis activity in mammals: a selective review. Brain Res. Brain Res. Rev.30(2), 135–152 (1999).
  • Wilde EA, McCauley SR, Chu Z et al. Diffusion tensor imaging of hemispheric asymmetries in the developing brain. J. Clin. Exp. Neuropsychol.31(2), 205–218 (2009).
  • Luders E, Narr KL, Thompson PM, Rex DE, Jancke L, Toga AW. Hemispheric asymmetries in cortical thickness. Cereb. Cortex16(8), 1232–1238 (2006).
  • Shaw P, Lalonde F, Lepage C et al. Development of cortical asymmetry in typically developing children and its disruption in attention-deficit/hyperactivity disorder. Arch. Gen. Psychiatry66(8), 888–896 (2009).
  • Rodriguez M, Afonso D. Ontogeny of T-maze behavioral lateralization in rats. Physiol. Behav.54(1), 91–94 (1993).
  • Scheibel AB, Paul LA, Fried I et al. Dendritic organization of the anterior speech area. Exp. Neurol.87(1), 109–117 (1985).
  • Taylor DC. Differential rates of cerebral maturation between sexes and between hemispheres. Evidence from epilepsy. Lancet2(7612), 140–142 (1969).
  • Pfannkuche KA, Bouma A, Groothuis TG. Does testosterone affect lateralization of brain and behaviour? A meta-analysis in humans and other animal species. Philos. Trans. R. Soc. Lond. B. Biol. Sci.364(1519), 929–942 (2009).
  • Pei M, Matsuda K, Sakamoto H, Kawata M. Intrauterine proximity to male fetuses affects the morphology of the sexually dimorphic nucleus of the preoptic area in the adult rat brain. Eur. J. Neurosci.23(5), 1234–1240 (2006).
  • Cohen CC, Van Goozen SH, Orlebeke JF, Buitelaar JK, Cohen-Kettenis PT. A comparison of educational achievement in a national sample of Dutch female twins and their matched singleton controls. Twin Res.5(4), 273–276 (2002).
  • Thompson PM, Cannon TD, Narr KL et al. Genetic influences on brain structure. Nat. Neurosci.4(12), 1253–1258 (2001).
  • Cohen MM Jr. Asymmetry: molecular, biologic, embryopathic, and clinical perspectives. Am. J. Med. Genet.101(4), 292–314 (2001).
  • Afzelius BA. A human syndrome caused by immotile cilia. Science193(4250), 317–319 (1976).
  • Skeik N, Jabr FI. Kartagener syndrome. Int. J. Gen. Med.4, 41–43 (2011).
  • Capdevila J, Vogan KJ, Tabin CJ, Izpisúa Belmonte JC. Mechanisms of left–right determination in vertebrates. Cell101(1), 9–21 (2000).
  • Sun T, Patoine C, Abu-Khalil A et al. Early asymmetry of gene transcription in embryonic human left and right cerebral cortex. Science308(5729), 1794–1798 (2005).
  • Gogtay N, Thompson PM. Mapping gray matter development: implications for typical development and vulnerability to psychopathology. Brain Cogn.72(1), 6–15 (2000).
  • Paulsen J. Functional imaging in Huntington’s disease. Exp. Neurol.216(2), 272–277 (2009).
  • Pan L, Keener MT, Hassel S, Phillips ML. Functional neuroimaging studies for bipolar disorder: examining the wide clinical spectrum in the search for disease endophenotypes. Int. Rev. Psychiatry21(4), 368–379 (2009).
  • Malmivuo J. Comparison of the properties of EEG and MEG in detecting the electric activity of the brain. Brain Topogr. doi:10.1007/s10548-011-0202-1 (2011) (Epub ahead of print).
  • Gibson A, Dehghani H. Diffuse optical imaging. Phil. Trans. A. Math Phys. Eng. Sci.367(1900), 3055–3072 (2009).
  • Gratton G, Fabiani M. Fast optical imaging of human brain function. Front. Hum. Neurosci.4(52), 1–9 (2010).
  • Jack CR Jr, Bernstein MA, Borowski BJ et al. Update on the magnetic resonance imaging core of the Alzheimer’s disease neuroimaging initiative. Alzheimers Dement.6(3), 212–220 (2010).
  • Liu N. Brain mapping with high-resolution FMRI technology. Methods Mol. Biol.401, 195–210 (2007).
  • Li TQ, Wahlund LO. The search for neuroimaging biomarkers of Alzheimer’s disease with advanced MRI techniques. Acta Radiol.52(2), 211–222 (2011).
  • Tang YZ, Bhogal P, Malhotra A, Wilhelm T. Imaging of a primary central nervous system lymphoma. Clin. Radiol.66(8), 768–777 (2011).
  • McArthur C, Jampana R, Patterson J, Hadley D. Applications of cerebral SPECT. Clin. Radiol.66(7), 651–661 (2011).
  • Wassermann EM, Zimmermann T. Transcranial magnetic brain stimulation: therapeutic promises and scientific gaps. Pharmacol. Ther. doi:10.1016/j.pharmthera.2011.09.003 (2011) (Epub ahead of print).
  • Sun YF, Lee JS, Kirby R. Brain imaging findings in dyslexia. Pediatr. Neonatol.51(2), 89–96 (2010).
  • Chance SA, Casanova MF, Switala AE, Crow TJ. Auditory cortex asymmetry, altered minicolumn spacing and absence of ageing effects in schizophrenia. Brain131(Pt 12), 3178–3192 (2008).
  • Focking M, Dicker P, English JA, Schubert O, Dunn MJ, Cotter DR. Common proteomic changes in the hippocampus in schizophrenia and bipolar disorder and particular evidence for involvement of cornu ammonis regions 2 and 3. Arch. Gen. Psychiatry68(5), 477–488 (2011).
  • Broadwater L, Pandit A, Clements R et al. Analysis of the mitochondrial proteome in multiple sclerosis cortex. Biochim. Biophys. Acta1812(5), 630–641 (2011).
  • Lessner G, Schmitt O, Haas SJ et al. Differential proteome of the striatum from hemiparkinsonian rats displays vivid structural remodeling processes. J. Proteome Res.9(9), 4671–4687 (2010).
  • Zhou A, Simon RP, David L. Nascent proteomes of ischemic-injured and ischemic-tolerant neuronal cells. Int. J. Comput. Biol. Drug Des.4(1), 40–55 (2011).
  • Li G, Chang M, Jiang H, Xie H, Dong Z, Hu L. Proteomics analysis of methylglyoxal-induced neurotoxic effects in SH-SY5Y cells. Cell Biochem. Funct.29(1), 30–35 (2011).
  • Thambisetty M, Tripaldi R, Riddoch-Contreras J et al. Proteome-based plasma markers of brain amyloid-β deposition in non-demented older individuals. J. Alzheimers Dis.22(4), 1099–1109 (2010).
  • Bayes A, Grant SG. Neuroproteomics: understanding the molecular organization and complexity of the brain. Nat. Rev. Neurosci.10(9), 635–646 (2009).
  • Schoofs L, Holman GM, Hayes TK, Nachman RJ, De Loof A. Locustatachykinin I and II, two novel insect neuropeptides with homology to peptides of the vertebrate tachykinin family. FEBS Lett.261(2), 397–401 (1990).
  • Svensson M, Sköld K, Nilsson A, Fälth M, Svenningsson P, Andrén PE. Neuropeptidomics: expanding proteomics downwards. Biochem. Soc. Trans.35(Pt 3), 588–593 (2007).
  • Gygi SP, Rochon Y, Franza BR, Aebersold R. Correlation between protein and mRNA abundance in yeast. Mol. Cell Biol.19(3), 1720–1730 (1999).
  • Voineagu I. Gene expression studies in autism: moving from the genome to the transcriptome and beyond. Neurobiol. Dis. doi:10.1016/j.nbd.2011.07.017 (2011) (Epub ahead of print).
  • Wei Q, Kang Z, Diao F et al. Association of the ZNF804A gene polymorphism rs1344706 with white matter density changes in Chinese schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry doi:10.1016/j.pnpbp.2011.08.021 (2011) (Epub ahead of print).
  • Fountoulakis M. Application of proteomics technologies in the investigation of the brain. Mass Spectrom. Rev.23(4), 231–258 (2004).
  • de Godoy LM, Olsen JV, Cox J et al. Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast. Nature455(7217), 1251–1254 (2008).
  • Herbert MR, Ziegler DA, Deutsch CK et al. Brain asymmetries in autism and developmental language disorder: a nested whole-brain analysis. Brain128(Pt 1), 213–226 (2005).
  • Hugdahl K, Heiervang E, Nordby H et al. Central auditory processing, MRI morphometry and brain laterality: applications to dyslexia. Scand. Audiol. Suppl.49, 26–34 (1998).
  • Galaburda AM, Menard MT, Rosen GD. Evidence for aberrant auditory anatomy in developmental dyslexia. Proc. Natl Acad. Sci. USA91(17), 8010–8013 (1994).
  • Falkai P, Bogerts B, Greve B et al. Loss of sylvian fissure asymmetry in schizophrenia. A quantitative post mortem study. Schizophr. Res.7(1), 23–32 (1992).
  • Castegna A, Aksenov M, Thongboonkerd V et al. Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. Part II: dihydropyrimidinase-related protein 2, α-enolase and heat shock cognate 71. J. Neurochem.82(6), 1524–1532 (2002).
  • Butterfield DA, Drake J, Pocernich C, Castegna A. Evidence of oxidative damage in Alzheimer’s disease brain: central role for amyloid β-peptide. Trends Mol. Med.7(12), 548–554 (2001).
  • Huang YC, Wu YR, Tseng MY, Chen YC, Hsieh SY, Chen CM. Increased prothrombin, apolipoprotein A-IV, and haptoglobin in the cerebrospinal fluid of patients with Huntington’s disease. PLoS One6(1), e15809 (2011).
  • Fonteh AN, Fisher RD. Combining lipidomics and proteomics of human cerebrospinal fluids. Methods Mol. Biol.579, 71–86 (2009).
  • Wilson ME, Boumaza I, Lacomis D, Bowser R. Cystatin C: a candidate biomarker for amyotrophic lateral sclerosis. PLoS One5(12), e15133 (2010).
  • Zhou JY, Afjehi-Sadat L, Asress S et al. Galectin-3 is a candidate biomarker for amyotrophic lateral sclerosis: discovery by a proteomics approach. J. Proteome Res.9(10), 5133–5141 (2010).
  • Samara A, Vougas K, Papadopoulou A et al. Proteomics reveal rat hippocampal lateral asymmetry. Hippocampus21(1), 108–119 (2011).
  • Braak H, Del Tredici K, Rüb U, de Vos RA, Jansen Steur EN, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging24(2), 197–211 (2003).
  • George JS, Aine CJ, Mosher JC et al. Mapping function in the human brain with magnetoencephalography, anatomical magnetic resonance imaging, and functional magnetic resonance imaging. J. Clin. Neurophysiol.12(5), 406–431 (1995).
  • Bandettini PA. What’s new in neuroimaging methods? Ann. NY Acad. Sci.1156, 260–293 (2009).
  • Shibasaki H. Human brain mapping: hemodynamic response and electrophysiology. Clin. Neurophysiol.119(4), 731–743 (2008).
  • Hagmann P, Cammoun L, Gigandet X et al. MR connectomics: principles and challenges. J. Neurosci. Methods194(1), 34–45 (2010).
  • Rodrigo S, Oppenheim C, Jissendi P, Soto-Ares G, Pruvo JP, Meder JF. [New techniques of structural and functional MRI]. Neurochirurgie54(3), 197–207 (2008).
  • Abraham T, Feng J. Evolution of brain imaging instrumentation. Semin. Nucl. Med.41(3), 202–219 (2011).
  • Alsop DC, Dai W, Grossman M, Detre JA. Arterial spin labeling blood flow MRI: its role in the early characterization of Alzheimer’s disease. J. Alzheimers Dis.20(3), 871–880 (2010).
  • Lourenco AS, Baldeiras I, Graos M, Duarte CB. Proteomics-based technologies in the discovery of biomarkers for multiple sclerosis in the cerebrospinal fluid. Curr. Mol. Med.11(4), 326-349 (2011).
  • Benoit CE, Rowe WB, Menard C, Sarret P, Quirion R. Genomic and proteomic strategies to identify novel targets potentially involved in learning and memory. Trends Pharmacol. Sci.32(1), 43–52 (2011).
  • Jiang H, Hou Q, Gong Z, Liu L. Proteomic and transcriptomic analysis of visual long-term memory in Drosophila melanogaster. Protein Cell2(3), 215–222 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.